Ahmad K, Yang Y, Khan ZI, Arshad N, Ahmad T, Nadeem M, Wajid K, Bashir H, Nazar S, Munir M, Malik IS, Ashfaq A, Mahpara S, Noorka IR, Mehmood N, Abbas T, Ullah S, Memona H, Shaheen F et al (2020) Assessing zinc amassing in forages, buffalo blood and topsoil collected from Sargodha City, Pakistan. Rev Chim 71(8):240–248. https://doi.org/10.37358/RC.20.8.8296
CAS
Article
Google Scholar
Ahmad T, Nazar S, Ahmad K, Khan ZI, Bashir H, Ashfaq A, Munir M, Munir Z, Hussain K, Alkahtani J, Elshikh MS, Nadeem M, Malik IS (2021) Monitoring of copper accumulation in water, soil, forage, and cows impacted by heavy automobiles in Sargodha, Pakistan. Environ Sci Pollut Res 28(4):1–7
Google Scholar
Alghobar MA, Suresha S (2015) Evaluation of nutrients and trace metals and their enrichment factors in soil and sugarcane crop irrigated with wastewater. J Geosci Environ Prot (GEP) 3(08):46–56. https://doi.org/10.4236/gep.2015.38005
Article
Google Scholar
Alrawiq N, Khairiah J, Talib ML, Ismail BS, Anizan I (2014) Accumulation and translocation of heavy metals in paddy plant selected from recycled and non-recycle water area of MADA Kedah, Malaysia. Int J ChemTech Res 6(4):2347–2356
Google Scholar
Badar N, Iqbal Z, Sajid MS, Rizwan HM, Jabbar A, Babar W, Khan MN, Ahmed A (2017) Documentation of ethno-veterinary practices in District Jhang, Pakistan. J Anim Plant Sci 27(2):398–406
Google Scholar
Balabanova B, Stafilov T, Baceva K (2015) Bioavailability and bioaccumulation characterization of essential and heavy metals contents in R. acetosa, S. oleracea and U. dioica from copper polluted and referent areas. J Environ Health Sci Eng 13(1):2. https://doi.org/10.1186/s40201-015-0159-1
CAS
Article
Google Scholar
Bao Z, Wu W, Liu H, Chen H, Yin S (2014) Impact of long-term irrigation with sewage on heavy metals in soils, crops, and groundwater-a case study in Beijing. Pol J Environ Stud 23(2):309–318
CAS
Google Scholar
Barbieri M (2016) The importance of enrichment factor (EF) and geoaccumulation index (Igeo) to evaluate the soil contamination. J Geol Geophys 5(1)
Briggs H, Briggs HM (1980) Modern breeds of livestock, 4th edn. McMillion Publishing Co, London
Google Scholar
Buat-Menard P, Chesselet R (1979) Variable influence of the atmospheric flux on the trace metal chemistry of oceanic suspended matter. Earth Planet Sci Lett 42(3):399–411
CAS
Google Scholar
Cui YJ, Zhu YG, Zhai RH, Chen DY, Huang YZ, Qiu Y, Liang JZ (2004) Transfer of metals from soil to vegetables in an area near a smelter in Nanning, China. Environ Int 30(6):785–791
CAS
Google Scholar
Diab EA, Donia GR (2018) Determination of the environmental pollution in soil, water, forage and goat’s blood serum and their relation to liver and kidney functions in El-Shorafa Village, El-Saff, Egypt. J Bio Chem Environ Sci 10(3):111–141
Google Scholar
Duman E, Ozcan MM, Hamurcu M, Ozcan MM (2019) Mineral and heavy metal contents of some animal livers. Euro J Sci Technol 15:302–307
Google Scholar
Eissa MA, Almaroai YA (2019) Phyto-remediation capacity of some forage plants grown on a metals-contaminated soil. Soil Sediment Contam 28(6):569–581
CAS
Google Scholar
Ezemokwe DE, Ichu CB, Okoro JN, Opara AI (2017) Evaluation of heavy metal contamination of soils alongside Awka-Enugu road, southeastern Nigeria. Asian J Environ Ecol (AJEE) 4(1):1–11
Google Scholar
Fritsch C, Coeurdassier M, Giraudoux P, Raoul F, Douay F, Rieffel D, Vaufleury A, De Scheifler R (2011) Spatially explicit analysis of metal transfer to biota: influence of soil contamination and landscape. PLoS One 6(5):20682
Google Scholar
Gabryszuk M, Barszczewski J, Dobrzynski J (2018) The mineral elements content in hair of cows from conventional and organic farms. J Res Appl Agric Eng 63(2)
Hashem MA, Nur-A-Tomal MS, Mondal NR, Rahman MA (2017) Hair burning and liming in tanneries is a source of pollution by arsenic, lead, zinc, manganese and iron. Environ Chem Lett 15(3):501–506
Google Scholar
Hill GM, Shannon MC (2019) Copper and zinc nutritional issues for agricultural animal production. Biol Trace Elem Res 188:148–159. https://doi.org/10.1007/s12011-018-1578-5
CAS
Article
Google Scholar
Hu Y, Zhang W, Chen G, Cheng H, Tao S (2018) Public health risk of trace metals in fresh chicken meat products on the food markets of a major production region in Southern China. Environ Pollut 234:667–676
CAS
Google Scholar
Jan FA, Ishaq M, Ihsanullah I, Asim SM (2010) Multivariate statistical analysis of heavy metals pollution in industrial area and its comparison with relatively less polluted area: a case study from the City of Peshawar and district Dir Lower. J Hazard Mater 176(1-3):609–616
CAS
Google Scholar
Johnsen IV, Aaneby J (2019) Soil intake in ruminants grazing on heavy-metal contaminated shooting ranges. Sci Total Environ 687:41–49
CAS
Google Scholar
Karyotis T, Toulios M, Alexiou J, Tziouvalekas M, Charoulis A, Vergos S, Tsipis K, Drosos A, Aretos V, Mitsimponas T (2011) Soils and native vegetation in a hilly and mountainous area in central Greece. Commun Soil Sci Plant Anal 42(11):1249–1258
CAS
Google Scholar
Khan ZI, Ahmad K, Safder H, Ugulu I, Wajid K, Bashir H, Dogan Y (2018) Manganese bioaccumulation and translocation of in forages grown in soil irrigated with city effluent: an evaluation on health risk. Res J Pharm, Biol Chem Sci 9(5):759–770
CAS
Google Scholar
Khan ZI, Safder H, Ahmad K, Wajid K, Bashir H, Ugulu I, Dogan Y (2019a) Health risk assessment through determining bioaccumulation of iron in forages grown in soil irrigated with city effluent. Environ Sci Pollut Res 26(14):14277–14286
CAS
Google Scholar
Khan ZI, Arshad N, Ahmad K, Nadeem M, Ashfaq A, Wajid K, Bashir H, Munir M, Huma B, Memoona H, Sana M, Nawaz K, Sher M, Abbas T, Ugulu I (2019b) Toxicological potential of cobalt in forage for ruminants grown in polluted soil: a health risk assessment from trace metal pollution for livestock. Environ Sci Pollut Res 26:15381–15389. https://doi.org/10.1007/s11356-019-04959-9
CAS
Article
Google Scholar
Khan ZI, Ahmad K, Rehman S, Ashfaq A, Mehmood N, Ugulu I, Dogan Y (2019c) Effect of sewage water irrigation on accumulation of metals in soil and wheat in Punjab. Pak J Anal Environ Chem 20(1):60–66. https://doi.org/10.21743/pjaec/2019.06.08
CAS
Article
Google Scholar
Khan ZI, Ahmad K, Batool F, Wajid K, Mehmood N, Ashfaq A, Bashir H, Nadeem M, Ullah S (2019d) Evaluation of toxic potential of metals in wheat crop grown in wastewater-contaminated soil in Punjab, Pakistan. Environ Sci Pollut Res 26(24):24958–24966
Khan ZI, Nisar A, Ugulu I, Ahmad K, Wajid K, Bashir H, Dogan Y (2019e) Determination of cadmium concentrations of vegetables grown in soil irrigated with wastewater: evaluation of health risk to the public. Egypt J Bot 59(3):753–762. https://doi.org/10.21608/ejbo.2019.9969.1296
Article
Google Scholar
Khan ZI, Safdar H, Ahmad K, Wajid K, Bashir H, Ugulu I, Dogan Y (2020a) Copper bioaccumulation and translocation in forages grown in soil irrigated with sewage water. Pak J Bot 52(1):111–119. https://doi.org/10.30848/PJB2020-1(12)
CAS
Article
Google Scholar
Khan ZI, Ahmad K, Safdar H, Ugulu I, Wajid K, Nadeem M, Munir M, Dogan Y (2020b) Monitoring of zinc profile of forages irrigated with city effluent. Pak J Anal Environ Chem 21(2):303–313
CAS
Google Scholar
Liu W, Zhao JZ, Ouyang ZY, Soderlund L, Liu GH (2005) Impacts of sewage irrigation on heavy metal distribution and contamination in Beijing, China. Environ Int 31:805–812
CAS
Google Scholar
Lu Y, Yao H, Shan D, Jiang Y, Zhang S, Yang J (2015) Heavy metal residues in soil and accumulation in maize at long-term wastewater irrigation area in Tongliao. Chin J Chem 2015:1–9. https://doi.org/10.1155/2015/628280
Article
Google Scholar
Mahmoud EK, Ghoneim AM (2016) Effect of polluted water on soil and plant contamination by heavy metals in El-Mahla El-Kobra, Egypt. Solid Earth 7(2):703–711
Google Scholar
Mertens J, Smolder E (2013) Zinc. In: Alloway B (ed) Heavy metals in soil. Environmental Pollution, Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4470-7_17
Chapter
Google Scholar
Milam C, One MB, Dogara RK, Yila EY (2017) Assessment of heavy metals (As, Cd, Cr, Cu, Ni, Pb and Zn) in blood samples of sheep and rabbits from Jimeta-Yola, Adamawa State, Nigeria. Int J Adv Pharma Bio Chem 6(3):160–166
CAS
Google Scholar
Murtaza G, Ghafoor A, Rehman MZ, Sabir M, Naeem A (2012) Phytodiversity for metals in plants grown in urban agricultural lands irrigated with untreated city effluent. Commun Soil Sci Plant Anal 43(8):1181–1201
CAS
Google Scholar
Nadeem M, Khan ZI, Ghazal M, Akhtar M, Akhter P, Ahmad K, Bashir H, Noorka IR, Batool AI, Rehman S, Ainee A, Khan I (2020) Assessment of Zn and Pb in buffaloes fed on forages irrigated with wastewater in Sahiwal, Sargodha, Pakistan. Pure Appl Biol 9(1):728–742
CAS
Google Scholar
Narwal RP, Dahiya RR, Malik RS (2013) Pollutant elements in soil- plant- animal system in India and future thrust areas. Eur Chem Bull 2(1):38–45
CAS
Google Scholar
National Research Council (NRC) (2007) Nutrient requirements of small ruminants: Sheep, Goat, Cervids and New World Camelids. The National Academies Press, Washington, DC. https://doi.org/10.17226/11654
Book
Google Scholar
Noulas C, Tziouvalekas M, Karyotis T (2018) Zinc in soils, water and food crops. J Trace Elem Med Biol 49:252–260
CAS
Google Scholar
Ogundiran MB, Ogundele DT, Afolayan PG, Osibanjo O (2012) Heavy metals levels in forage grasses, leachate and lactating cows reared around lead slag dumpsites in Nigeria. Int J Environ Res 6(3):695–702
CAS
Google Scholar
Olmedo-Juárez A, Rojo R, Salem AZM, Vázquez-Armijo JF, Rebollar-Rebollar S, Albarran B, Lugo J (2012) Concentration of some elements in blood serum of non-lactating goats in a subtropical region of southwest of Mexico state. Trop Subtrop Agroecosystems 15(1):71–75
Google Scholar
Omonona AO, Nnamuka SS, Jubril AJ, Adetuga AT (2019) Heavy metal levels in water, soil, plant and faecal samples collected from the Borgu Sector of Kainji Lake National Park, Nigeria. Open Access J Toxicol 3(5):555625
Google Scholar
Orisakwe OE, Oladipo OO, Ajaezi GC, Udowelle NA (2017) Horizontal and vertical distribution of heavy metals in farm produce and livestock around lead-contaminated goldmine in Dareta and Abare, Zamfara State, Northern Nigeria. J Environ Public Health:1–12. https://doi.org/10.1155/2017/3506949
Pathak C, Chopra AK, Kumar V, Srivastava S (2010) Heavy metals contamination in waste-water irrigated agricultural soil near Bindal River, Dehradun, India. Pollut Res 29(4):583–587
CAS
Google Scholar
Pieper L, Schmidt F, Muller AE, Staufenbiel R (2017) Zinc concentrations in different sample media from dairy cows and establishment of reference values. Tierarztl Prax Ausg G: Grosstiere-Nutztiere 45(4):213–218
Google Scholar
Raja S, Cheema HMN, Babar S, Khan AA, Murtaza G, Aslam U (2015) Socio-economic background of wastewater irrigation and bioaccumulation of heavy metals in crops and vegetables. Agric Water Manag 158:26–34
Sadeghzadeh B (2013) A review of zinc nutrition and plant breeding. J Soil Sci Plant Nutr 13(4):905–927
Google Scholar
Saleem MH, Ali S, Hussain S, Kamran M, Chattha MS, Ahmad S, Aqeel M, Rizwan M, Aljarba NH, Alkahtani S, Abdel-Daim MM (2020a) Flax (Linum usitatissimum L.): a potential candidate for phytoremediation? Biological and economical points of view. Plants 9(4):496. https://doi.org/10.3390/plants9040496
CAS
Article
Google Scholar
Saleem MH, Fahad S, Rehman M, Saud S, Jamal Y, Khan S, Liu L (2020b) Morpho-physiological traits, biochemical response and phytoextraction potential of short-term copper stress on kenaf (Hibiscus cannabinus L.) seedlings. PeerJ 8:e8321. https://doi.org/10.7717/peerj.8321
Article
Google Scholar
Saleem MH, Fahad S, Khan SU, Din M, Ullah A, Sabagh AE, Hossain A, Llanes A, Liu,L (2020c) Copper-induced oxidative stress, initiation of antioxidants and phytoremediation potential of flax (Linum usitatissimum L.) seedlings grown under the mixing of two different soils of China. Environ Sci Pollut Res 27(5): 5211-5221 https://doi.org/10.1007/s11356-019-07264-7
Saleem MH, Ali S, Rehman M, Hasanuzzaman M, Rizwan M, Irshad S, Shafiq F, Iqbal M, Alharbi BM, Alnusaire TS, Qari SH (2020d) Jute: a potential candidate for phytoremediation of metals—a review. Plants 9(2):258. https://doi.org/10.3390/plants9020258
CAS
Article
Google Scholar
Saleem M, Shi Z, Shah MH (2021) Evaluation of contamination status and health risk assessment of essential and toxic metals in cyprinus carpio from Mangla Lake, Pakistan. Biol Trace Elem Res 1–11. https://doi.org/10.1007/s12011-020-02540-x
Sherif AEA, El-Kholy MM, Salem TM (2015) Risk assessment of trace elements toxicity through contaminated edible plants from polluted irrigation canal at Giza Governorate, Egypt. Iran J Energy Environ 6(1):47–55
Google Scholar
Siddique K, Ali S, Farid M, Sajid S, Aslam A, Ahmad R, Taj L, Nazir MM (2014) Different heavy metal concentrations in plants and soil irrigated with industrial/sewage waste water. Int J Environ Monit Anal 2(3):151–157
Google Scholar
Singh A, Sharma RK, Agrawal M, Marshall FM (2010) Risk assessment of heavy metal toxicity through contaminated vegetables from waste water irrigated area of Varanasi, India. Trop Ecol 51(2):375–387
Stoklasova L, Vahala J, Hejcmanova P (2020) Minerals in the blood, hair, and faeces of the critically endangered Western Derby El and under human care in two wildlife reserves in Senegal. Biol Trace Elem Res 195(1):105–109
CAS
Google Scholar
Svane S, Karring H (2019) A comparison of the transition metal concentrations in the faeces, urine, and manure slurry from different livestock animals related to environmentally relevant microbial processes. Cogent Chem 5(1):1644702. https://doi.org/10.1080/23312009.2019.1644702
CAS
Article
Google Scholar
Szczegielniak DC, Stanek M, Giernatowska E, Janicki B, Gehrke M (2012) Content of selected mineral elements in heifer hair depending on the region and season. Med Weter 68(5):293–298
Google Scholar
Szczegielniak DC, Stanek M, Giernatowska E, Janicki B (2014) Impact of breeding region and season on the content of some trace elements and heavy metals in the hair of cows. Folia Biol 62(3):164–170
Google Scholar
Szyczewski P, Siepak J, Niedzielski P, Sobczynski T (2009) Research on heavy metals in Poland. P J Environ Stud 18(5):755–768
CAS
Google Scholar
Taha KK, Shmou IM, Osman MH, Shayoub MH (2013) Soil-plant transfer and accumulation factors for trace elements at the Blue and White Niles. J Appl Ind Sci 1(2):97–102
Google Scholar
Udiba UU, Diya’uddeen H, Abdullahi M, Michael O, Balli G, Shittu U, Inuwa B, Alhaji B (2013) Determination of contaminants levels in forage grasses, Dareta Village, Nigeria. Arch Appl Sci Res 5(3):229–236
CAS
Google Scholar
Ugulu I, Unver MC, Dogan Y (2019) Potentially toxic metal accumulation and human health risk from consuming wild Urtica urens sold on the open markets of Izmir. Euro-Mediterr J Environ Integr 4:36. https://doi.org/10.1007/s41207-019-0128-7
Article
Google Scholar
US Environmental Protection Agency (USEPA) (2002) Region 9. In: Preliminary Remediation Goals
US Environmental Protection Agency (USEPA) (2010) Risk-based concentration table. Office of Research and Development. US Environmental Protection Agency, Washington, DC
Google Scholar
World Health Organization/Food and Agriculture Organization (WHO/FAO) (2007) Joint FAO/WHO Food Standard Programme Codex Alimentarius Commission 13th Session. Report of the Thirty Eight Session of the Codex Committee on Food Hygiene. Houston, TX, ALINORM 07/30/13
Zaheer IE, Ali S, Saleem MH, Ashraf AM, Ali Q, Abbas Z, Rizwan M, El-Sheikh MA, Alyemeni MN, Wijaya L (2020) Zinc-lysine supplementation mitigates oxidative stress in rapeseed (Brassica napus L.) by preventing phytotoxicity of chromium, when irrigated with tannery wastewater. Plants 9(9):1145
CAS
Google Scholar
Zhang B, Yang L, Wang W, Li Y, Li H (2010) Quantification and comparison of soil elements in the Tibetan Plateau Kaschin-Beck disease area: a case study in Zamtang County, Sichuan Province, China. Biol Trace Elem Res 138(1-3):69–78. https://doi.org/10.1007/s12011-010-8616-2
CAS
Article
Google Scholar
Zhang F, Li Y, Yang M, Li W (2012) Content of heavy metals in animal feeds and manures from farms of different scales in northeast China. Int J Environ Res Public Health 9(8):2658–2668. https://doi.org/10.3390/ijerph9082658
CAS
Article
Google Scholar