Abstract
Plasmid-mediated bioaugmentation has potential application in the cleanup of recalcitrant environmental pollutants. In this study, we examined the influence of various contaminants (in different categories or different amounts) as a selection pressure on the spread of catabolic plasmids within an activated sludge bacteria community bioaugmented with Rhodococcus sp. strain p52 harboring pDF01 and pDF02. The distinguishable genera of transconjugants were isolated under the stresses of phenanthrene, dibenzothiophene, and dibenzo-p-dioxin. The three contaminants exerted different degrees of influence on the activated sludge bacteria bearing the catabolic plasmids. The relatively high ratios of transconjugant-bearing catabolic plasmids were detected in the reactor fed with dibenzo-p-dioxin. As dibenzo-p-dioxin from 10 to 80 mg/L was fed into the reactors, the ratios of transconjugant-bearing catabolic plasmids increased. Additionally, levels of ROS and extracellular LDH of activated sludge bacteria in the contaminants-fed reactors increased, comparing with that in the control reactor, indicating that the contaminants exerted toxicity which promoted the cell membrane permeability of the activated sludge bacteria. Our study provides a characterization of the recalcitrant contaminants as a selection pressure that can modulate catabolic plasmid transfer during genetic bioaugmentation for the removal of contaminants.






Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.
References
Alderliesten JB, Duxbury SJN, Zwart MP, de Visser JAGM, Stegeman A, Fischer EAJ (2020) Effect of donor-recipient relatedness on the plasmid conjugation frequency: a meta-analysis. BMC Microbiol 20(1):135. https://doi.org/10.1186/s12866-020-01825-4
American Public Health Association (1998) Standard methods for the examination of water and wastewater. 20th ed. Washington DC
Andersson DI, Hughes D (2014) Microbiological effects of sublethal levels of antibiotics. Nat Rev Microbiol 12:465–478. https://doi.org/10.1038/nrmicro3270
Baharoglu Z, Bikard D, Mazel D (2010) Conjugative DNA transfer induces the bacterial SOS response and promotes antibiotic resistance development through integron activation. PLoS Genet 6(10):e1001165. https://doi.org/10.1371/journal.pgen.1001165
Banuelos-Vazquez LA, Tejerizo GT, Brom S (2017) Regulation of conjugative transfer of plasmids and integrative conjugative elements. Plasmid 91:82–89. https://doi.org/10.1016/j.plasmid.2017.04.002
Bathe S (2004) Conjugal transfer of plasmid pNB2 to activated sludge bacteria leads to 3-chloroaniline degradation in enrichment cultures. Lett Appl Microbiol 38(6):527–531. https://doi.org/10.1111/j.1472-765X.2004.01532.x
Beaber JW, Hochhut B, Waldor MK (2004) SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature 427(6969):72–74. https://doi.org/10.1038/nature02241
Bellanger X, Guilloteau H, Bonot S, Merlin C (2014) Demonstrating plasmid-based horizontal gene transfer in complex environmental matrices: a practical approach for a critical review. Sci Total Environ 493:872–882. https://doi.org/10.1016/j.scitotenv.2014.06.070
Bouma JE, Lenski RE (1988) Evolution of a bacteria/plasmid association. Nature 335(6188):351–352. https://doi.org/10.1038/335351a0
Butala M, Zgur-Bertok D, Busby SJW (2009) The bacterial LexA transcriptional repressor. Cell Mol Life Sci 66(1):82–93. https://doi.org/10.1007/s00018-008-8378-6
Carlos G, Olatz G, Lur E, Elisabeth G, Itziar A (2017) Plasmid-mediated bioaugmentation for the bioremediation of contaminated soils. Front Microbiol 8:1966. https://doi.org/10.3389/fmicb.2017.01966
Chakraborty J, Das S (2016) Molecular perspectives and recent advances in microbial remediation of persistent organic pollutants. Environ Sci Pollut Res 23(17):16883–16903. https://doi.org/10.1007/s11356-016-6887-7
Digiovanni GD, Neilson JW, Pepper IL, Sinclair NA (1996) Gene transfer of Alcaligenes eutrophus JMP134 plasmid pJP4 to indigenous soil recipients. Appl Environ Microbiol 62(7):2521–2526. https://doi.org/10.1128/AEM.62.7.2521-2526.1996
Dimitriu T, Marchant L, Buckling A, Raymond B (2019) Bacteria from natural populations transfer plasmids mostly towards their kin. Proc R Soc B Biol Sci 286:1905. https://doi.org/10.1098/rspb.2019.1110
Drønen AK, Torsvik V, Goksoyr J, Top EM (1998) Effect of mercury addition on plasmid incidence and gene mobilizing capacity in bulk soil. FEMS Microbiol Ecol 27(4):381–394. https://doi.org/10.1016/S0168-6496(98)00085-3
Fan XT, Li H, Chen QL, Zhang YS, Ye J, Zhu YG, Su JQ (2019) Fate of antibiotic resistant Rseudomonas putida and broad host range plasmid in natural soil microcosms. Front Microbiol 10:194. https://doi.org/10.3389/fmicb.2019.00194
Fornelos N, Browning DF, Butala M (2016) The use and abuse of LexA by mobile genetic elements. Trends Microbiol 24(5):391–401. https://doi.org/10.1016/j.tim.2016.02.009
Guo MT, Yuan QB, Yang J (2015) Distinguishing effects of ultraviolet exposure and chlorination on the horizontal transfer on antibiotic resistance genes in municipal wastewater. Environ Sci Technol 49(9):5771–5778. https://doi.org/10.1021/acs.est.5b00644
Han Y, Zhou ZC, Zhu L, Wei YY, Feng WQ, Xu L, Liu Y, Lin ZJ, Shuai XY, Zhang ZJ, Chen H (2019) The impact and mechanism of quaternary ammonium compounds on the transmission of antibiotic resistance genes. Environ Sci Pollut Res 26(27):28352–28360. https://doi.org/10.1007/s11356-019-05673-2
Herrero M, Stuckey DC (2015) Bioaugmentation and its application in wastewater treatment: A review. Chemosphere 140:119–128. https://doi.org/10.1016/j.chemosphere.2014.10.033
Ikuma K, Gunsch CK (2012) Genetic bioaugmentation as an effective method for in situ bioremediation: functionality of catabolic plasmids following conjugal transfers. Bioengineered 3(4):236–241. https://doi.org/10.4161/bioe.20551
Iyer R, Aggarwal J, Iken B (2016) A review of the Texas, USA San Jacinto Superfund site and the deposition of polychlorinated dibenzo-p-dioxins and dibenzofurans in the San Jacinto River and Houston Ship Channel. Environ Sci Pollut Res 23(23):23321–23338. https://doi.org/10.1007/s11356-016-7501-8
Jones C, Holland IB (1985) Role of the SulB (FtsZ) protein in division inhibition during the SOS response in Escherichia coli: FtsZ stabilizes the inhibitor SulA in maxicells. Proc Natl Acad Sci U S A 82(18):6045–6049. https://doi.org/10.1073/pnas.82.18.6045
Kasuga K, Nitta A, Kobayashi M, Habe H, Nojiri H, Yamane H, Omori T, Kojima I (2013) Cloning of dfdA genes from Terrabacter sp. strain DBF63 encoding dibenzofuran 4,4a-dioxygenase and heterologous expression in Streptomyces lividans. Appl Microbiol Biotechnol 97(10):4485–4498. https://doi.org/10.1007/s00253-012-4565-3
Kim D, Choi KY, Yoo M, Zylstra GJ, Kim E (2018) Biotechnological potential of Rhodococcus biodegradative pathways. J Microbiol Biotechnol 28(7):1037–1051. https://doi.org/10.4014/jmb.1712.12017
Kolvenbach BA, Helbling DE, Kohler HPE, Corvini PFX (2014) Emerging chemicals and the evolution of biodegradation capacities and pathways in bacteria. Curr Opin Biotechnol 27:8–14. https://doi.org/10.1016/j.copbio
Kulkarni PS, Crespo JG, Afonso CAM (2008) Dioxins sources and current remediation technologies-a review. Environ Int 34(1):139–153. https://doi.org/10.1016/j.envint.2007.07.009
Lopatkin AJ, Sysoeva TA, You LC (2016) Dissecting the effects of antibiotics on horizontal gene transfer: analysis suggests a critical role of selection dynamics. Bioessays 38(12):1283–1292. https://doi.org/10.1002/bies.00133
Lu J, Wang Y, Zhang S, Bond P, Yuan ZG, Guo JH (2020) Triclosan at environmental concentrations can enhance the spread of extracellular antibiotic resistance genes through transformation. Sci Total Environ 713:136621. https://doi.org/10.1016/j.scitotenv.2020.136621
Monika S, Himani K, Narain SD, Krishan NR (2021) The genus Sphingopyxis : Systematics, ecology, and bioremediation potential-a review. J Environ Manag 280:111744. https://doi.org/10.1016/j.jenvman.2020.111744
Myllyluoma E, Ahonen AM, Korpela R, Vapaatalo H, Kankuri E (2008) Effects of multispecies probiotic combination on Helicobacter pylori infection in vitro. Clin Vaccine Immunol 15(9):1472–1482. https://doi.org/10.1128/CVI.00080-08
Peng P, Yang HY, Jia RB, Li L (2013) Biodegradation of dioxin by a newly isolated Rhodococcus sp. with the involvement of self-transmissible plasmids. Appl Microbiol Biotechnol 97(12):5585–5595. https://doi.org/10.1007/s00253-012-4363-y
Popa O, Dagan T (2011) Trends and barriers to lateral gene transfer in prokaryotes. Curr Opin Microbiol 14(5):615–623. https://doi.org/10.1016/j.mib.2011.07.027
Pu Q, Fan XT, Li H, An XL, Lassen SB, Su JQ (2021) Cadmium enhances conjugative plasmid transfer to a fresh water microbial community. Environ Pollut 268:115903. https://doi.org/10.1016/j.envpol.2020.115903
Qiu ZG, Yu YM, Chen ZL, Jin M, Yang D, Zhao ZG, Wang JF, Shen ZQ, Wang XW, Qian D, Huang AH, Zhang BC, Li JW (2012) Nanoalumina promotes the horizontal transfer of multiresistance gene mediated by plasmids across genera. Proc Natl Acad Sci U S A 109(13):4944–4949. https://doi.org/10.1073/pnas.1107254109
Ren CY, Wang YY, Tian LL, Chen M, Sun J, Li L (2018) Genetic bioaugmentation of activated sludge with dioxin-catabolic plasmids harbored by Rhodococcus sp. strain p52. Environ Sci Technol 52(9):5339–5348. https://doi.org/10.1021/acs.est.7b04633
San Millan A, Maclean RC (2017) Fitness Costs of plasmids: a limit to plasmid transmission. Microbiol Spectr 5(5). https://doi.org/10.1128/microbiolspec.MTBP-0016-2017
San Millan A, Pena-Miller R, Toll-Riera M, Halbert ZV, McLean AR, Cooper BS, MacLean RC (2014) Positive selection and compensatory adaptation interact to stabilize non-transmissible plasmids. Nat Commun 5:5208. https://doi.org/10.1038/ncomms6208
Sharma JK, Gautam RK, Nanekar SV, Weber R, Singh BK, Singh SK, Juwarkar AA (2018) Advances and perspective in bioremediation of polychlorinated biphenyl contaminated soils. Environ Sci Pollut Res 25(17):16355–16375. https://doi.org/10.1007/s11356-017-8995-4
Shintani M, Matsui K, Inoue J, Hosoyama A, Ohji S, Yamazoe A, Nojiri H, Kimbara K, Ohkuma M (2014) Single-Cell analyses revealed transfer ranges of IncP-1, IncP-7, and IncP-9 plasmids in a soil bacterial community. Appl Environ Microbiol 80(1):138–145. https://doi.org/10.1128/AEM.02571-13
Shintani M, Ohkuma M, Kimbara K (2018) High-resolution comparison of bacterial conjugation frequencies. J Vis Exp 143:e57812. https://doi.org/10.3791/57812
Stallwood B, Shears J, Williams PA, Hughes KA (2005) Low temperature bioremediation of oil contaminated soil using biostimulation and bioaugmentation with a Pseudomonas sp. from maritime Antarctica. J Appl Microbiol 99(4):794–802. https://doi.org/10.1111/j.1365-2672.2005.02678.x
Sun J, Qiu YL, Ding PF, Peng P, Yang HY, Li L (2017) Conjugative transfer of dioxin-catabolic megaplasmids and bioaugmentation prospects of a Rhodococcus sp. Environ Sci Technol 51(11):6298–6307. https://doi.org/10.1021/acs.est.7b00188
Suzuki H, Yano H, Brown CJ, Top EM (2010) Predicting plasmid promiscuity based on genomic signature. J Bacteriol 192(22):6045–6055. https://doi.org/10.1128/JB.00277-10
Top EM, Springael D (2003) The role of mobile genetic elements in bacterial adaptation to xenobiotic organic compounds. Curr Opin Biotechnol 14(3):262–269. https://doi.org/10.1016/S0958-1669(03)00066-1
Top EM, Springael D, Boon N (2002) Catabolic mobile genetic elements and their potential use in bioaugmentation of polluted soils and waters. FEMS Microbiol Ecol 42(2):199–208. https://doi.org/10.1016/S0168-6496(03)00034-5
Tsuda M, Tan HM, Nishi A, Furukawa K (1999) Mobile catabolic genes in bacteria. J Biosci Bioeng 87(4):401–410. https://doi.org/10.1016/S1389-1723(99)80086-3
Urban JD, Wikoff DS, Bunch ATG, Harris MA, Haws LC (2014) A review of background dioxin concentrations in urban/suburban and rural soils across the United States: implications for site assessments and the establishment of soil cleanup levels. Sci Total Environ 466:586–597. https://doi.org/10.1016/j.scitotenv.2013.07.065
Van Loosdrecht MCM, Nielsen PH, Lopez-vazquez CM, Brdjanovic D (2016) Experimental methods in wastewater treatment. IWA publishing, London
Van DMJR, Ravatn R, Sentchilo V (2001) The clc element of Pseudomonas sp. strain B13 and other mobile degradative elements employing phage-like integrases. Arch Microbiol 175(2):79–85. https://doi.org/10.1007/s002030000244
Wang Y, Lu J, Mao LK, Li J, Yuan ZG, Bond PL, Guo JH (2018) Antiepileptic drug carbamazepine promotes horizontal transfer of plasmid-borne multi-antibiotic resistance genes within and across bacterial genera. ISME J 13(2):509–522. https://doi.org/10.1038/s41396-018-0275-x
Wang S, Li SS, Du D, Wang D, Yan W (2020) Conjugative transfer of megaplasmids pND6-1 and pND6-2 enhancing naphthalene degradation in aqueous environment: characterization and bioaugmentation prospects. Appl Microbiol Biotechnol 104:861–871
Yun JJ, Heisler LE, Hwang II, Wilkins O, Lau SK, Hyrcza M, Jayabalasingham B, Jin J, McLaurin J, Tsao MS, Der SD (2006) Genomic DNA functions as a universal external standard in quantitative real-time PCR. Nucleic Acids Res 34(22):6718–6718. https://doi.org/10.1093/nar/gkl400
Zhang Y, Gu AZ, Cen TY, Li XY, He M, Li D, Chen JM (2018) Sub-inhibitory concentrations of heavy metals facilitate the horizontal transfer of plasmid mediated antibiotic genes in water environment. Environ Pollut 237:74–82. https://doi.org/10.1016/j.envpol.2018.01.032
Zhang S, Wang Y, Song HL, Lu J, Yuan ZG, Guo JH (2019) Copper nanoparticles and copper ions promote horizontal transfer of plasmid-mediated multi-antibiotic resistance genes across bacterial genera. Environ Int:129, 478–487. https://doi.org/10.1016/j.envint.2019.05.054
Zhao JG, Li YH, Li Y, Yang HJ, Hu DH, Zhang HZ (2019) Effects of 4-chlorophenol toxicity on sludge performance and microbial community in sequencing batch reactors. J Environ Sci Health A 54(6):508–515. https://doi.org/10.1080/10934529.2019.1567159
Funding
This work was supported by the Natural Science Foundation of China (nos. 21876100 & 22076102).
Author information
Authors and Affiliations
Contributions
Gang Zhao conducted the experiments, prepared the figures, and wrote main manuscript text. Yanan Wu, Xu Wang, and Meng Chen edited the manuscript and proofread the full manuscript. Li Li prepared the main framework of the overall experiments and rearranged the contents. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Ethics approval and consent to participate
Not applicable.
Consent for publication
Not applicable.
Competing interests
The authors declare no competing interests.
Additional information
Responsible Editor: Robert Duran
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
ESM 1
(DOCX 2499 kb)
Rights and permissions
About this article
Cite this article
Zhao, ., Wu, Y., Wang, X. et al. The impact of pollutant as selection pressure on conjugative transfer of dioxin-catabolic plasmids harbored by Rhodococcus sp. strain p52. Environ Sci Pollut Res 29, 1470–1481 (2022). https://doi.org/10.1007/s11356-021-15682-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11356-021-15682-9


