Skip to main content

Advertisement

Log in

Examining the temporal and spatial distribution of potential urban heat island formations

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Due to urbanization worldwide, gradual increase in construction and use of irregular urban topography affect urban climate negatively, triggering urban heat island (UHI) formations in cities and thereby causing them to become uninhabitable places for human comfort. This study, which covers the province of Diyarbakır in Turkey, aims to determine the spatial and temporal distribution of areas with potential urban heat island (UHI) by using remote sensing methods and satellite/terrain data available between 2001 and 2019. According to the Landsat 7 satellite, an area with a potential of 27.4 km2 in 2001, 20.8 km2 in 2006, 27.4 km2 in 2008, 16.7 km2 in 2010, and 12.2 km2 in 2012 was determined. According to the Landsat 8 satellite, it was measured as 14.49 km2 in 2017 and 15.67 km2 in 2018. According to Landsat 8 satellite data, areas with UHI potential increased by 14.6% over a 3-year period. According to Landsat 7 data, there has been a continuous fluctuation over the years. One of the important results of this study is that between 2001 and 2019, the higher the rate of change according to the surface temperature, the larger the area with the potential of the heat island. At the same time, it has been determined that spatially potential UHIs have a great potential not in the city center, but in the surrounding areas close to the center and in the topographically hollow areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

Data and materials can be available in research as urban planning, landscape planning, and human thermal comfort.

References

  • Akbari H, Kolokotsa D (2016) Three decades of urban heat islands and mitigation technologies research. Energy Build 133:834–842

    Article  Google Scholar 

  • Alqasemi AS, Hereher ME, Kaplan G, Al-Quraishi AMF, Saibi H (2021) Impact of COVID-19 lockdown upon the air quality and surface urban heat island intensity over the United Arab Emirates. Sci Total Environ 767:144330

    Article  CAS  Google Scholar 

  • Artis DA, Carnahan WH (1982) Survey of emissivity variability in thermography of urban areas. Remote Sens Environ 12:313–329

    Article  Google Scholar 

  • Bala R, Prasad R, Yadav VP, (2021), Quantification of urban heat intensity with land use/land cover changes using Landsat satellite data over urban landscapes, Theor Appl Climatol 1-12.

  • Berkowicz R, Prahm LP (1984) Spectral representation of the vertical structure of turbulence in the convective boundary layer. Q J R Meteorol Soc 110(463):35–52

    Article  Google Scholar 

  • Cetin M (2016) Peyzaj Planlamada Biyoklimatik Konfor Alanların Belirlenmesi: Cide Kıyı Şeridi Örneği. Türk Tarım-Gıda Bilim ve Teknoloji dergisi 4(9):800–804

    Google Scholar 

  • Chakraborty T, Lee X (2019) A simplified urban-extent algorithm to characterize surface urban heat islands on a global scale and examine vegetation control on their spatiotemporal variability. Int J Appl Earth Obs Geoinf 74:269–280

    Google Scholar 

  • Chander G, Groeneveld DP (2009) Intra-annual NDVI validation of the Landsat 5 TM radiometric calibration. Int J Remote Sens 30(6):1621–1628

    Article  Google Scholar 

  • Chander G, Markham B (2003) Revised Landsat-5 TM radiometric calibration procedures and postcalibration dynamic ranges. IEEE Trans Geosci Remote Sens 41(11):2674–2677

    Article  Google Scholar 

  • Change IPOC (2001) Climate change 2007: Impacts, adaptation and vulnerability. Genebra, Suíça

    Google Scholar 

  • Chapman S, Watson JE, Salazar A, Thatcher M, McAlpine CA (2017) The impact of urbanization and climate change on urban temperatures: a systematic review. Landsc Ecol 32(10):1921–1935

    Article  Google Scholar 

  • Chen J, Jin S, Du P (2020) Roles of horizontal and vertical tree canopy structure in mitigating daytime and nighttime urban heat island effects. Int J Appl Earth Obs Geoinf 89:102060

    Google Scholar 

  • Chow WT, Roth M (2006) Temporal dynamics of the urban heat island of Singapore. Int J Climatol: A Journal of the Royal Meteorological Society 26(15):2243–2260

    Article  Google Scholar 

  • Churkina G, Kuik F, Bonn B, Lauer A, Grote R d, Tomiak K, Butler TM (2017) Effect of VOC emissions from vegetation on air quality in Berlin during a heatwave. Environ Sci Technol 51(11):6120–6130

    Article  CAS  Google Scholar 

  • Connors JP, Galletti CS, Chow WT (2013) Landscape configuration and urban heat island effects: assessing the relationship between landscape characteristics and land surface temperature in Phoenix, Arizona. Landsc Ecol 28(2):271–283

    Article  Google Scholar 

  • Corburn J (2009) Cities, climate change and urban heat island mitigation: localising global environmental science. Urban Stud 46(2):413–427

    Article  Google Scholar 

  • Deilami K, Kamruzzaman M, Liu Y (2018) Urban heat island effect: A systematic review of spatio-temporal factors, data, methods, and mitigation measures. Int J Appl Earth Obs Geoinf 67:30–42

    Google Scholar 

  • Dematte JE, O'Mara K, Buescher J, Whitney CG, Forsythe S, McNamee T, Adiga RB, Ndukwu IM (1998) Near-fatal heat stroke during the 1995 heat wave in Chicago. Ann Intern Med 129(3):173–181

    Article  CAS  Google Scholar 

  • Deng C, Wu C (2013) Examining the impacts of urban biophysical compositions on surface urban heat island: A spectral unmixing and thermal mixing approach. Remote Sens Environ 131:262–274

    Article  Google Scholar 

  • Emmanuel MR (2005) An urban approach to climate-sensitive design: strategies for the tropics. Taylor & Francis

    Google Scholar 

  • Fahed J, Kinab E, Ginestet S, Adolphe L (2020) Impact of urban heat island mitigation measures on microclimate and pedestrian comfort in a dense urban district of Lebanon. Sustain Cities Soc 61:102375

    Article  Google Scholar 

  • Feller C, Landa E, Toland A, Wessolek G (2015) Case studies of soil in art. Soil 1(2):543–559

    Article  CAS  Google Scholar 

  • Fischlin A, Midgley G, Price J, Leemans R, Gopal B, Turley C, Rounsevell M, Dube P, Tarazona J, Velichko A, (2007), Ecosystems their properties goods and services. climate change 2007: Impacts adaptation and vulnerability. contribution of working group ii to the fourth assessment report of the intergovernmental panel on climate change ml parry of canziani jp palutikof pj van der linden and ce hanson eds. cambridge university press cambridge, Assessment Report of the Intergovernmental Panel on Climate Change 4:211-272.

  • Gál TM, Sümeghy Z (2007) Mapping the roughness parameters in a large urban area for urban climate applications. Acta Climatol ET Chorol 40:27–36

    Google Scholar 

  • Gao S, Zhan Q, Yang C, Liu H (2020) The Diversified Impacts of Urban Morphology on Land Surface Temperature among Urban Functional Zones. Int J Environ Res Public Health 17(24):9578

    Article  Google Scholar 

  • Gazi MY, Rahman MZ, Uddin MM, Rahman FA (2020) Spatio-temporal dynamic land cover changes and their impacts on the urban thermal environment in the Chittagong metropolitan area, Bangladesh. GeoJournal 1-16:2119–2134

    Google Scholar 

  • Gedzelman SD, Austin S, Cermak R, Stefano N, Partridge S, Quesenberry S, Robinson DA (2003) Mesoscale aspects of the Urban Heat Island around New York City. Theor Appl Climatol 75(1-2):29–42

    Article  Google Scholar 

  • Godowitch JM, Ching JKS, Clarke JF (1985) Evolution of the Nocturnal Inversion Layer at an Urban and Nonurban Location. J Clim Appl Meteorol 24(8):791–804

    Article  Google Scholar 

  • Grigoras G, Uritescu B (2019) Land Use/Land Cover changes dynamics and their effects on Surface Urban Heat Island in Bucharest, Romania. Int J Appl Earth Observ Geoinform 80:115–126

    Article  Google Scholar 

  • Guo G, Wu Z, Xiao R, Chen Y, Liu X, Zhang X (2015) Impacts of urban biophysical composition on land surface temperature in urban heat island clusters. Landsc Urban Plan 135:1–10

    Article  Google Scholar 

  • Hatfield J, Kanemasu E, Asrar G, Jackson R, Pinter P Jr, Reginato R, Idso S (1985) Leaf-area estimates from spectral measurements over various planting dates of wheat. Int J Remote Sens 6(1):167–175

    Article  Google Scholar 

  • Hsieh CM, Chen H, Ooka R, Yoon J, Kato S, Miisho K (2010) Simulation analysis of site design and layout planning to mitigate thermal environment of riverside residential development. Build Simul 3(1):51–61

    Article  Google Scholar 

  • Irish R, (1998), Landsat 7 Science Data Users Handbook: Chapter 11, Data Products, URL: http://ltpwww. gsfc. nasa. gov/IAS/handbook/handbook_toc. html (last date accessed: 13 February 2008).

  • Jain M, Dimri A, Niyogi D (2017) Land-Air Interactions over Urban-Rural Transects Using Satellite Observations: Analysis over Delhi, India from 1991–2016. Remote Sens 9(12):1283

    Article  Google Scholar 

  • Jiménez-Muñoz JC, Sobrino JA, Skoković D, Mattar C, Cristóbal J (2014) Land surface temperature retrieval methods from Landsat-8 thermal infrared sensor data. IEEE Geosci Remote Sens Lett 11(10):1840–1843

    Article  Google Scholar 

  • Kabano P, Lindley S, Harris A (2021) Evidence of urban heat island impacts on the vegetation growing season length in a tropical city. Landsc Urban Plan 206:103989

    Article  Google Scholar 

  • Ketterer C, Matzarakis A (2014) Human-biometeorological assessment of the urban heat island in a city with complex topography–The case of Stuttgart. Germany. Urban Clim 10:573–584

    Article  Google Scholar 

  • Koc A, Karahan AE, Bingul MB (2019) Determination of Relationship between Land Surface Temperature and Different Land Use by Chaid Analysis. Appl Ecol Environ Res 17(3):6051–6067

    Article  Google Scholar 

  • Kruger EL, Minella FO, Rasia F (2011) Impact of urban geometry on outdoor thermal comfort and air quality from field measurements in Curitiba, Brazil. Build Environ 46(3):621–634

    Article  Google Scholar 

  • Landsat N, Science Data Users Handbook.

  • Landsat Project Science Office, (2002), Landsat 7 science data user’s handbook (Goddard Space Flight Center). Available online at: http:// https://www.usgs.gov/media/files/landsat-7-data-users-handbook. Accessed 15 Dec 2019

  • Li X-X, Norford LK (2016) Evaluation of cool roof and vegetations in mitigating urban heat island in a tropical city, Singapore. Urban Clim 16:59–74

    Article  Google Scholar 

  • Li X, Stringer LC, Dallimer M (2021) The Spatial and Temporal Characteristics of Urban Heat Island Intensity: Implications for East Africa’s Urban Development. Climate 9(4):51

    Article  CAS  Google Scholar 

  • Lin L, Ge E, Liu X, Liao W, Luo M (2018) Urbanization effects on heat waves in Fujian Province. Southeast China. Atmos Res 210:123–132

    Article  Google Scholar 

  • Liu N, Morawska L (2020) Modeling the urban heat island mitigation effect of cool coatings in realistic urban morphology. J Clean Prod 264:121560

    Article  Google Scholar 

  • Liu L, Zhang YZ (2011) Urban Heat Island Analysis Using the Landsat TM Data and ASTER Data: A Case Study in Hong Kong. Remote Sens 3(7):1535–1552

    Article  Google Scholar 

  • McFeeters SK (1996) The use of the normalized difference water index (NDWI) in the delineation of open water features. Int J Remote Sens 17(7):1425–1432

    Article  Google Scholar 

  • Mohajerani A, Bakaric J, Jeffrey-Bailey T (2017) The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete. J Environ Manag 197:522–538

    Article  Google Scholar 

  • Morakinyo TE, Balogun AA, Adegun OB (2013) Comparing the effect of trees on thermal conditions of two typical urban buildings. Urban Clim 3:76–93

    Article  Google Scholar 

  • Nations, U, 2012, World urbanization prospects: the 2014 revision, CD-ROM Edition.

  • Oke TR (1973), City size and the urban heat island. Atmos Environ 7(8):769–779

  • Oke TR (1982) The energetic basis of the urban heat island. Q J R Meteorol Soc 108(455):1–24

    Google Scholar 

  • Oke T, (1995), The heat island of the urban boundary layer: characteristics, causes and effects, in: Wind climate in cities, Springer, pp. 81-107.

  • Oke T, Johnson G, Steyn D, Watson I (1991) Simulation of surface urban heat islands under ‘ideal’ conditions at night Part 2: Diagnosis of causation. Bound-Layer Meteorol 56(4):339–358

    Article  Google Scholar 

  • Organization, W. H, (2018), The world cities in 2018.

  • Parker DE (2010) Urban heat island effects on estimates of observed climate change. Wiley Interdiscip Rev Clim Chang 1(1):123–133

    Article  Google Scholar 

  • Parker J (2020) The Leeds urban heat island and its implications for energy use and thermal comfort. Energy Build 264:110636

    Google Scholar 

  • Pielke RA Sr, Pitman A, Niyogi D, Mahmood R, McAlpine C, Hossain F, Goldewijk KK, Nair U, Betts R, Fall S (2011) Land use/land cover changes and climate: modeling analysis and observational evidence. Wiley Interdiscip Rev Clim Chang 2(6):828–850

    Article  Google Scholar 

  • Prohmdirek T, Chunpang P, Laosuwan T (2020) The Relationship between Normalized Difference Vegetation Index and Canopy Temperature That Affects the Urban Heat Island Phenomenon. Geogr Tech 15(2):222–234

    Google Scholar 

  • Rao P, Singh A, Pandey K, (2021), Time-series analysis of open data for studying urban heat island phenomenon: a geospatial approach, Spatial Inform Res 1-12.

  • Rizvi SH, Alam K, Iqbal MJ (2019) Spatio -temporal variations in urban heat island and its interaction with heat wave. J Atmos Sol Terr Phys 185:50–57

    Article  Google Scholar 

  • Rozenstein O, Qin Z, Derimian Y, Karnieli A (2014) Derivation of land surface temperature for Landsat-8 TIRS using a split window algorithm. Sensors 14(4):5768–5780

    Article  Google Scholar 

  • Sachindra D, Ng A, Muthukumaran S, Perera B (2016) Impact of climate change on urban heat island effect and extreme temperatures: a case-study. Q J R Meteorol Soc 142(694):172–186

    Article  Google Scholar 

  • Santarnouris M, Kolokotsa D (2015) On the impact of urban overheating and extreme climatic conditions on housing, energy, comfort and environmental quality of vulnerable population in Europe. Energy Build 98:125–133

    Article  Google Scholar 

  • Şevket I (2005) Türkiye’de kentleşme ve kentleşme modelleri. Ege Coğrafya Dergisi 14(1-2):57–71

    Google Scholar 

  • Shastri H, Barik B, Ghosh S, Venkataraman C, Sadavarte P (2017) Flip flop of day-night and summer-winter surface urban heat island intensity in India. Sci Rep 7(1):1–8

    Article  Google Scholar 

  • Stocker T (2014) Climate change 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge university press, Cambridge

    Google Scholar 

  • Streutker DR (2002) A remote sensing study of the urban heat island of Houston, Texas. Int J Remote Sens 23(13):2595–2608

    Article  Google Scholar 

  • Sun Y, Zhang XB, Zwiers FW, Song LC, Wan H, Hu T, Yin H, Ren GY (2014) Rapid increase in the risk to extreme summer heat in Eastern China. Nat Clim Chang 4(12):1082–1085

    Article  Google Scholar 

  • Synnefa A, Karlessi T, Gaitani N, Santamouris M, Assimakopoulos DN, Papakatsikas C (2011) Experimental testing of cool colored thin layer asphalt and estimation of its potential to improve the urban microclimate. Build Environ 46(1):38–44

    Article  Google Scholar 

  • Taha H (1997) Urban climates and heat islands: albedo, evapotranspiration, and anthropogenic heat. Energy Build 25(2):99–103

    Article  Google Scholar 

  • Vahmani P, Ban-Weiss G (2016) Impact of remotely sensed albedo and vegetation fraction on simulation of urban climate in WRF-urban canopy model: A case study of the urban heat island in Los Angeles. J Geophys Res-Atmos 121(4):1511–1531

    Article  Google Scholar 

  • Wang J, Xiang Z, Wang W, Chang W, Wang Y (2021a) Impacts of strengthened warming by urban heat island on carbon sequestration of urban ecosystems in a subtropical city of China. Urban Ecosyst 1-13

  • Wang X, Dallimer M, Scott CE, Shi W, Gao J (2021b) Tree species richness and diversity predicts the magnitude of urban heat island mitigation effects of greenspaces. Sci Total Environ 770:145211

    Article  CAS  Google Scholar 

  • Wang Y, Yi G, Zhou X, Zhang T, Bie X, Li J, Ji B (2021c) Spatial distribution and influencing factors on urban land surface temperature of twelve megacities in China from 2000 to 2017. Ecol Indic 125:107533

    Article  Google Scholar 

  • Ward K, Lauf S, Kleinschmit B, Endlicher W (2016) Heat waves and urban heat islands in Europe: A review of relevant drivers. Sci Total Environ 569:527–539

    Article  Google Scholar 

  • Weng Q, Lu D, Schubring J (2004) Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sens Environ 89(4):467–483

    Article  Google Scholar 

  • Wilby RL (2008) Constructing climate change scenarios of urban heat island intensity and air quality. Environ Plan B: Planning and Design 35(5):902–919

    Article  Google Scholar 

  • World Bank, (2019), https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS?end=2019&start=1961. Accessed 12 Dec 2019

  • Wu H, Wang TJ, Wang Q, Cao Y, Qu YW, Nie DY (2021) Radiative effects and chemical compositions of fine particles modulating urban heat island in Nanjing, China. Atmos Environ 247:118201

    Article  CAS  Google Scholar 

  • Xian G, Shi H, Auch R, Gallo K, Zhou Q, Wu Z, Kolian M (2021) The effects of urban land cover dynamics on urban heat Island intensity and temporal trends. GISci Remote Sens 1-15:501–515

    Article  Google Scholar 

  • Yamashita S, Sekine K (1990) Some studies on the earth’s surface conditions relating to the urban heat island. Energy Build 15(1-2):279–288

    Article  Google Scholar 

  • Yan Z-W, Wang J, Xia J-J, Feng J-M (2016) Review of recent studies of the climatic effects of urbanization in China. Adv Clim Chang Res 7(3):154–168

    Article  Google Scholar 

  • Yang L, Qian F, Song D-X, Zheng K-J (2016) Research on urban heat-island effect. Proc Eng 169:11–18

    Article  Google Scholar 

  • Yao R, Wang L, Huang X, Liu Y, Niu Z, Wang S, Wang L (2021) Long-term trends of surface and canopy layer urban heat island intensity in 272 cities in the mainland of China. Sci Total Environ 772:145607

    Article  CAS  Google Scholar 

  • Yildiz ND, Avdan U, Yilmaz S, Matzarakis A (2018) Thermal map assessment under climate and land use changes; a case study for Uzundere Basin. Environ Sci Pollut Res 25(1):940–951

    Article  Google Scholar 

  • Yilmaz S, Koç A, Mutlu E, Yildiz ND (2016) Integration of thermal comfort information with spatial modelling in Erzurum city center. Procedia engineering. 169:80-87

  • Yu Z, Yao Y, Yang G, Wang X, Vejre H (2019) Strong contribution of rapid urbanization and urban agglomeration development to regional thermal environment dynamics and evolution. For Ecol Manag 446:214–225

    Article  Google Scholar 

  • Yue W, Qiu S, Xu H, Xu L, Zhang L (2019) Polycentric urban development and urban thermal environment: A case of Hangzhou China. Landsc Urban Plan 189:58–70

    Article  Google Scholar 

  • Zanter K, (2016), Landsat 8 (L8) data users handbook, Landsat Sci Off Website.

  • Zhang JQ, Wang YP, Li Y (2006) A C++ program for retrieving land surface temperature from the data of Landsat TM/ETM+ band6. Comput Geosci 32(10):1796–1805

    Article  CAS  Google Scholar 

  • Zhou W, Huang G, Cadenasso ML (2011) Does spatial configuration matter? Understanding the effects of land cover pattern on land surface temperature in urban landscapes. Landsc Urban Plan 102(1):54–63

    Article  Google Scholar 

  • Zornoza R, Acosta J, Bastida F, Domínguez S, Toledo D, Faz A (2015) Identification of sensitive indicators to assess the interrelationship between soil quality, management practices and human health. Soil 1(1):173–185

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Material preparation, analysis were performed by Ahmet KOÇ and Ahmet CAF.

Data collection were performed by Canan KOÇ and Devrim Türkan KEJANLI.

Corresponding author

Correspondence to Ahmet Koç.

Ethics declarations

Ethics approval

As authors, we approve that our manuscript does not include the following statements;

• Disclosure of potential conflicts of interest

• Research involving human participants and/or animals

• Informed consent

Consent to participate

As authors, we consent to participate.

Consent to publish

As authors, we consent to publish.

Competing interests

As authors, we disclose interests that are directly or indirectly related to the work submitted for publication. Interests gained within the last 3 years of beginning the work.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• The size of urban heat islands is affected by terrain shape, building density, and wind corridor.

• Planned urbanization and use of topography reduce the effect of urban heat island.

• Increased green field reduces urban heat island formations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koç, A., Caf, A., Koç, C. et al. Examining the temporal and spatial distribution of potential urban heat island formations. Environ Sci Pollut Res 29, 11455–11468 (2022). https://doi.org/10.1007/s11356-021-16422-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-16422-9

Keywords

Navigation