Skip to main content

Advertisement

Log in

Sources of airborne particulates (PM10) in the port city of Rijeka, Croatia

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The air quality monitoring in Rijeka started in the early 1970s and has been oriented to air pollution caused by the big industrial sources (new petroleum refinery, oil burning power plant, coke plant), while maritime traffic was neglected. First emission inventory comprising port emission was done only in 2008 indicating similar level of emissions as road traffic. Further analyses on maritime impact were done within MED project POSEIDON. This was the good opportunity to perform positive matrix factorization (PMF) analysis on airborne particulate data and identify principal sources of pollution within the Rijeka urban area. PMF analyses of PM10 collected from the urban background site in the period 2008–2010 identified 5 factors: biomass burning, secondary sulphates, sea spray, road/soil dust and metal industry/traffic. Condition probability functions (CPF) obtained from PMF factors of dust and secondary sulphates indicate that Ca, Fe, Zn and Cu originate from harbour area due to reloading of fertilizers and metal waste, as well as SO42− and NH4+ pointing to maritime corridor leading to the Rijeka harbour. These data could not quantify the maritime impact on the air quality, but gave the first estimation of contribution of various sources to air pollution within the Rijeka Bay area. The maritime contribution to air quality was estimated in other part of the same project, as primary PM2.5 emission obtained from vanadium. Both primary PM2.5 emission and polynuclear aromatic hydrocarbon profiles indicated reduced economic activity, including maritime traffic, during economic crisis in the period 2008–2012.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Agrawal H, Eden R, Zhang X, Fine PM, Katzenstein A, Miller JW (2009) Primary particulate matter from ocean-going engine in the southern California air basin. Environ Sci Technol 43:5398–5402

    Article  CAS  Google Scholar 

  • Alebic-Juretic A (1994) Polycyclic aromatic hydrocarbons in the urban atmosphere of Rijeka (Croatia). Fresenius Environ Bull 3:89–94

    CAS  Google Scholar 

  • Alebic-Juretic A ( 2011a) Air pollution and its impacts – the City of Rijeka Case Study, In: Moldoveanu AM (Ed.), Advanced Topics in Environmental Health and Air Pollution Case Studies, ISBN: 978-953-307-525-9, InTech,. pp.269–294 Available from: http://www.intechopen.com/articles/show/title/air-pollution-and-its-impacts-the-city-of-rijeka-case-study

  • Alebic-Juretic A (2011b) Polycyclic aromatic hydrocarbons in marine sediments from the Rijeka bay area, Northern Adriatic, Croatia, 1998-2006. Mar Pollut Bull 62:863–869

    Article  CAS  Google Scholar 

  • Alebic-Juretic A (2015) Polycyclic aromatic hydrocarbons in suspended particulates from the urban atmosphere of Rijeka, Croatia. Polycycl Aromat Compd 35:91–101

    Article  CAS  Google Scholar 

  • Alebic-Juretic A, Matkovic N (2000) Airborne metal concentration in the shipyard environment. Arh Hig Rada Toksikol 51:249–256

    CAS  Google Scholar 

  • Alebic-Juretic A, Mifka B (2017) Secondary sulfur and nitrogen species in PM10 from the Rijeka Bay Area (Croatia). Bull Environ Contam Toxicol 98(1):133–140

    Article  CAS  Google Scholar 

  • Almeida SM, Manauskas M, Diapouli E, Kertesz Z, Samek L, Hristova E, Šega K, Padilla AR, Bellis CA, Eleftheriedes K, The IAEA European Region Study GROUP (2020) Ambient particulate matter source apportionment using receptor modelling in European and Central Asia urban areas. Environ Pollut 266:115199. https://doi.org/10.1016/j.envpol.2020.115199

    Article  CAS  Google Scholar 

  • ARCADIS (2011) Technical assistance on the development of cost-efficient emission reduction measures for the port of Rijeka (HR_08_001), Project report (final); Project number-11-004750/version C/14-02-2011. ARCADIS, Antwerpen

    Google Scholar 

  • Ashbaugh LL, Malm WC, Sadeh WZ (1985) A residencetime probability analysis of sulfur concentrations at Grand Canyon National Park. Atmos Environ 19:1263–1270

    Article  CAS  Google Scholar 

  • Aulinger A, Matthias V, Zeretzke M, Biueser J, Quante M, Backes A (2016) The impact of shipping emissions on air pollution in the greater North Sea region – Part 1: current emissions and concentrations. Atmos Chem Phys 16:739–758. https://doi.org/10.5194/acp-16-739-2016

    Article  CAS  Google Scholar 

  • Belis CA, Pernigotti P, Pirovano G, Favez O, Jafrezzo JL, Kuenen J, Denier van Der Goon H, Rezier M, Riffault V, Alleman LY, Almeida M, Amato F, Angyal A, Argyropoulos G, Bande S, Beslic I, Besombes J-L, BVove MC, Brotto P, Calori G, Cesari D, Colombi C, Contini D, DE Gennaro G, Di Gilio A, Diapouli E, El Haddad I, Elbern H, Eleftheriadis K, Ferreira J, Garcia VM, Gilardoni S, Golly B, Hellebust S, Hopke PK, Izadmanesh Y, Jourquera H, Krajsek K, Kranenburg R, Lazzeri P, Lenartz F, Lucarelli F, Maciejewska K, Manders A, Manousakas M, Masiol M, Mircea M, Mooibroek D, Nava S, Oliveira D, Paglione M, Pandolfi M, Perrone M, Petralia E, Pietrodangelo A, Pillon S, Pokorna P, Prati P, Salameh D, Samara C, Samek L, Saraga D, Sauvage S, Schaap M, Scotto F, SEga K, Siour G, Tauler R, CValli G, Vecchi R, Venturini E, Vestenius M, Waked A, Zubero E (2020) Evaluation of receptor and chemical tzransport models for PM10 source apportionment. Atmos Environ X5:100053

    Google Scholar 

  • Bove MC, Brotto P, Calzolai G, Cassola F, Cavalli F, Fermo P, Hjorth J, Massabò D, Nava S, Piazzalunga A, Schembari C, Prati P (2015) PM10 source apportionment applying PMF and chemical tracer analysis to ship-borne measurements in the Western Mediterranean. Atmos Environ 125(A):140–151. https://doi.org/10.1016/j.atmosenv.2015.11.009

    Article  CAS  Google Scholar 

  • Cesari D, Genga A, Ielpo P, Siciliano M, Mascolo G, Grasso FM, Contini D (2014) Source apportionment of PM2.5 in the harbor-industrial area of Brindisi (Italy): identification and contribution of in-port ship emission. Sci Total Environ 497-98:392–400

    Article  CAS  Google Scholar 

  • Chavent M, Guegan G, Kuentz V, Patouille BJ, Saracco J (2009) PCA and PMF based methodology for air pollution sources identification and apportionment. Environ- metrics, Wiley-Blackwell. <hal-00332015v1>

  • Deliverable 2.5 (2015) Assessment of air quality impact of Rijeka harbour. MED project POSEIDON

  • Donateo A, Cesari D, Nocioni A, Grasso FM, Merico E, Giua R, Contini D (2013) Contribution of harbour activities to atmospheric aerosol in the Brindisi area, Geophys. Res. Abstra. Vol. 15, EGU2013-5291, 2013 EGU General Assembly 2013

  • European Union (2008) Directive 2008/50/EC. Off J Eur Union L 152:1–44

    Google Scholar 

  • Gregoris E, Barbaro E, Morabito E, Toscano G, Donato A, Cesari D, Contini D, Gambaro A (2016) Impoct of maritima traffic on polycyclic aromatic hydrocarbons, metals and particulate matter in Venice air. Environ Sci Pollut Res 23:6951–6959. https://doi.org/10.1007/s11356-015-5811-x

    Article  CAS  Google Scholar 

  • Gwin MR, Vallyathan V (2006) Nanoparticles: health effects- pros and cons. Environ Hlth Perspect. 114(12):1818-25

  • Port Authority (2020) https://www.portauthority.hr/statistike-i-tarife/ (accessed 14.06.2020)

  • Karl M, Jonson JE, Uppstu A, Aulinger A, Prank M, Sofiev M, Jalkanen J-P, Johansson L, Quante M, Matthias V (2019) Effects of ship emissions on air quality in the Baltic Sea region simulated with three different chemistry transport models. Atmos Chem Phys 19:7019–7053. https://doi.org/10.5194/acp-19-7019-2019

    Article  CAS  Google Scholar 

  • Kim E, Hopke PK, Larson TV (2004) Analysis of ambient particle size distributions using unmix and positive matrix factorization. Environ Sci Technol 38:202–209

    Article  CAS  Google Scholar 

  • Law KS, Roiger A, Thomas JL, Marelle L, Raut J-C, Dalsøren S, Fuglesvedt J, Tuccella P, Weinzierl B, Schlager H (2017) Local Arctic air pollution: sources and impacts. Ambio 46:453–463. https://doi.org/10.1007/s13280-017-0962-2

    Article  CAS  Google Scholar 

  • Lee E, Chan CK, Paatero P (1999) Application of positive matrix factorization in source apportionment of particulate pollutants in Hong Kong. Atmos Environ 33(19):3201–3212

    Article  CAS  Google Scholar 

  • Mantas E, Remoundaki E, Halari I, Kassomenos P, Theodosi C, Hatzikioseyan A, Mihalopoulos N (2014) Mass closure and source apportionment of PM2.5 by Pozitive matrix factorization analysis in urban Mediterranean environment. Atmos Environ 92:154–163

    Article  CAS  Google Scholar 

  • Matthias V, Bewersdorff I, Aulinger A, Quante M (2010) The contribution of ship emissions to air pollution in the North Sea regions. Environ Pollut 158:2241–2250. https://doi.org/10.1016/j.envpol.2010.02.013

    Article  CAS  Google Scholar 

  • Merico E, Gambaro A, Argiriou A, Alebic-Juretic A, Barbaro E, Cesari D, Chasapidis L, Dimopoulos S, Dinoi A, Donateo A, Giannaros C, Gregoris E, Karagiannidis A, Konstandopoulos AG, Ivošević T, Liora N, Melas D, Mifka B, Orlić I, Poupkou A, Sarovic K, Tsakis A, Giua R, Pastore T, Nocioni A, Contini D (2017) Atmospheric impact of ship traffic in four Adriatic-Ionian port -cities: comparison and harmonization of different approaches. Transport Res Dev 50:431–445

    Article  Google Scholar 

  • Merico E, Conte M, Grasso FM, Cesari D, Gambaro A, Morabito E, Gregoris E, Orlando S, Alebić-Juretić A, Zubak V, Mifka B, Contini D (2020) Comparison of the impacts of ships to size-segregated particle concentrations in two harbours cities of Nortnern Adriatic sea. Environ Pollut 266:115175. https://doi.org/10.1016/j.envpol.2020.115.175

    Article  CAS  Google Scholar 

  • Norris G, Duvall R, Brown S, Bai S (2014) EPA. Positive matrix factorization (PMF) 5.0 Fundamentals and user guide. U.S. Environmental Protection Agency, Washington EPA/600/R-14/108 (NTIS PB2015-105147)

    Google Scholar 

  • Ogulei D, Hopke PK, Zhou L, Pancras JP, Nair N, Ondov JM (2006) Source apportionment of Baltimore aerosol from combined size distribution and chemical composition data. Atmos Environ 40:S396–S410

    Article  CAS  Google Scholar 

  • Paatero P (1997) Least squares formulation of robust non-negative factor analysis. Chemom Intell Lab Syst 37:23–35

    Article  CAS  Google Scholar 

  • Paatero P, Tapper U (1994) Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5:111–126

    Article  Google Scholar 

  • Paatero P, Philip K, Hopke PK, Bilkis A, Begum BA, Swapan K, Biswas SK (2005) A graphical diagnostic method for assessing the rotation in factor analytical models of atmospheric pollution. Atmos Environ 39(1):193–201. https://doi.org/10.1016/j.atmosenv.2004.08.018

    Article  CAS  Google Scholar 

  • Perrone MG, Vratolis S, Georgieva E, Török S, Šega K, Veleva B, Osan D, Bešlić I, Kertesz Y, Pernigotti D, Eleftheriadis K, Belis CA (2018) Sources and geographic origin of particulate matter in urban areas of the Danube macro-region: the cases of Zagreb (Croatia), Budapest (Hungary) and Sofia (Bulgaria). Sci Total Environ 619-620:1515–1529

    Article  CAS  Google Scholar 

  • Pey J, Alastuey A, Querol X (2013) PM10 and PM2.5 sources at an insular location in the western Mediterranean using source apportionment techniques. Sci Total Environ 456-457:267–277

    Article  CAS  Google Scholar 

  • Pope CA III, Dockery DW (2006) Health effects of fine particulate air pollution: lines that connect. J Air Waste Manage Assoc 56:709–742

    Article  CAS  Google Scholar 

  • Prohić E (1994) Tourism and sustainable development- the case study of the Adriatic Carst Region. In: Dragičević E., Pravdić V., Randić A. Eds. , Procedings of the International scientific Meeting»Towards Sustainable Development in Croatia», Zagreb, p.p 141–162 (in Croatian)

  • Ravindra K, Sokhi R, Van Grieken R (2008) Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmos Environ 42:2895–2921

    Article  CAS  Google Scholar 

  • Rijekapromet (2021) https://www.rijekapromet.hr/hr/prometno_opterecenje_u_2013_godini/62/44 (accessed 14.02.2021)

  • Schembari A, Bove MC, Cuccia E, Cavalli H, Hjorth J, Massabo D, Nava S, Udisti R, Prati P (2014) Source apportionment of PM10 in the Western Mediterranean based on observation from a cruise ship. Atmos Environ 98:510–518

    Article  CAS  Google Scholar 

  • Sorte S, Rodrigues V, Borrego C, Monteiro A (2019) Impact of harbour activities on local air quality: a review. Environ Pollut 257:113542. https://doi.org/10.1016/j.envpol.2019.113542

    Article  CAS  Google Scholar 

  • Telišman Prtenjak M, Jeričević A, Nitis T, Alebić-Juretić A, Bencetić Klaić Z (2009) Atmospheric boundary layer characteristics during high ozone concentrations in the Rijeka Bay area. In: Kungolos A, Aravossis K, Karagiannidis A, Samaras P (eds) Proceedings of the Second International Conference on Environmental Management, Engineering, Planning and Economics (CEMEPE 09) & SECOTOX Conference. University of Thessaly and National Technical University of Athens, Athens, pp 1177–1182

    Google Scholar 

  • Terzi E, Argyropoulos G, Bougatioti A, Mihalopoulos N, Nikolaou K, Samasras C (2010) Chemical composition and mass closure of ambient PM10 at urban sites. Atmos Environ 44:2231–2239.ž

    Article  CAS  Google Scholar 

  • Van Loon JC: Selected methods of trace analysis: bioogical and environmental samples, John Wiley & Sons, 1985

  • Viana M, Amato F, Alastuey A, Querol X, Moreno T, Garcia Dos Santos S, Herce MD, Fernandez-Patier N (2009) Chemical tracers of particulate emissions from commercial shipping. Environ Sci Technol 43:7472–7477

    Article  CAS  Google Scholar 

  • Viana M, Hammingh P, Colette A, Querol X, Degraeuwe B, de Vlieger I, van Aardene J (2014) Impact of maritima transport emissions on coastal air quality, Atmos. Environ 90:96–105

    CAS  Google Scholar 

  • Weber S, Salameh D, Albinet A, Alleman LY, Waked A, Besombes J-L, Jacob V, Guilklaud G, Meshbah B, Rock B, Hulin A, Dominik-Segue A, Chretien E, Jaffrezo J-L, Favey O (2019) Comparison of PM10 source profiles at 15 French cities using a harmonized constrained positive matrix factorization approach, atmosphere, 10:310; doi:https://doi.org/10.3390/atmos1006310

Download references

Acknowledgements

This work was performed within the framework of the project “POllution monitoring of Ship Emissions: an IntegrateD approach for harbours Of the Adriatic basiN – POSEIDON” (Ref: 6437/1M-MED14-12) as a part of MED programme (2007-2013) and financial support is gratefully acknowledged.

Funding

This work was supported by MED programme (European Territorial Cooperation 2007-2013), Ref No.: 6437/1M-MED14-12, POSEIDON.

Author information

Authors and Affiliations

Authors

Contributions

AAJ was involved in conceptualization, resources providing, project administration, investigation, supervision and data curation. BM was involved in data curation, software application, validation and formal analyses. Both authors were involved in writing original draft, and read and approved the final manuscript.

Corresponding author

Correspondence to Ana Alebić-Juretić.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Constantini Samara

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alebić-Juretić, ., Mifka, B. Sources of airborne particulates (PM10) in the port city of Rijeka, Croatia. Environ Sci Pollut Res 29, 6578–6590 (2022). https://doi.org/10.1007/s11356-021-15629-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-15629-0

Keywords

Navigation