Skip to main content
Log in

Ectomycorrhizal fungi enhance the tolerance of phytotoxicity and cadmium accumulation in oak (Quercus acutissima Carruth.) seedlings: modulation of growth properties and the antioxidant defense responses

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Ectomycorrhizal fungi (EMF), which form symbiotic ectomycorrhiza with tree roots, mediate heavy metal tolerance of host plants. To investigate the roles of EMF in the growth, modulation of oxidative stress, and cadmium (Cd) accumulation and translocation in Quercus acutissima seedlings, ectomycorrhizal seedlings inoculated with Suillus luteus were treated with different Cd concentrations (0.1, and 5 mg kg−1) for 14 days. EMF accelerated seedling growth and Cd accumulation in roots under the highest Cd concentration of 5 mg kg−1. Catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) activities increased in the leaves of ectomycorrhizal seedlings under the highest Cd concentration. Superoxide dismutase (SOD) trended to increase under both Cd concentrations. Although reduced glutathione (GSH) increased after inoculation of EMF under both Cd concentrations, the release of malondialdehyde increased in the leaves and roots under the highest Cd concentration, indicating that the defense role of EMF in Q. acutissima depends on the Cd concentration. These results indicate that EMF mitigate Cd stress by promoting plant growth and nutrient uptake while modulating the antioxidant system to reduce oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  • Ahammed GJ, Wu M, Wang Y, Yan Y, Mao Q, Ren J, Ma R, Liu A, Chen S (2020) Melatonin alleviates iron stress by improving iron homeostasis, antioxidant defense and secondary metabolism in cucumber. Sci Hortic 265:109205. https://doi.org/10.1016/j.scienta.2020.109205

    Article  CAS  Google Scholar 

  • Ahmad A, Khan WU, Shan AA, Yasin NA, Naz S, Ali A, Tahir A, Batool AI (2021) Synergistic effects of nitric oxide and silicon on promoting plant growth, oxidative stress tolerance and reduction of arsenic uptake in Brassica juncea. Chemosphere 262:128384. https://doi.org/10.1016/j.chemosphere.2020.128384

    Article  CAS  Google Scholar 

  • Ardestani MM, Frouz J (2020) The arbuscular mycorrhizal fungus Rhizophagus intraradices and other microbial groups affect plant species in a copper-contaminated post-mining soil. J Trace Elem Med Biol 62:126594. https://doi.org/10.1016/j.jtemb.2020.126594

    Article  CAS  Google Scholar 

  • Barbosa MR, Silva MMA, Willadino L, Ulisses C, Camara TR (2014) Plant generation and enzymatic detoxifification of reactive oxygen species. Ciênc Rural 44:453–460

    Google Scholar 

  • Barsoum N, A'Hara SW, Cottrell JE, Forster J, Garcia MSJ, Schonrogge K, Shaw L (2021) Root ectomycorrhizal status of oak trees symptomatic and asymptomatic for acute oak decline in Southern Britain. For Ecol Manag 482:118800. https://doi.org/10.1016/j.foreco.2020.118800

    Article  Google Scholar 

  • Baum C, Hrynkiewicz K, Leinweber P, Meißner R (2006) Heavy-metal mobilization and uptake by mycorrhizal and nonmycorrhizal willows (Salix × dasyclados). J Plant Nutr Soil Sci 169:516–522

    CAS  Google Scholar 

  • Besson-Bard A, Gravot A, Richaud P, Auroy P, Due C, Gaymard F, Taconnat L, Renou JP, Pugin A, Wendehenne D (2009) Nitric oxide contributes to cadmium toxicity in arabidopsis by promoting cadmium accumulation in roots and by up-regulating genes related to iron uptake. Plant Physiol 149:1302–1315

    CAS  Google Scholar 

  • Chen J, Wang X (2002) Experimental guidance of plant physiology. South China University of Technology Press, Guangzhou, pp 68–77

    Google Scholar 

  • Chmielowska-Bak J, Gzyl J, Rucinska-Sobkowiak R, Arasimowicz-Jelonek M, Deckert J (2014) The new insights into cadmium sensing. Front Plant Sci 5:245. https://doi.org/10.3389/fpls.2014.00245

    Article  Google Scholar 

  • Coninx L, Martinova V, Rineau F (2017) Mycorrhiza-assisted phytoremediation. Acad Press 83:127–188

    CAS  Google Scholar 

  • Connolly EL, Fett JP, Guerinot ML (2002) Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell 14:1347–1357

    CAS  Google Scholar 

  • Cui H, Xie J, Yang B, Han Q, Fan R, Wang A (2010) Effects of sewage irrigation and cadmium stresses on the activities of several antioxidant enzymes of spinach. Asian J Androl 5:274–279

    CAS  Google Scholar 

  • Dagher DJ, Pitre FE, Hijri M (2020) Ectomycorrhizal fungal inoculation of Sphaerosporella brunnea significantly increased stem biomass of Salix miyabeana and decreased lead, tin, and zinc, soil concentrations during the phytoremediation of an industrial landfill. J Fungi 6:87. https://doi.org/10.3390/jof6020087

    Article  CAS  Google Scholar 

  • DalCorso G, Manara A, Furini A (2013) An overview of heavy metal challenge in plants: from roots to shoots. Metallomics 5:1117–1132

    CAS  Google Scholar 

  • De Oliveira VH, Tibbett M (2018) Cd and Zn interactions and toxicity in ectomycorrhizal basidiomycetes in axenic culture. PeerJ 6:4478. https://doi.org/10.7717/peerj.4478

    Article  CAS  Google Scholar 

  • Deng X, Ji L, Wang J (2020) Effect of nitrogen supplement on N, P, K uptake and accumulation in leaves of Populus davidiana under cadmium stress. Acta Bot Boreal-Occident Sin 40:1932–1939

    Google Scholar 

  • Etesami H (2018) Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: mechanisms and future prospects. Ecotoxicol Environ Saf 147:175–191

    CAS  Google Scholar 

  • Fernández R, Bertrand A, Reis R, Mourato MP, Martins LL, González A (2013) Growth and physiological responses to cadmium stress of two populations of Dittrichia viscosa (L.) Greuter. J Hazard Mater 244:555–562

    Google Scholar 

  • Fernández-Fuego D, Keunen E, Cuypers A, Bertrand A, González A (2017) Mycorrhization protects Betula pubescens Ehr. from metal-induced oxidative stress increasing its tolerance to grow in an industrial polluted soil. J Hazard Mater 336:119–127

    Google Scholar 

  • Gajewska J, Azzahra NA, Bingöl ÖA, Izbianska-Jankowska K, Jelonek T, Deckert J, Floryszak-Wieczorek J, Arasimowicz-Jelonek M (2020) Cadmium stress reprograms ROS/RNS homeostasis in Phytophthora infestans (Mont.) de Bary. Int J Mol Sci 21:8357. https://doi.org/10.3390/ijms21218375

    Article  CAS  Google Scholar 

  • García JJ, López-Pingarrón L, Almeida-Souza P, Tres A, Escudero P, García-Gil FA, Tan DX, Reiter JR, Ramírez JM, Bernal-Pérez M (2014) Protective effects of melatonin in reducing oxidative stress and in preserving the fluidity of biological membranes: a review. J Pineal Res 56:225–237

    Google Scholar 

  • Hachani C, Lamhamedi MS, Cameselle C, Gouveia S, Abdenbi ZEA, Khasa DP, Béjaoui Z (2020a) Effects of ectomycorrhizal fungi and heavy metals (Pb, Zn, and Cd) on growth and mineral nutrition of Pinus halepensis seedlings in North Africa. Microorganisms 8:2033. https://doi.org/10.3390/microorganisms8122033

    Article  CAS  Google Scholar 

  • Hachani C, Lamhamedi MS, Cameselle C, Gouveia S, Zine El A, Khasa DP, Béjaoui Z (2020b) Effects of ectomycorrhizal fungi and heavy metals (Pb, Zn, and Cd) on growth and mineral nutrition of Pinus halepensis seedlings in North Africa. Microorganisms 8:12

    Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    CAS  Google Scholar 

  • Khator K, Saxena I, Shekhawat GS (2020) Nitric oxide induced Cd tolerance and phytoremediation potential of B. juncea by the modulation of antioxidant defense system and ROS detoxification. Biometals 34:15–32

    Google Scholar 

  • Khullar S, Reddy MS (2019) Cadmium and arsenic responses in the ectomycorrhizal fungus Laccaria bicolor: glutathione metabolism and its role in metal(loid) homeostasis. Environ Microbiol Rep 11:53–61

    CAS  Google Scholar 

  • Khullar S, Reddy MS (2020) Arsenic toxicity and its mitigation in ectomycorrhizal fungus Hebeloma cylindrosporum through glutathione biosynthesis. Chemosphere 240:124914. https://doi.org/10.1016/j.chemosphere.2019.124914

    Article  CAS  Google Scholar 

  • Kong X, Zhao Y, Tian K, He X, Jia Y, He Z, Wang W, Xiang C, Tian X (2020) Insight into nitrogen and phosphorus enrichment on cadmium phytoextraction of hydroponically grown Salix matsudana Koidz cuttings. Environ Sci Pollut Res 27:8406–8417

    CAS  Google Scholar 

  • Li G, Shah AA, Khan WU, Yasin NA, Ahmad A, Abbas M, Ail A, Safdar N (2021) Hydrogen sulfide mitigates cadmium induced toxicity in Brassica rapa by modulating physiochemical attributes, osmolyte metabolism and antioxidative machinery. Chemosphere 263:127999. https://doi.org/10.1016/j.chemosphere.2020.127999

    Article  CAS  Google Scholar 

  • Li H (2012) Comparative study on determination of phosphorus content in two kinds of plants. Modern Agric Sci Technol 11:16–17

    Google Scholar 

  • Liu B, Wang S, Wang J, Zhang X, Shen Z, Shi L, Chen Y (2020b) The great potential for phytoremediation of abandoned tailings pond using ectomycorrhizal Pinus sylvestris. Sci Total Environ 719:137475. https://doi.org/10.1016/j.scitotenv.2020.137475

    Article  CAS  Google Scholar 

  • Liu H, Chen H, Ding G, Li K, Ren Q (2020a) Identification of candidate genes conferring tolerance to aluminum stress in Pinus massoniana inoculated with ectomycorrhizal fungus. BMC Plant Biol 20:521. https://doi.org/10.1186/s12870-020-02719-3

    Article  CAS  Google Scholar 

  • Llamas A, Ullrich CI, Sanz A (2000) Cd2+ effects on transmembrane electrical potential difference, respiration and membrane permeability of rice (Oryza sativa L) roots. Plant Soil 219:21–28

    CAS  Google Scholar 

  • Lopin KV, Thévenod F, Page JC, Jones SW (2012) Cd2+ block and permeation of CaV3.1 (α1G) T-type calcium channels: candidate mechanism for Cd2+ influx. Mol Pharmacol 82:1183–1193

    CAS  Google Scholar 

  • Lu R, Hu Z, Zhang Q, Li Y, Lin M, Wang X, Wu X, Yang J, Zhang L, Jing Y, Peng C (2020) The effect of Funneliformis mosseae on the plant growth, Cd translocation and accumulation in the new Cd-hyperaccumulator Sphagneticola calendulacea. Ecotoxicol Environ Saf 203:110988. https://doi.org/10.1016/j.ecoenv.2020.110988

    Article  CAS  Google Scholar 

  • Ma H, Gao F, Fan X, Hu C, Cui E, Liu C, Mo Y, Zhang Q (2020) The effects of Zn on antioxidant enzymes and accumulation of cadmium in iris pseudacorus under Cd stress. J Irrig Drain 39:104–111

    Google Scholar 

  • Ma Y (2013) Ectomycorrhizas with paxillus involutus enhance cadmium uptake and tolerance in populus × canescens. Northwest A&F Univ 37:627–642

    Google Scholar 

  • Martins LL, Mourato MP, Cardoso AI, Pinto AP, Mota AM, Gonçalves MLS, Ad V (2011) Oxidative stress induced by cadmium in Nicotiana tabacum L.: effects on growth parameters, oxidative damage and antioxidant responses in different plant parts. Acta Physiol Plant 33:1357–1383

    Google Scholar 

  • Mohammadhasani F, Ahmadimoghadam A, Asrar Z, Mohammadi SZ (2017) Effect of Zn toxicity on the level of lipid peroxidation and oxidative enzymes activity in Badami cultivar of pistachio (Pistacia vera L.) colonized by ectomycorrhizal fungus. Indian J Plant Physiol 22:206–212

    CAS  Google Scholar 

  • Mollavali M, Bolandnazar SA, Schwarz D, Rohn S, Riehle P, Nahandi ZF (2016) Flavonol glucoside and antioxidant enzyme biosynthesis affected by mycorrhizal fungi in various cultivars of onion (Allium cepa L.). J Agric Food Chem 64:71–77

    CAS  Google Scholar 

  • Mrak T, Štraus I, Grebenc T, Gričar J, Hoshika Y, Carriero G, Paoletti E, Kraigher H (2019) Different belowground rsponses to elevated ozone and soil water deficit in three European oak species (Quercus ilex, Q. pubescens and Q. robur). Sci Total Environ 651:1310–1320

    CAS  Google Scholar 

  • Oliveira VHD, Ullah I, Dunwell JM, Mark T (2020) Mycorrhizal symbiosis induces divergent patterns of transport and partitioning of Cd and Zn in Populus trichocarpa. Environ Exp Bot 171:103925. https://doi.org/10.1016/j.envexpbot.2019.103925

    Article  CAS  Google Scholar 

  • Rafique N, Tariq SR (2016) Distribution and source apportionment studies of heavy metals in soil of cotton/wheat fields. Environ Monit Assess 188:309. https://doi.org/10.1007/s10661-016-5309-0

    Article  CAS  Google Scholar 

  • Rahman SU, Khalid M, Hui N, Kayani SI, Tang K (2020) Diversity and versatile functions of metallothioneins produced by plants: a review. Pedosphere 30:577–588

    Google Scholar 

  • Ren M, Qin Z, Li X, Wang L, Wang Y, Zhang J, Huang Y, Yang S (2020) Selenite antagonizes the phytotoxicity of Cd in the cattail Typha angustifolia. Ecotoxicol Environ Saf 189:109959. https://doi.org/10.1016/j.ecoenv.2019.109959

    Article  CAS  Google Scholar 

  • Romero-Puertas M, Corpas F, Rodríguez-Serrano M, Gómez M, Del Río L, Sandalio L (2007) Differential expression and regulation of antioxidative enzymes by cadmium in pea plants. Plant Physiol 164:1346–1357

    CAS  Google Scholar 

  • Romero-Puertas MC, Terrón-Camero LC, Peláez-Vico MÁ, Olmedilla A, Sandalio LM (2019) Reactive oxygen and nitrogen species as key indicators of plant responses to Cd stress. Environ Exp Bot 161:107–119

    CAS  Google Scholar 

  • Rui H, Chen C, Zhang X, Shen Z, Zhang F (2016) Cd-induced oxidative stress and lignification in the roots of two Vicia sativa L. varieties with different Cd tolerances. J Hazard Mater 301:304–313

    CAS  Google Scholar 

  • Sebastiana M, Martins J, Figueiredo A, Monteiro F, Sardans J, Peñuelas J, Silva A, Roepstorff P, Pais MS, Coelho AV (2017) Oak protein profile alterations upon root colonization by an ectomycorrhizal fungus. Mycorrhiza 27:109–128

    CAS  Google Scholar 

  • Shah AA, Ahmed S, Abbas M, Yasin NA (2020a) Seed priming with 3-epibrassinolide alleviates cadmium stress in Cucumis sativus through modulation of antioxidative system and gene expression. Sci Hortic 265:109203. https://doi.org/10.1016/j.scienta.2020.109203

    Article  CAS  Google Scholar 

  • Shah AA, Khan WU, Yasin NA, Akram W, Ahmad A, Abbas M, Ali A, Safdar MN (2020b) Butanolide alleviated cadmium stress by improving plant growth, photosynthetic parameters and antioxidant defense system of brassica oleracea. Chemosphere 261:127728. https://doi.org/10.1016/j.chemosphere.2020.127728

    Article  CAS  Google Scholar 

  • Shan C, Liang Z, Sun Y, Hao W, Han R (2011) The protein kinase MEK1/2 participates in the regulation of ascorbate and glutathione content by jasmonic acid in Agropyron cristatum leaves. J Plant Physiol 168:514–518

    CAS  Google Scholar 

  • Shi L, Dong P, Song W, Li C, Lu H, Wen Z, Wang C, Shen Z, Chen Y (2020) Comparative transcriptomic analysis reveals novel insights into the response to Cr (VI) exposure in Cr (VI) tolerant ectomycorrhizal fungi Pisolithus sp. 1 LS-2017. Ecotoxicol Environ Saf 188:109935. https://doi.org/10.1016/j.ecoenv.2019.109935.607

    Article  CAS  Google Scholar 

  • Szuba A, Karliński L, Krzesłowska M, Hazubska-Przybył T (2017) Inoculation with a Pb-tolerant strain of Paxillus involutus improves growth and Pb tolerance of Populus × canescens under in vitro conditions. Plant Soil 412:253–266

    CAS  Google Scholar 

  • Tang Y, Shi L, Zhong K, Shen Z, Chen Y (2019) Ectomycorrhizal fungi may not act as a barrier inhibiting host plant absorption of heavy metals. Chemosphere 215:115–123

    CAS  Google Scholar 

  • Tyburski J, Tretyn A (2010) Glutathione and glutathione disulfide affect adventitious root formation and growth in tomato seedling cuttings. Acta Physiol Plant 32:411–417

    CAS  Google Scholar 

  • Ullah I, Al-Johny BO, Al-Ghamdi KMS, Al-Zahrani HAA, Anwar Y, Firoz A, Al-Kenani N, Almatry MAA (2019) Endophytic bacteria isolated from Solanum nigrum L., alleviate cadmium (Cd) stress response by their antioxidant potentials, including SOD synthesis by sodA gene. Ecotoxicol Environ Saf 174:197–207

    CAS  Google Scholar 

  • Wang L, Otgonsuren B, Godbold DL (2017) Mycorrhizas and soil ecosystem function of co-existing woody vegetation islands at the alpine tree line. Plant Soil 411:467–481

    CAS  Google Scholar 

  • Wang Y, Li K, Deng G, Liu H (2020) Effects of Aluminum on growth and nutrient element absorption of mycorrhizal Pinus massoniana seedling. J For Res Environ 40:119–125

    Google Scholar 

  • Xie Y, Li X, Huang X, Han S, Amombo E, Wassie M, Chen L, Fu J (2019) Characterization of the Cd-resistant fungus Aspergillus aculeatus and its potential for increasing the antioxidant activity and photosynthetic efficiency of rice. Ecotoxicol Environ Saf 171:373–381

    CAS  Google Scholar 

  • Xu X, Yang B, Qin G, Wang H, Zhu Y, Zhang K, Yang H (2019) Growth, accumulation, and antioxidative responses of two Salix genotypes exposed to cadmium and lead in hydroponic culture. Environ Sci Pollut Res 26:19770–19784

    CAS  Google Scholar 

  • Yang B, He F, Zhao X, Wang H, Xu X, He X, Zhu Y (2019) Composition and function of soil fungal community during the establishment of Quercus acutissima (Carruth.) seedlings in a Cd-contaminated soil. J Environ Manag 246:150–156

    CAS  Google Scholar 

  • Yin D, Deng X, Song X, Qi J (2017) Effects of ectomycorrhizal fungi on physiological indexes of Pinus sylvestris var. mongolica seedlings and soil enzyme activities under cadmium stress. Chin J Ecol 36:3072–3078

    Google Scholar 

  • Yu P, Sun Y, Huang Z, Zhu F, Sun Y, Jiang L (2020) The effects of ectomycorrhizal fungi on heavy metals’ transport in Pinus massoniana and bacteria community in rhizosphere soil in mine tailing area. J Hazard Mater 381:121203. https://doi.org/10.1016/j.jhazmat.2019.121203

    Article  CAS  Google Scholar 

  • Zhang X, Li M, Yang H, Li X, Cui Z (2018) Physiological responses of Suaeda glauca and Arabidopsis thaliana in phytoremediation of heavy metals. J Environ Manag 223:132–139

    CAS  Google Scholar 

  • Zhang Y, Liang Y, Zhao X, Jin X, Hou L, Shi Y, Ahammed GJ (2019) Silicon compensates phosphorus deficit-Induced growth inhibition by improving photosynthetic capacity, antioxidant potential, and nutrient homeostasis in tomato. Agron 9:733. https://doi.org/10.3390/agronomy9110733

    Article  CAS  Google Scholar 

  • Zhao B, Liu P, Wang W, Sun J, Ma H (2015) Effects of 5-Aminolevulinic acid on the AsA-GSH Cycle in grape leaves under salt stress. Plant Physiol J 51:385–390

    CAS  Google Scholar 

  • Zhu Y, Wu Q, Lv H, Chen W, Wang L, Shi S, Yang J, Zhao P, Li Y, Christopher R, Liu H, Feng R (2020) Toxicity of different forms of antimony to rice plants: effects on reactive oxidative species production, antioxidative systems, and uptake of essential elements. Environ Pollut 263:114544. https://doi.org/10.1016/j.envpol.2020.114544

    Article  CAS  Google Scholar 

  • Zhu Z, Zhang Y, Sa G, Liu J, Ma X, Deng C, Zhao R, Chen S (2018) Uptake of Cd2+ by ectomycorrhizal fungus Paxillus involutus and the modulation of H2O2 in Cd2+ influx. J Beijing Forest Univ 40:24–32

    Google Scholar 

  • Zuffellato-Ribas KC, Morini S, Picciarelli P, Mignolli F (2010) Extraction and determination of ascorbate and dehydroascorbate from apoplastic fluid of stem of rooted and non-rooted cuttings in relation to the rhizogenesis. Braz J Plant Physiol 22:123–129

    Google Scholar 

Download references

Data and materials availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Funding

This research was supported by the National Natural Science Foundation of China (32071559; 41877424; 31870606), Natural Science Foundation of Shandong Province (ZR2018MD002), and Special Funs for Forest Science Research in the Public Welfare (201404107). Thanks to Dr. William K., North Carolina State University, for linguistic advice.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Wen Sun, Baoshan Yang, Yidan Zhu, and Guanghua Qin. The first draft of the manuscript was written by Wen Sun. The authors Hui Wang and Hanqi Yang revised the content of the article, and Wen Sun corrected the article according to the comments and the requested changes. All the authors commented on the previous versions of the manuscript. All the authors read and approved the final manuscript.

Corresponding authors

Correspondence to Hui Wang or Guanghua Qin.

Ethics declarations

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate

Not applicable

Consent for publication

Not applicable

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Gangrong Shi

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, ., Yang, B., Zhu, Y. et al. Ectomycorrhizal fungi enhance the tolerance of phytotoxicity and cadmium accumulation in oak (Quercus acutissima Carruth.) seedlings: modulation of growth properties and the antioxidant defense responses. Environ Sci Pollut Res 29, 6526–6537 (2022). https://doi.org/10.1007/s11356-021-16169-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-16169-3

Keywords

Navigation