Skip to main content
Log in

Multifunctional and smart Er2O3–ZnO nanocomposites for electronic ceramic varistors and visible light degradation of wastewater treatment

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In this proposed study, erbium (Er3+)-doped ZnO nanocomposites were prepared through the effective, basic, and green combustion method. The significant effects of Er dopants on the structural, morphological features, dielectric, and optical behaviors of the pure ZnO matrix as well as Er2O3–ZnO nanostructured materials were investigated applying X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transformation infrared (FT-IR) spectroscopy, and UV–Vis spectrophotometer techniques. These results showed that the synthesized Er2O3–ZnO nanocomposites are well polycrystalline. The Er2O3–ZnO nanocomposites are almost uniformly distributed on the surface morphologies. Furthermore, UV–Vis diffuse reflectance spectroscopy, AC electrical conductivity, and dielectric properties’ current–voltage characteristics were utilized to examine the influence of erbium doping on the optical properties, energy bandgaps of the proposed Er2O3–ZnO nanostructured powder. The tested nano-samples were applied for the visible light photodegradation of p-chlorophenol(4-CP) and p-nitrophenol (4-NP). The Er-doped ZnO ratio affects the photocatalytic activity of the ZnO matrix. This current research substantiated that more than 99.5% of 4-CP and 4-NP were photodegraded through 30 min of irradiation. Four times, the Er:ZnO nanocatalysts were used and still displayed an efficiency of more than 96.5% for 4-CP and 4-NP degradations in the specified period of 30 min. The as-prepared Er2O3–ZnO nanostructures are considered novel potential candidates in broad nano-applications from visible photocatalytic degradation of waste pollutants to the electronic varistor devices.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Scheme 1
Scheme 2
Fig. 19

Similar content being viewed by others

References

  • Afsal M, Wang CY, Chu LW, Ouyang H, Chen LJ (2012) Highly sensitive metal–insulator–semiconductor UV photodetectors based on ZnO/SiO 2 core-shell nanowires. J Mater Chem 22(17):8420–8425

    CAS  Google Scholar 

  • AlAbdulaal TH, Yahia IS (2021) Optical linearity and nonlinearity, structural morphology of TiO2-doped PMMA/FTO polymeric nanocomposite films: laser power attenuation. Optik 227:166036

    CAS  Google Scholar 

  • Alam U, Khan A, Ali D, Bahnemann D, Muneer M (2018) Comparative photocatalytic activity of sol-gel derived rare earth metal (La, Nd, Sm, and Dy)-doped ZnO photocatalysts for degradation of dyes. RSC Adv 4:17582–17594. https://doi.org/10.1039/C8RA01638K

    Article  Google Scholar 

  • Alivisatos P (1996) Science 271:933. https://doi.org/10.1126/science.271.5251.933

    Article  CAS  Google Scholar 

  • Ashebir ME, Tesfamariam GM, Nigussie GY, Gebreab TW (2018) Structural, optical, and photocatalytic activities of Ag-doped and Mn-doped ZnO nanoparticles. J Nanomater:9425938, 9 pages. https://doi.org/10.1155/2018/9425938

  • Aydın C, Abd El-sadek MS, Zheng K, Yahia IS, Yakuphanoglu F (2013) Synthesis, diffused reflectance, and electrical properties of nanocrystalline Fe-doped ZnO via sol-gel calcination technique. Opt Laser Technol 48:447–452

    Google Scholar 

  • Bae SY, Na CW, Kang JH, Park J (2005) J Phys Chem B 109:2526 Available from: https://www.epa.gov/wqc/national-recommended-water-quality-criteria-table.

  • Bhattacharyya S, Saha SK, Chakravorty M, Mandal BM, Chakravorty D, Goswami K (2001)Frequency-dependent conductivity of interpenetrating polymer network composites of polypyrrole–poly(vinyl acetate). J Polym Sci B Polym Phys 39:1935–1941

    CAS  Google Scholar 

  • Bobnar V, Levstik A, Huang C, Zhang QM (2004) Distinctive contributions from organic filler and relaxorlike polymer matrix to dielectric response of CuPc-P(VDF-TrFE-CFE) composite. Phys Rev Lett 92:047604

    CAS  Google Scholar 

  • Borras C, Berzoy C, Mostany J, Herrera JC, Scharifker BR (2007) A comparison of the electrooxidation kinetics of pmethoxyphenol and p-nitrophenol on Sb-doped SnO2 surfaces: concentration and temperature effects. Applied Catalysis B Environmental 72(1–2):98–104

    CAS  Google Scholar 

  • Brütting W (2006) Physics of Organic Semiconductors. WILEY-VCH Verlag

    Google Scholar 

  • Calarco R, Marso M, Richter T, Aykanat AI, Meijers R, Hart AV, Stoica T, Luth H (2005) Nano Lett 5:981

    CAS  Google Scholar 

  • Callister WD (1997) Materials science and engineering: an introduction, force ed. John Wiley & Sons, New York

    Google Scholar 

  • Carraway ER, Huffman AJ, Hoffmann MR (2004) Photocatalytic oxidation of organic acids on quantum-sized semiconductor colloids. Environ Sci Technol 28(5):786–793

    Google Scholar 

  • Chang WR, Fang YK, Ting SF, Tsair YS, Chang CN, Lin CY, Chen SF (2003) IEEE Electron Device Lett 24:565

    CAS  Google Scholar 

  • Chang LW, Sung YC, Yeh JW, Shih HC (2011) J Appl Phys 109:074318

    Google Scholar 

  • Chavillon B, Cario L, Renaud A, Tessier F, Chevire F, Boujtita M, Pellegrin Y, Blart E, Smeigh A, Hammarstrom L, Odobel F, Jobic S (2012) J Am Chem Soc 134:464

    CAS  Google Scholar 

  • Chen CH, Chang SJ, Chang SP, Li MJ, Chen IC, Hsueh TJ, Hsu AD, Hsu CL (2010a) J Phys Chem C 114:12422

    CAS  Google Scholar 

  • Chen MT, Lu MP, Wu YJ, Song JH, Lee CY, Lu MY, Chang YC, Chou LJ, Wang ZL, Chen LJ (2010b) Nano Lett 10:4387

    CAS  Google Scholar 

  • Chu DW, Zeng YP, Jiang DL (2007) J Phys Chem C 111:5893

    CAS  Google Scholar 

  • Dalal SH, Baptista DL, Teo KBK, Lacerda RG, Jefferson DA, Milne WI (2006) Nanotechnology 17:4811

    CAS  Google Scholar 

  • Davis EA, Mott NF (1970) Conduction in non-crystalline systems V. conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos. Mag 22:903–922

    CAS  Google Scholar 

  • Dindar B, Icli S (2001) Unusual photoreactivity of zinc oxide irradiated by concentrated sunlight. J Photochem Photobiol A Chem 140(3):263–268. https://doi.org/10.1016/S1010-6030(01)00414-2

    Article  CAS  Google Scholar 

  • Divya NK, Aparna PU, Pradyumnan PP (2015) Dielectric properties of Er 3 þ doped ZnO. Nanocrystals:287e294

  • Djurisic AB, Ng AMC, Chen XY (2010) Prog Quantum Electron 34:191

    CAS  Google Scholar 

  • Dutta PK, Pehkonen SO, Sharma VK, Ray AK (2005) Photocatalytic oxidation of arsenic (III): evidence of hydroxyl radicals. Environ Sci Technol 39(6):1827–1834. https://doi.org/10.1021/es0489238

    Article  CAS  Google Scholar 

  • El-Kabbany F, Taha S, Hafez M (2014) A study of the phase transition of reheated diphenyl carbazide (DPC) by using UV spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 128:481–488

    CAS  Google Scholar 

  • Falcony C, Ortiz A, Garcia M, Helman JS (1988) J Appl Phys 63:2378. https://doi.org/10.1063/1.341055

    Article  CAS  Google Scholar 

  • Gao J, Luan X, Wang J, Wang B, Li K, Li Y, Kang P, Han G (2011) Preparation of Er3 þ: YAlO 3/Fe-doped TiO2 e ZnO and its application in photocatalytic degradation of dyes under solar light irradiation. DES 268:68e75. https://doi.org/10.1016/j.desal.2010.09.052

    Article  CAS  Google Scholar 

  • Gu F, Wang SF, Lu MK, Zhou GJ, Xu D, Yuan DR (2004) Langmuir 20:3528. https://doi.org/10.1021/la049874f

    Article  CAS  Google Scholar 

  • Haruta M (1997)Size-and support-dependency in the catalysis of gold. Catal Today 36(1):153–166

    CAS  Google Scholar 

  • Hatch SM, Briscoe J, Sapelkin A, Gillin WP, Gilchrist JB, Ryan MP, Heutz S, Dunn S (2013) J Appl Phys 113:204501

    Google Scholar 

  • Hsu CL, Lu YC (2012) Fabrication of a transparent ultraviolet detector by using n-type Ga2O3 and p-type Ga-doped SnO2core-shell nanowires. Nanoscale 4(18):5710–5717

    CAS  Google Scholar 

  • Huang XH, Zhan ZY, Pramoda KP, Zhang C, Zheng LX, Chua SJ (2012) Cryst Eng Comm 14:5163

    CAS  Google Scholar 

  • Iijima S, Ichihashi T (1993) Nature 363:603

    CAS  Google Scholar 

  • Ishizumi H, Kanemitsu Y (2005) Appl Phys Lett 86:253106. https://doi.org/10.1063/1.1952576

    Article  CAS  Google Scholar 

  • Jali VM, Aparna S, Ganesh S, Krupanidhi SB (2007) AC conductivity studies on the electron irradiated BaZrO3 ceramic. Nucl Instruments Methods Phys Res B 257:505

    CAS  Google Scholar 

  • Jayakumar OD, Gopalakrishnan IK, Kulshreshtha SK (2006) Adv Mater 18:1857

    CAS  Google Scholar 

  • Jia TK, Wang WM, Long F, Fu ZY, Wang H, Zhang QJ (2009) J Alloy Compd 484:410

    CAS  Google Scholar 

  • Jonscher AK (1977) The ‘universal’ dielectric response. Nature 267:673–679

    CAS  Google Scholar 

  • Jonscher AK (1993) Dielectric relaxation in solids. Chelsea Dielectrics, London

    Google Scholar 

  • Ju-ka G, Pivrikas (2008) Private Communications

  • Julian B, Corberan R, Cordoncillo E, Esoribano P, Viana B, Sanchez C (2005) Nanotechnol 16:2707. https://doi.org/10.1088/0957-4484/16/11/040

    Article  CAS  Google Scholar 

  • Kamat PV (1993) Photochemistry on nonreactive and reactive (semiconductor) surfaces. Chem Rev 93(1):267–300. https://doi.org/10.1021/cr00017a013

    Article  CAS  Google Scholar 

  • Kausar R, Juddin S, Blouch A, Bhanger MI, Sherazi TH, Kumar R (2018) Degradation of 4-chlorophenol under sunlight using zno nanoparticles as catalysts. J Electron Mater 47:3. https://doi.org/10.1007/s11664-017-6029-0

    Article  CAS  Google Scholar 

  • Khataee AR, Hanifehpour Y, Safarpour M, Hosseini M, Joo SW (2013) Synthesis and characterization of ErxZn1Se nanoparticles: a novel visible light responsive photocatalyst. Sci Adv Mater 5:1074–1082

    CAS  Google Scholar 

  • Khataee A, Saadi S, Safarpour M, Woo S (2015) Ultrasonics sonochemistry sonocatalytic performance of Er-doped ZnO for degradation of a textile dye. Ultrason Sonochem 27:379e388. https://doi.org/10.1016/j.ultsonch.2015.06.010

    Article  CAS  Google Scholar 

  • Khatamian M, Khandar AA, Divband B, Haghighi M, Ebrahimiasl S (2012) Heterogeneous photocatalytic degradation of 4-nitrophenol in aqueous suspension by Ln (La3+, Nd3+ or Sm3+) doped ZnO nanoparticles. J Mol Catal A Chem 365:120–127

    CAS  Google Scholar 

  • Kim S, Park H, Nam G, Yoon H, Kim B, Ji I, Kim Y, Kim I, Park Y, Kang D, Leem JY (2014) Electron Mater Lett 10:81

  • Knecht B, Meith A (1979) Surge arresters: zinc oxide based non-linear resistances. Brown Boveri Review:739–742

  • Kobayashi M, Mizuno M, Aizawa T, Hayashi M, Mirani K (1978) Development of zinc oxide non-linear resistors and their applications to gapless surge arrester. Transactions on Power Apparatus and System 97(4):1149–1158

    Google Scholar 

  • Kumar V, Singh RG, Singh N, Kapoor A, Mehra RM, Purohit LP (2013) Synthesis and characterization of aluminum–boronco-doped ZnO nanostructures. Mater Res Bull 48:362–366

    CAS  Google Scholar 

  • Kumar R, Umar A, Kumar G, Akhtar MS, Wang Y, Kim SH (2015)Ce-doped ZnO nanoparticles for efficient photocatalytic degradation of direct red-23 dye. Ceram Int 41:7773–7782. https://doi.org/10.1016/j.ceramint.2015.02.110

    Article  CAS  Google Scholar 

  • Kumar DR, Ranjith KS, Kumar RTR (2018) Structural, optical, photocurrent and solar-driven photocatalytic properties of vertically aligned samarium doped ZnO nanorod arrays. Opt Int J Light Electron Opt 154:115–125. https://doi.org/10.1016/j.ijleo.2017.10.004

    Article  CAS  Google Scholar 

  • Law M, Greene LE, Johnson JC, Saykally R, Yang PD (2005) Nat Mater 4:455

    CAS  Google Scholar 

  • Lee JB, Lee MH, Park CK, Park JS (2004a) Thin Solid Films 296:447–448

  • Lee W, Jeong MC, Myoung JM (2004b) Appl Phys Lett 85:6167

    CAS  Google Scholar 

  • Li QC, Kumar V, Li Y, Zhang HT, Marks TJ, Chang RPH (2005) Chem Mat 17:1001

    Google Scholar 

  • Li YL, Zhao XA, Fan WL (2011) J Phys Chem C 115:3552

    CAS  Google Scholar 

  • Lin D, Wu H, Pan W (2007) Adv Mater 19:3968

    CAS  Google Scholar 

  • Liu Y, Liu H, Li Y (2008) Comparative study of the electrocatalytic oxidation and mechanism of nitrophenols at bi-doped lead dioxide anodes. Appl Catal B Environ 84(1–2):297–302

    CAS  Google Scholar 

  • Lo JW, Lien WC, Lin CA, He JH (2011) ACS Appl. Mater Interfaces 3:1009

    CAS  Google Scholar 

  • Luo LJ, Tao W, Hu XY, Xiao T, Heng BJ, Huang W, Wang H, Han HW, Jiang Q, Wang JB, Tang YW, Power J (2011) Sources 196:10518

    CAS  Google Scholar 

  • Mai SAH, Mohammed MI, Yahia IS (2020) Flexible photocatalytic membrane based on CdS/PMMA polymeric nanocomposite films: multifunctional materials. Environ Sci Pollut Res 27(36):45225–45237

    Google Scholar 

  • Maji P, Pande PP, Choudhary RB (2015) Effect of Zn (NO3)2 filler on the dielectric permittivity and electrical modulus of PMMA. Bull Mater Sci 38(2):417–424

    CAS  Google Scholar 

  • Mansour SA, Yahia IS, Yakuphanoglu F (2010) The electrical conductivity and dielectric properties of C.I. Basic Violet 10. Dyes Pigments 87:144–148

    CAS  Google Scholar 

  • Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Science 307:538. https://doi.org/10.1126/science.1104274

    Article  CAS  Google Scholar 

  • Michalowicz J, Duda W (2007)Phenols–sources and toxicity. Pol J Environ Stud 16:347–362

    CAS  Google Scholar 

  • Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA (2006) Nano Lett 6:215

    CAS  Google Scholar 

  • Murowski L, Barczynski RJ (1995) Dielectric properties of transition metal oxide glasses. J Non-Cryst Solids 185:84

    Google Scholar 

  • Nahm CW (2009) Effect of MnO2 addition on microstructure and electrical properties of ZnO–V2O5-based varistor ceramics. Ceram Int 35(2):541–546

    CAS  Google Scholar 

  • Nie B, Hu JG, Luo LB, Xie C, Zeng LH, Lv P, Yu YQ (2013) Monolayer graphene film on ZnO nanorod array for high-performance schottky junction ultraviolet photodetectors. Small 9(17):2872–2879

    CAS  Google Scholar 

  • Ortiz A, Falcony C, Garcia M, Sanchez A (1987) J Phys D 20:670. https://doi.org/10.1088/0022-3727/20/5/019

    Article  CAS  Google Scholar 

  • Pacholski C, Kornowski A, Weller H (2002) Angew. Chem-Int Edit 41:1188

    CAS  Google Scholar 

  • Paraguay-Delgado F, Estrada-Lopez W, Andrade E (2000) Thin Solid Films 366:16

    Google Scholar 

  • Parida KM, Parija S (2006) Photocatalytic degradation of phenol under solar radiation using microwave irradiated zinc oxide. Sol Energy 80:1048–1054. https://doi.org/10.1016/j.solener.2005.04.025

    Article  CAS  Google Scholar 

  • Parida KM, Dash SS, Das DP (2006)Physico-chemical characterization and photocatalytic activity of zinc oxide presented by various methods. J Colloid Interface Sci 298:787–793

    CAS  Google Scholar 

  • Pathinettam Padiyan D, Marikini A, Murli KR (2002) Influence of thickness and substrate temperature on electrical and photoelectrical properties of vacuum-deposited CdSe thin films. Mater Chem Phys 78:51–58

    CAS  Google Scholar 

  • Pelizzetti E, Serpone N (1986) Homogeneous and heterogeneous photo-catalysis. Reidel, Dordrecht. https://doi.org/10.1007/978-94-009-4642-2

  • Phuruangrat A, Thongtem T, Satchawan S, Thongtem S, Yai H, Science M (2018) Photocatalytic activity of rugby-like Nd-doped ZnO particles activated by ultraviolet. J Nanomater Biostructures 13:625–630

    Google Scholar 

  • Rakov N, Ramos FE, Hirata G, Xiao M (2003) Appl Phys Lett 83:272. https://doi.org/10.1063/1.1592636.

    Article  CAS  Google Scholar 

  • Rana SB, Singh A, Singh S (2013) Characterization and optical studies of pure and Sb doped ZnO nanoparticles. 6:45–57

  • Ruankham P, Sagawa T, Sakaguchi H, Yoshikawa S (2011) J Mater Chem 21:9710

    CAS  Google Scholar 

  • Samoila P, Cojocaru C, Sacarescu L, Dorneanu PP, Domocos A-A, Rotaru A (2017) Remarkable catalytic properties of rare-earth-doped nickel ferrites synthesized by sol-gel auto-combustion with maleic acid as fuel for CWPO of dyes. Appl Catal B Environ 202:21–32. https://doi.org/10.1016/j.apcatb.2016.09.012

    Article  CAS  Google Scholar 

  • Sobana N, Thirumalai K (2016) Kinetics of solar light assisted degradation of direct red 23 on activated carbon-loaded zinc oxide and influence of operational parameters. Can Chem Trans 4:77e89. https://doi.org/10.13179/canchemtrans.2016.04.01.0258

    Article  CAS  Google Scholar 

  • Sofiani Z, Dabos-Seignon S, Derkowska B, Dalasinski P, Jdyla MW, Lamrani AM, Dghoughi L, Addou M, Bala W, Sahraoui B (2006) Opt Commun 267:433–439

    CAS  Google Scholar 

  • Sonik B, Verma N, Bedi RK (2016) Optical application of Er-doped ZnO nanoparticles for photodegradation of direct red-31 dye. Opt Mater 62:392–398. https://doi.org/10.1016/j.optmat.2016.10.013

    Article  CAS  Google Scholar 

  • SowriBabun K, Ramachandra Reddy A, Sujatha C, Venugopal Reddy K (2013) Effects of precursor, temperature, surface area and excitation wavelength on photoluminescence of ZnO/mesoporous silica nanocomposite. Ceram Int 39:3055–3064

    Google Scholar 

  • Sun Y, Chen Y, Tian L, Yu Y, Kong X, Zeng Q, Zhang Y, Zhang H (2008) Morphology dependent upconversion luminescence of ZnO: Er3+ nanocrystals. J Lumin 128(1):15–21

    CAS  Google Scholar 

  • Szabó-Bárdos E, Czili H, Horváth A (2003) Photocatalytic oxidation of oxalic acid enhanced by silver deposition on a TiO2 surface. J Photochem Photobiol, A 154(2–3):195–201

    Google Scholar 

  • Tseng YK, Huang CJ, Cheng HM, Lin IN, Liu KS, Chen IC (2003) Adv Funct Mater 13:811

    CAS  Google Scholar 

  • Tsonos C (2019) Comments on frequency-dependent AC conductivity in polymeric materials at low-frequency regime. Curr Appl Phys 19(4):491–497

    Google Scholar 

  • Unalan HE, Hiralal P, Rupesinghe N, Dalal S, Milne WI, Amaratunga GA (2008) Rapid synthesis of aligned zinc oxide nanowires. Nanotechnology. 19(25):255608

    Google Scholar 

  • US EPA (2016) National recommended water quality criteria–human health criteria table

    Google Scholar 

  • Vayssieres L (2003) Adv Mater 15:464

    CAS  Google Scholar 

  • Venkatesan D, Deepan D, Velavan M, Sankar R, Jayavel R, Dhanasekaran R (2010) Preparation and characterization of rare-earth (Pr, Nd) doped ZnO nanoparticles. In: 2010 international conference on nanoscience and nanotechnology. IEEE, pp 343–347

    Google Scholar 

  • Voort DV, Imbof A, Blasse GJ (1992) Solid State Chem 96:311. https://doi.org/10.1016/S0022-4596(05)80264-6

    Article  Google Scholar 

  • Wahl U, Rita E, Correia JG, Alves E, Araújo JP (2003) Implantation site of rare earth in single-crystalline ZnO. Appl Phys Lett 82(8):1173–1175. https://doi.org/10.1063/1.1555283

    Article  CAS  Google Scholar 

  • Wang DD, Xing GZ, Gao M, Yang LL, Yang JH, Wu T (2011) J Phys Chem C 115:22729

    CAS  Google Scholar 

  • Wang HB, Ma F, Li QQ, Dong CZ, Ma DY, Wang HT, Xu KW (2013) Nanoscale 5:2857

    CAS  Google Scholar 

  • Willander M, Nur O, Zhao QX, Yang LL, Lorenz M, Cao BQ, Perez JZ, Czekalla C, Zimmermann G, Grundmann M, Bakin A, Behrends A, Al-Suleiman M, El-Shaer A, Mofor AC, Postels B, Waag A, Boukos N, Travlos A et al (2009) Nanotechnology 20:332001

    CAS  Google Scholar 

  • Wu GS, Zhuang YL, Lin ZQ, Yuan XY, Xie T, Zhang LD (2006) Phys E 31:5

    CAS  Google Scholar 

  • Xing GZ, Yi JB, Tao JG, Liu T, Wong LM, Zhang Z, Li GP, Wang SJ, Ding J, Sum TC, Huan CHA, Wu T (2008) Adv Mater 20:3521

  • Xu CX, Sun XW, Chen BJ (2004) Appl Phys Lett 84:1540

    CAS  Google Scholar 

  • Xu C, Cao L, Su G, Liu W, Qu X, Yu Y (2010) Preparation, characterization and photocatalytic activity of Co-doped ZnO powders. J Alloy Compd. 497(1–2):373–376

    CAS  Google Scholar 

  • Yan X, He J, Evans DG, Duan X, Zhu Y (2005) Preparation, characterization and photocatalytic activity of Si-doped and rare-earth-doped TiO2 from mesoporous precursors. Appl Catal B Environ 55:243–252

    CAS  Google Scholar 

  • Yang Q, Guo X, Wang WH, Zhang Y, Xu S, Lien DH, Wang ZL (2010) ACS Nano 4:6285

    CAS  Google Scholar 

  • Yanqing Z, Li Z, Ma XWJ, Men Y (2014) Synthesis and high photocatalytic activity of Eu-doped ZnO nanoparticles. Ceramics international 40(7, Part B):10375–10382. https://doi.org/10.1016/j.ceramint.2014.02.123

  • Yu K, Shi J, Zhang Z, Liang Y, Liu W (2013a) ZnO, and Er-doped ZnO:1e6. https://doi.org/10.1109/Argo-Geoinformatics.2013.6621868

  • Yu K-S, Shi J-Y, Zhang Z-L, Liang Y-M, Liu W (2013b) Synthesis, characterization, and photocatalysis of ZnO and Er-doped ZnO. J Nanomater 2013:372951

    Google Scholar 

  • Yu K, Shi J, Zhang Z, Liang Y, Liu W, Synthesis C (2013c) Photocatalysis of ZnO and Er-doped ZnO. J Nanomater, Article ID:372951, 5 pages. https://doi.org/10.1155/2013/372951

  • Yuan GD, Zhang WJ, Jie JS, Fan X, Tang JX, Shafiq I, Ye ZZ, Lee CS, Lee ST (2008) Adv Mater 20:168

    CAS  Google Scholar 

  • Zeng HB, Duan GT, Li Y, Yang SK, Xu XX, Cai WP (2010) Adv Funct Mater 20:561

    CAS  Google Scholar 

  • Zhang D, Zeng F (2012) Visible light-activated cadmium-doped ZnO nanostructured photocatalyst for the treatment of methylene blue dye. J Mater Sci 47(5):2155–2161. https://doi.org/10.1007/s10853-011-6016-4

    Article  CAS  Google Scholar 

  • Zhang L, Zhu Y (2012) A review of controllable synthesis and enhancement of performances of bismuth tungstate visible-light-driven photocatalysts. Catalysis Science and Technology 2(4):694–706. https://doi.org/10.1039/c2cy00411a

    Article  CAS  Google Scholar 

  • Zhang WC, Wu XL, Chen HT, Zhu J, Huang GS (2008) The excitation wavelength dependence of the visible photoluminescence from amorphous ZnO granular films. J Appl Phys 103:093718

    Google Scholar 

  • Zhang HN, Li ZY, Wang W, Wang C, Liu L (2010) J Am Ceram Soc 93:142

    CAS  Google Scholar 

  • Zhang XH, Chen J, Wu Y, Xie Z, Kang J, Zheng L (2011) A simple route to fabricate high sensibility gas sensors based on erbium-doped ZnO nanocrystals. Colloids Surf A Physicochem Eng Asp 384(1–3):580–584

    CAS  Google Scholar 

  • Zironi EP, Cañetas-Ortega J, Gómez H, Maldonado A, Asomoza R, Palacios J, El-Mallah HM (2012) AC electrical conductivity and dielectric properties of perovskite (Pb, Ca) TiO3 ceramic. Acta Physica Polonica-Series A General Physics 122(1):174

    Google Scholar 

Download references

Availability of data and materials

In this current research, the datasets obtained and analyzed are available with the corresponding author, “Dr.Thekrayat AlAbdulaal.”

Funding

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups program under grant number R.G.P. 2/64/40.

Author information

Authors and Affiliations

Authors

Contributions

Thekrayat AlAbdulaal: formal analysis – equal, investigation – equal, methodology – equal, visualization – equal, writing – original draft – equal, writing – review and editing – equal

Manal AlShadidi: data curation – lead, formal analysis – equal, investigation – equal, visualization – equal, writing – original draft – equal

Mai Hussien: investigation – equal, methodology – equal, visualization – equal, writing – original draft – equal

Vanga Ganesh: methodology – equal, validation – equal

Abdel-Fatah Bouzidi: methodology – equal, visualization – equal, writing – original draft – equal

Saqib Rafique: investigation – equal, software – equal

Hamed Algarni: project administration – equal, validation – equal

Heba Zahran: methodology – equal, software – equal

Mohamed Abdel-wahab: methodology – equal, software – equal

Ibrahim Yahia: funding acquisition – lead, project administration – lead, resources – lead, writing – review and editing – lead

Corresponding author

Correspondence to Thekrayat AlAbdulaal.

Ethics declarations

Ethics approval

Dr. Ibrahim Yahia has approved the ethics of this study.

Consent to participate

Not applicable

Consent for publication

All authors agreed to publish this work in the journal of Environmental Science and Pollution Research.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Sami Rtimi

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AlAbdulaal, T., AlShadidi, M., Hussien, M. et al. Multifunctional and smart Er2O3–ZnO nanocomposites for electronic ceramic varistors and visible light degradation of wastewater treatment. Environ Sci Pollut Res 29, 19109–19131 (2022). https://doi.org/10.1007/s11356-021-16754-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-16754-6

Keywords

Navigation