Skip to main content
Log in

Antibiotic resistance genes on the Qinghai-Tibet Plateau above an elevation of 5,000 m

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Antibiotic resistance genes (ARGs) widely occur in both anthropogenic and remote environments. Several studies have investigated the distribution of antibiotic resistance in natural environments. However, the occurrence and diversity of ARGs in remote environments at high elevations have not yet been well elucidated. Abundance, diversity, as well as influencing factors of ARGs in different ecosystems on the Qinghai-Tibet Plateau beyond elevation 5,000 m were explored, using high-throughput quantitative PCR. Totally, 197 ARGs and 12 mobile genetic elements (MGEs) were determined with abundances ranging from 3.75 × 106 to 2.39 × 107 and from 2.21 × 104 to 1.62 × 106 copies g−1, respectively. Both the absolute and relative abundances of ARGs in farmland were lower than those in wetland and grassland. The diversity and dominant resistance mechanism of ARG profiles showed obvious differences among these ecosystems. Bacterial communities and MGEs significantly correlated with ARG profiles, while physico-chemical factors showed little impact. The high abundance and strong positive correlation between integron intI-1 and ARGs suggested a high potential horizontal ARG transfer. Based on the results, the Qinghai-Tibet Plateau can be regarded as a considerable ARG gene pool. This study provides insights into the provenance of ARGs at high elevations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  • Allen HK, Donato J, Wang HH, Cloud-Hansen KA, Davies J, Handelsman J (2010) Call of the wild: antibiotic resistance genes in natural environments. Nat Rev Microbiol 8(4):251–259

    Article  CAS  Google Scholar 

  • Arias CA, Murray BE (2009) Antibiotic-resistant bugs in the 21st century—a clinical super-challenge. N Engl J Med 360(5):439–443

    Article  CAS  Google Scholar 

  • Aubert D, Naas T, Héritier C, Poirel L, Nordmann P (2006) Functional characterization of IS1999, an IS4 family element involved in mobilization and expression of β-lactam resistance genes. J Bacteriol 188:6506–6514

    Article  CAS  Google Scholar 

  • Bai JH, Ou-Yang H, Xu HF, Zhou CP, Gao JQ (2004) Advances in studies of wetlands in Qinghai-Tibet Plateau. Prog Geogr 23(4):1–9

    Google Scholar 

  • Bao S (2000) Chemical analysis for agricultural soil. China Agriculture Press, Beijing, China

    Google Scholar 

  • Bastian M, Heymann S, Jacomy M (2009) Gephi: an open source software for exploring and manipulating networks. In International AAAI Conference on Weblogs and Social Media: San Jose, California 8:361–362. https://gephi.org/publications/gephi-bastian-feb09.pdf

  • Bellanger X, Guilloteau H, Bonot S, Merlin C (2014) Demonstrating plasmid-based horizontal gene transfer in complex environmental matrices: a practical approach for a critical review. Sci Total Environ 493:872–882

    Article  CAS  Google Scholar 

  • Bergeron S, Boopathy R, Nathaniel R, Corbin A, LaFleur G (2015) Presence of antibiotic resistant bacteria and antibiotic resistance genes in raw source water and treated drinking water. Int Biodeterior Biodegradation 102:370–374

    Article  CAS  Google Scholar 

  • Bhullar K, Waglechner N, Pawlowski A, Koteva K, Banks ED, Johnston MD et al (2012) Antibiotic resistance is prevalent in an isolated cave microbiome. PLoS One 7(4):34953

    Article  Google Scholar 

  • Brown MG, Balkwill DL (2009) Antibiotic resistance in bacteria isolated from the deep Terrestrial subsurface. Microb Ecol 57(3):484–493

    Article  CAS  Google Scholar 

  • Caporaso J, Kuczynski GJ, Stombaugh J, Bittinger K, Bushman FD, Costello EK et al (2010). Qiime allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

  • Chang XF, Bao XY, Wang SP, Zhu XX, Luo CY, Zhang Z et al (2016) Exploring effective sampling design for monitoring soil organic carbon in degraded Tibetan grasslands. J Environ Manag 173:121–128

    Article  CAS  Google Scholar 

  • Chen BW, Yuan K, Chen X, Yang Y, Zhang T, Wang YW et al (2016) Metagenomic analysis revealing antibiotic resistance genes (ARGs) and their genetic compartments in the Tibetan environment. Environ Sci Technol 50:6670–6679

    Article  CAS  Google Scholar 

  • Chen H, Zhu Q, Peng C, Wu N, Wang Y, Fang X, Gao Y, Zhu D, Yang G, Tian J, Kang X, Piao S, Ouyang H, Xiang W, Luo Z, Jiang H, Song X, Zhang Y, Yu G et al (2013) The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan plateau. Glob Chang Biol 19:2940–2955

    Article  Google Scholar 

  • Chen QL, Li H, Zhou XY, Zhao Y, Su JQ, Zhang X, Huang FY (2017) An underappreciated hotspot of antibiotic resistance: the groundwater near the municipal solid waste landfill. Sci Total Environ 609:966–973

    Article  CAS  Google Scholar 

  • Chen ZY, Zhang W, Yang LX, Stedtfeld RD, Peng AP, Gu C et al (2019) Antibiotic resistance genes and bacterial communities in cornfield and pasture soils receiving swine and dairy manures. Environ Pollut 248:947–957

    Article  CAS  Google Scholar 

  • Cheng WX, Chen H, Su C, Yan SH (2013) Abundance and persistence of antibiotic resistance genes in livestock farms: a comprehensive investigation in eastern China. Environ Int 61:1–7

    Article  CAS  Google Scholar 

  • Conant RT, Cerri CEP, Osborne BB, Paustian K (2017) Grassland management impacts on soil carbon stocks: a new synthesis. Ecol Appl 27:662–668

    Article  Google Scholar 

  • Cordero OX, Wildschutte H, Kirkup B, Proehl S, Ngo L, Hussain F, le Roux F, Mincer T, Polz MF (2012) Ecological populations of bacteria act as socially cohesive units of antibiotic production and resistance. Science. 337(6099):1228–1231

    Article  CAS  Google Scholar 

  • Cytryn E (2013) The soil resistome: the anthropogenic, the native, and the unknown. Soil Biol Biochem 63:18–23

    Article  CAS  Google Scholar 

  • D’Costa VM, King CE, Kalan L, Morar M, Sung WWL, Schwarz C, Froese D, Zazula G, Calmels F, Debruyne R, Golding GB, Poinar HN, Wright GD (2011) Antibiotic resistance is ancient. Nature. 477(7365):457–461

    Article  Google Scholar 

  • D’Costa VM, McGrann KM, Hughes DW, Wright GD (2006) Sampling the antibiotic resistome. Science 311(5759):374–377

    Article  Google Scholar 

  • Dolliver H, Gupta S, Noll S (2008) Antibiotic degradation during manure composting. J Environ Qual 37:1245–1253

    Article  CAS  Google Scholar 

  • Elsaied H, Stokes HW, Kitamura K, Kurusu Y, Kamagata Y, Maruyama A (2011) Marine integrons containing novel integrase genes, attachment sites, attI, and associated gene cassettes in polluted sediments from Suez and Tokyo Bays. ISME J 5(7):1162–1177

    Article  CAS  Google Scholar 

  • Fan J, Xu Y, Wang CS, Niu YF, Chen D, Sun W (2015) The effects of human activities on the ecological environment of Tibet over the past half century. Chin Sci Bull 60:3057–3066

    Article  Google Scholar 

  • Fan JW, Shao QQ, Liu JY, Wang JB, Harris W, Chen ZQ, Zhong HP, Xu XL, Liu RG (2010) Assessment of effects of climate change and grazing activity on grassland yield in the Three Rivers Headwaters Region of Qinghai-Tibet Plateau, China. Environ Monit Assess 170:571–584

    Article  Google Scholar 

  • Forsberg KJ, Patel S, Gibson MK, Lauber CL, Knight R, Fierer N, Dantas G (2014) Bacterial phylogeny structures soil resistomes across habitats. Nature. 509:612–616

    Article  CAS  Google Scholar 

  • Foti R, del Jesus M, Rinaldo A, Rodriguez-Iturbe L (2013) Signs of critical transition in the Everglades wetlands in response to climate and anthropogenic changes. Proc Natl Acad Sci U S A 110(16):6296–6300

    Article  CAS  Google Scholar 

  • Gootz TD (2010) The global problem of antibiotic resistance. Crit Rev Immunol 30(1):79–93

    Article  CAS  Google Scholar 

  • Gou XH, Yang T, Gao LL, Deng Y, Yang MX, Chen FH (2013) A 457-year reconstruction of precipitation in the southeastern Qinghai-Tibet Plateau, China using tree-ring records. Chin Sci Bull 58:1107–1114

    Article  Google Scholar 

  • Grewal SK, Rajeev S, Sreevatsan S, Michel FC (2006) Persistence of Mycobacterium avium subsp. paratuberculosis and other zoonotic pathogens during simulated composting, manure packing, and liquid storage of dairy manure. Appl Environ Microbiol 72:565–574

    Article  CAS  Google Scholar 

  • Guo LB, Gifford RM (2002) Soil carbon stocks and land use change: a meta-analysis. Glob Chang Biol 8:345–360

    Article  Google Scholar 

  • Guo XP, Liu XR, Niu ZS, Lu DP, Zhao S, Sun XL et al (2018) Seasonal and spatial distribution of antibiotic resistance genes in the sediments along the Yangtze Estuary, China. Environ Pollut 242:576–584

    Article  CAS  Google Scholar 

  • Harris RB (2010) Rangeland degradation on the Qinghai-Tibetan plateau: a review of the evidence of its magnitude and causes. J Arid Environ 74:1–12

    Article  CAS  Google Scholar 

  • Hou XY (2001) Vegetation Atlas of China. Science Press, Beijing, China

    Google Scholar 

  • Kadlec K, Schwarz S (2010) Identification of a plasmid-borne resistance gene cluster comprising the resistance genes erm(T), dfrK, and tet(L) in a porcine methicillin-resistant Staphylococcus aureus ST398 strain. Antimicrob Agents Chemother 54:915–918

    Article  CAS  Google Scholar 

  • Li J, Cao JJ, Zhu YG, Chen QL, Shen FX, Wu Y et al (2018) Global survey of antibiotic resistance genes in air. Environ Sci Technol 2(19):10975–10984

    Article  Google Scholar 

  • Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, Doi Y, Tian G, Dong B, Huang X, Yu LF, Gu D, Ren H, Chen X, Lv L, He D, Zhou H, Liang Z, Liu JH, Shen J (2016a) Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 16:161–168

    Article  Google Scholar 

  • Liu S, Zhang F, Du Y, Guo X, Lin L, Li Y et al (2016b) Ecosystem carbon storage in alpine grassland on the Qinghai Plateau. PLoS One 11:0160420

    Google Scholar 

  • Liu S, Wang PF, Wang X, Chen J (2021) Ecological insights into the elevational biogeography of antibiotic resistance genes in a pristine river: metagenomic analysis along the Yarlung Tsangpo River on the Tibetan Plateau. Environ Pollut 286:117101

    Article  CAS  Google Scholar 

  • Liu LM, Su JQ, Guo YY, Wilkinson DM, Liu ZW, Zhu YG et al (2018) Large-scale biogeographical patterns of bacterial antibiotic resistome in the waterbodies of China. Environ Int 117:292–299

    Article  CAS  Google Scholar 

  • Livermore DM (2009) Has the era of untreatable infections arrived? J Antimicrob Chemother 64(4):29–36

    Article  Google Scholar 

  • Lozano C, Aspiroz C, Ara M, Gómez-Sanz E, Zarazaga M, Torres C (2011) Methicillin-resistant Staphylococcus aureus (MRSA) ST398 in a farmer with skin lesions and in pigs of his farm: clonal relationship and detection of lnu(A) gene. Clin Microbiol Infect 17:923–927

    CAS  Google Scholar 

  • Lu XG (2008) Wetland ecosystem study in China, Hebei: Hebei Science and Technology Publishing House. (in Chinese)

  • Lu XM, Lu PZ (2020) Seasonal variations in antibiotic resistance genes in estuarine sediments and the driving mechanisms. J Hazard Mater 383:121164

    Article  CAS  Google Scholar 

  • Gillings MR, Forsberg KJ, Patel S (2014) Integrons: past, present, and future. Microbiol Mol Biol Rev 78:257–277

    Article  Google Scholar 

  • McCann CM, Christgen B, Roberts JA, Su JQ, Arnold KE, Gray ND, Zhu YG, Graham DW (2019) Understanding drivers of antibiotic resistance genes in High Arctic soil ecosystems. Environ Int 125:497–504

    Article  CAS  Google Scholar 

  • Miehe G, Miehe S, Boehner J, Kaiser K, Hensen I, Madsen D et al (2014) How old is the human footprint in the world's largest alpine ecosystem? A review of multiproxy records from the Tibetan Plateau from the ecologists' viewpoint. Quat Sci Rev 86:190–209

    Article  Google Scholar 

  • Miehe G, Schleuss PM, Seeber E, Babel W, Biermann T, Braendle M et al (2018) The Kobresia pygmaea ecosystem of the Tibetan highlands - origin, functioning and degradation of the world's largest pastoral alpine ecosystem: Kobresia pastures of Tibet. Sci Total Environ 648:754–771

    Article  Google Scholar 

  • Miriagou V, Carattoli A, Tzelepi E, Villa L, Tzouvelekis LS (2005) IS26-associatedin4-type integrons forming multiresistance loci in enterobacterial plasmids. Antimicrob Agents Chemother 49:3541–3543

    Article  CAS  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature. 403:853–858

    Article  CAS  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’hara R et al (2020) Package ‘vegan’, Community Ecology Package, Version 2.5-7. https://CRAN.R-project.org/package=vegan

  • Park BH, Levy SB (1988) The cryptic tetracycline resistance determinanton Tn4400 mediates tetracycline degradation as well as tetracycline efflux. Antimicrob Agents Chemother 32:1797–1800

    Article  CAS  Google Scholar 

  • Partridge SR, Tsafnat G, Coiera E, Iredell JR (2009) Gene cassettes and cassette arrays in mobile resistance integrons. FEMS Microbiol Rev 33:757–784

    Article  CAS  Google Scholar 

  • Petinaki, E., Papagiannitsis, C., 2018. Resistance of staphylococci to macrolides-lincosamides-streptogramins B (MLSB): epidemiology and mechanisms of resistance. Staphylococcus Aureus.

    Google Scholar 

  • Peng HJ, Hong YT, Zhu YX, Cai C, Yuan LG, Wang Y (2015) Annual ecosystem respiration variability of alpine peatland on the eastern Qinghai–Tibet Plateau and its controlling factors. Environ Monit Assess 187:550

    Article  Google Scholar 

  • Poirel L, Cabanne L, Vahaboglu H, Nordmann P (2005) Genetic environment and expression of the extended-spectrum β-lactamase blaPER-1 gene in gram-negative bacteria Antimicrob. Agents Chemother 49:708–1713

    Article  Google Scholar 

  • Qian X, Gu J, Sun W, Wang XJ, Su JQ, Stedfeld R (2018) Diversity, abundance, and persistence of antibiotic resistance genes in various types of animal manure following industrial composting. J Hazard Mater 344:716–722

    Article  CAS  Google Scholar 

  • Qian X, Sun W, Gu J, Wang XJ, Zhang YJ, Duan ML, Li HC, Zhang RR (2016) Reducing antibiotic resistance genes, integrons, and pathogens in dairy manure by continuous thermophilic composting. Bioresour Technol 220:425–432

    Article  CAS  Google Scholar 

  • Qiu J (2008) China: the third pole. Nat News 454:393–396

    Article  CAS  Google Scholar 

  • Rui JP, Li JB, Wang SP, An JX, Liu WT, Lin QY et al (2015) Responses of bacterial communities to simulated climate changes in alpine meadow soil of the Qinghai-Tibet Plateau. Appl Environ Microbiol 81(17):6070–6077

    Article  CAS  Google Scholar 

  • Revelle W (2021) Package ‘psych’, procedures for psychological, psychometric, and personality research, Version 2.1.6. https://CRAN.R-project.org/package=psych

  • Sarrou S, Liakopoulos A, Chasioti M, Foka A, Fthenakis G, Billinis C et al (2015a) Dissemination of methicillin-susceptible CC398 Staphylococcus aureus strains in a rural Greek area. PLoS One 10:0122761

    Article  Google Scholar 

  • Sarrou S, Liakopoulos A, Tsoumani K, Sagri E, Mathiopoulos KD, Tzouvelekis LS et al (2015b) Characterization of a novel lsa(E)- and lnu(B)-carrying structure located in the chromosome of a Staphylococcus aureus sequence type 398 strain. Antimicrob Agents Chemother 60:1164–1166

    Article  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  CAS  Google Scholar 

  • Segawa T, Takeuchi N, Rivera A, Yamada A, Yoshimura Y, Barcaza G, Shinbori K, Motoyama H, Kohshima S, Ushida K (2013) Distribution of antibiotic resistance genes in glacier environments. Environ Microbiol Rep 5(1):127–134

    Article  CAS  Google Scholar 

  • Sommer MO, Dantas G, Church GM (2009) Functional characterization of the antibiotic resistance reservoir in the human microflora. Science. 325(5944):1128–1131

    Article  CAS  Google Scholar 

  • Speer BS, Salyers AA (1988) Characterization of a novel tetracycline resistance that functions only in aerobically grown Escherichia coli. J Bacteriol 170:1423–1429

    Article  CAS  Google Scholar 

  • Storteboom HN, Kim SC, Doesken KC, Carlson KH, Davis JG, Pruden A (2007) Response of antibiotics and resistance genes to high-intensity and low intensity manure management. J Environ Qual 36:1695–1703

    Article  CAS  Google Scholar 

  • Su JQ, Wei B, Ou-Yang WY, Huang FY, Zhao Y, Xu HJ, Zhu YG (2015) Antibiotic resistome and its association with bacterial communities during sewage sludge composting. Environ Sci Technol 49:7356–7363

    Article  CAS  Google Scholar 

  • Takamatsu D, Osaki M, Sekizaki T (2003) Chloramphenicol resistance transposable element TnSs1 of Streptococcus suis, a transposon flanked by IS6-familyelements. Plasmid. 49:143–151

    Article  CAS  Google Scholar 

  • Toth M, Smith C, Frase H, Mobashery S, Vakulenko S (2010) An antibiotic-resistance enzyme from a deep-sea bacterium. J Am Chem Soc 132(2):816–823

    Article  CAS  Google Scholar 

  • Van Goethem MW, Pierneef R, Bezuidt OKI, Van De Peer Y, Cowan DA, Makhalanyane TP (2018) A reservoir of ‘historical’ antibiotic resistance genes in remote remote Antarctic soils. Microbiome. 6(1):40

    Article  Google Scholar 

  • Venter O, Sanderson EW, Magrach A, Allan JR, Beher J, Jones KR, Possingham HP, Laurance WF, Wood P, Fekete BM, Levy MA, Watson JEM (2016) Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat Commun 7

  • Wang F, Xu M, Stedtfeld RD, Sheng HJ, Fan JB, Liu M et al (2018) Long-term effect of different fertilization and cropping systems on the soil antibiotic resistome. Environ Sci Technol 52:13037–13046

    Article  CAS  Google Scholar 

  • Wang P, Wolf SA, Lassoie JP, Poe GL, Morreale SJ, Su X, Dong S (2016a) Promise and reality of market-based environmental policy in China: empirical analyses of the ecological restoration program on the Qinghai-Tibetan Plateau. Glob Environ Chang 39:35–44

    Article  Google Scholar 

  • Wang XP, Gong P, Wang CF, Ren J, Yao TD (2016b) A review of current knowledge and future prospects regarding persistent organic pollutants over the Tibetan Plateau. Sci Total Environ 573:139–154

    Article  CAS  Google Scholar 

  • Wexler HM (2007) Bacteroides: the good, the bad, and the nitty-gritty. Clin Microbiol Rev 20(4):593–621

    Article  CAS  Google Scholar 

  • Wright GD (2007) The antibiotic resistome: the nexus of chemical and genetic diversity. Nat Rev Microbiol 5(3):175–186

    Article  CAS  Google Scholar 

  • Wu J, Li M, Fiedler S, Ma W, Wang X, Zhang X, Tietjen B (2019) Impacts of grazing exclusion on productivity partitioning along regional plant diversity and climatic gradients in Tibetan alpine grasslands. J Environ Manag 231:635–645

    Article  Google Scholar 

  • Xue ZS, Lyu XG, Chen ZK, Zhang ZS, Jiang M, Zhang K et al (2018) Spatial and temporal changes of wetlands on the Qinghai-Tibetan Plateau from the 1970s to 2010s. Chin Geogr Sci 28(6):935–945

    Article  Google Scholar 

  • Yang WG, Moore IF, Koteva KP, Bareich DC, Hughes DW, Wright GD (2004) TetX is a flavin-dependent monooxygenase conferring resistance to tetracycline antibiotics. J Biol Chem 279:52346–52352

    Article  CAS  Google Scholar 

  • Yang YY, Liu GH, Ye C, Liu WZ (2019) Bacterial community and climate change implication affected the diversity and abundance of antibiotic resistance genes in wetlands on the Qinghai-Tibetan Plateau. J Hazard Mater 361:283–293

    Article  CAS  Google Scholar 

  • Yao T, Thompson LG, Mosbrugger V, Zhang F, Ma YM, Luo TX et al (2012) Third pole environment (TPE). Environ Dev 3:52–64

    Article  Google Scholar 

  • Yun JL, Ju YW, Deng YC, Zhang HX (2014) Bacterial community structure in two permafrost wetlands on the Tibetan Plateau and Sanjiang Plain, China. Microb Ecol 68(2):360–369

    Article  Google Scholar 

  • Zhang Y, Wang GX, Wang YB (2011) Changes in alpine wetland ecosystems of the Qinghai-Tibetan plateau from 1967 to 2004. Environ Monit Assess 180:189–199

    Article  Google Scholar 

  • Zhang HX, Xu YB, He XL, Huang L, Ling JY, Zheng L et al (2016) Occurrence of antibiotic resistance genes in landfill leachate treatment plant and its effluent-receiving soil and surface water. Environ Pollut 218:1255–1261

    Article  CAS  Google Scholar 

  • Zhao KY (1999) Marshes and swamps of China: a compilation. Beijing: Science Press of China. (in Chinese)

  • Zhao LY, Ning W, Dorji Y, Jia R (2005) A review of rangeland privatisation and its implications in the Tibetan plateau, China. Nomad Peoples 9:31–51

    Article  CAS  Google Scholar 

  • Zhu YG, Zhao Y, Li B, Huang CL, Zhang SY, Yu S, Chen YS, Zhang T, Gillings MR, Su JQ (2017) Continental-scale pollution of estuaries with antibiotic resistance genes. Nat Microbiol 2:16270

    Article  CAS  Google Scholar 

Download references

Funding

This research is financially supported by the National Natural Science Foundation of China (91851204), Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (2017BT01Z176), Yangtze River Protection Project of Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (RCEES-CJBH-2019-03), Key Research Program of Frontier Sciences, Chinese Academy of Sciences (QYZDJ-SSW-DQC013), Excellent Innovation Project of Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (RCEES-EEI-2019-02). The author Guibing Zhu gratefully acknowledges the Program of the Youth Innovation Promotion Association of Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Contributions

G.B.Z. designed the research and conceived the initial concept. X.M.W., C.H., and B.R.L. performed the laboratory experiments. X.M.W. analyzed the data and wrote the core manuscript with feedback from G.B.Z. and C.W.

Corresponding author

Correspondence to Guibing Zhu.

Ethics declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Competing interest

The authors declare no competing interests.

Additional information

Responsible Editor: Robert Duran

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 5584 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, ., Han, C., Lan, B. et al. Antibiotic resistance genes on the Qinghai-Tibet Plateau above an elevation of 5,000 m. Environ Sci Pollut Res 29, 4508–4518 (2022). https://doi.org/10.1007/s11356-021-16007-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-16007-6

Keywords

Navigation