Skip to main content

Advertisement

Log in

Assessment of leaching risk of trace metals, PAHs and PCBs from a brownfield located in a flooding zone

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

An old industrial site (brownfield) located south of Paris in a flooding plain and containing demolition disposal as well as a burning zone for metal recovery is being regenerated to satisfy local need for public green space. The main objective of the described study was therefore to assess the risk of remobilisation of trace metals, PAH and PCB present. The research focused on vertical migration due to rainfall (non-saturated flow) and to river flooding (saturated flow). To assess the remobilisation risk, representative soil profiles were reconstituted and eluted in columns with artificial rain and filtered river water for 6 weeks with an equivalent of 25 mm d−1. Soil analysis showed that both zones are highly contaminated, exceeding the French environmental standards. Though the superficial metal content was much higher in the burning zone with levels of g kg−1 than that in the demolition zone, most metals showed higher levels in the eluents of the latter. The level of dissolved Zn in the burning zone eluent was 30 μg L−1, while in the demolition zone, it was 300 μg L−1, 40 times the admissible level. Zn was thereby correlated to aromaticity parameter HIX, indicating a link with organic matter transformation. The Cu was only significantly released under saturated condition (up to 80 μg L−1) in the demolition soil, indicating as implicated mechanism manganese and iron oxide reduction rather than organic matter transformation. Despite the high PAH and PCB soil contents, these pollutants were not released. The total PAH content in the effluent was 30 ng L−1 in average and did not significantly differ between the two zones and the types of hydrology. Only Zn and Cu issued from demolition zone presented an eco-toxicological risk. Crossed statistical analysis of the results showed that the role of the soil type is preponderant in the pollutant release and that temporary flooding condition would induce a lower impact on the groundwater quality than an equivalent amount of fallen rain. Though the burning site was far more contaminated in the upper soil than the demolition zone, it presented little risk compared to the demolition zone, more profound and more permeable. The latter showed therefore significative trace metal release, up to 2.1 kg ha−1 year−1 for zinc, doubling the local atmospheric deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All major data generated during this study are included in the published article. Complementary data are available from the corresponding author on request.

References

  • ADEME (2014) Taux d’utilisation et coûts des différentes techniques et filières de traitement des sols et des eaux souterraines pollués en France - Synthèse des données 2012. http://www.ademe.fr/sites/default/files/assets/documents/84580_rapport_taux_couts_traitements_sols_eaux.pdf. Accessed 17 Feb 2016

  • Adinsoft (2018) Statistical software & data analysis add-on for Excel | XLSTAT 2020. Version 2018.7 Build 54791URL https://www.xlstat.com/en/

  • AFNOR (2002) NF EN 12457-4 - Caractérisation des déchets - Lixiviation - Essai de conformité pour lixiviation des déchets fragmentés et des boues - Partie 4 : essai en bâchée unique avec un rapport liquide/solide de 10 l/kg et une granularité inférieure à 10 mm (sans ou avec réduction de la granularité)

  • AFNOR (2005) Qualité de l’eau, 7eme édition. AFNOR

    Google Scholar 

  • APHA, AWWA, WEF et al (2012) Standard methods for the examination of water and wastewater, 22nd edn. American Public Health Association, American Water Works Association and Water Environment Federation, Washington, DC

  • ATSDR, USDHHS (2000) Toxicological profile for polychlorinated biphenyls (PCBs). Agency for Toxic Substances and Disease Registry. Atlanta, Georgia

    Google Scholar 

  • Azah E, Kim H, Townsend T (2017) Assessment of direct exposure and leaching risk from PAHs in roadway and stormwater system residuals. Science of The Total Environment 609:58–67. https://doi.org/10.1016/j.scitotenv.2017.07.136

    Article  Google Scholar 

  • Azimi S, Rocher V, Garnaud S et al (2005) Decrease of atmospheric deposition of heavy metals in an urban area from 1994 to 2002 (Paris, France). Chemosphere 61:645–651. https://doi.org/10.1016/j.chemosphere.2005.03.022

    Article  Google Scholar 

  • Baize D (2000) Teneurs totales en « métaux lourds » dans les sols français résultats généraux du programme ASPITET. Courrier de l’environnement de l’INRA n°39, février:39–54

  • Bastviken D, Persson L, Odham G, Tranvik L (2004) Degradation of dissolved organic matter in oxic and anoxic lake water. Limnology and Oceanography 49:109–116. https://doi.org/10.4319/lo.2004.49.1.0109

    Article  Google Scholar 

  • Baun A, Seidl M, Scholes L, et al (2008) Chap. 20: Application of a battery of biotests for toxicity characterization of stormwater. In: Thévenot DR (ed) DayWater: Adaptive Decision Support System for Integrated Urban Stormwater Control. IWA Publishers, pp 207–213

  • Bern CR, Walton-Day K, Naftz DL (2019) Improved enrichment factor calculations through principal component analysis: examples from soils near breccia pipe uranium mines, Arizona, USA. Environmental Pollution 248:90–100. https://doi.org/10.1016/j.envpol.2019.01.122

    Article  Google Scholar 

  • Bousserrhine N, Gasser UG, Jeanroy E, Berthelin J (1999) Bacterial and chemical reductive dissolution of Mn-, Co-, Cr-, and Al-substituted goethites. Geomicrobiol J 16:245–258. https://doi.org/10.1080/014904599270622

    Article  Google Scholar 

  • Bressy A, Gromaire M-C, Lorgeoux C, Chebbo G (2011) Alkylphenols in atmospheric depositions and urban runoff. Water Science and Technology 63:671–679. https://doi.org/10.2166/wst.2011.121

    Article  Google Scholar 

  • Camobreco VJ, Richards BK, Steenhuis TS, Peverly JH, McBride MB (1996) Movement of heavy metals through undisturbed and homogenised soil columns. Soil Science 161:740–750

    Article  Google Scholar 

  • Cappuyns V, Swennen R (2008) The use of leaching tests to study the potential mobilization of heavy metals from soils and sediments: a comparison. Water Air Soil Pollut 191:95–111. https://doi.org/10.1007/s11270-007-9609-4

    Article  Google Scholar 

  • CEE (2008) Directive 2008/105/CE du Parlement européen et du Conseil du 16 décembre 2008 établissant des normes de qualité environnementale dans le domaine de l’eau, modifiant et abrogeant les directives du Conseil 82/176/CEE, 83/513/CEE, 84/156/CEE, 84/491/CEE, 86/280/CEE et modifiant la directive 2000/60/CE. Journal officiel de l’Union européenne OJ L:

  • Clapp RB, Hornberger GM (1978) Empirical equations for some soil hydraulic properties. Water Resour Res 14:601–604. https://doi.org/10.1029/WR014i004p00601

    Article  Google Scholar 

  • Crone M (2001) Diagnostic de sols pollués par des hydrocarbures aromatiques polycycliques (HAP) a l’aide de la spectrophotométrie UV. Ecole Nationale Supérieure des Mines de Saint-Etienne; INSA de Lyon

  • Cueff S, Alletto L, Bourdat-Deschamps M, Benoit P, Pot V (2020) Water and pesticide transfers in undisturbed soil columns sampled from a Stagnic Luvisol and a Vermic Umbrisol both cultivated under conventional and conservation agriculture. Geoderma 377:114590. https://doi.org/10.1016/j.geoderma.2020.114590

    Article  Google Scholar 

  • Dermont G, Bergeron M, Mercier G, Richer-Laflèche M (2008) Soil washing for metal removal: a review of physical/chemical technologies and field applications. Journal of Hazardous Materials 152:1–31. https://doi.org/10.1016/j.jhazmat.2007.10.043

    Article  Google Scholar 

  • Dingman SL (2015) Physical hydrology, 3rd edn. Waveland Press, Long Grove, Ill

  • DRIEE (2015) Plan de gestion des risques d’inondation (PGRI) du bassin Seine-Normandie 2016-2021

  • DRIEE (2018) Inondations - DRIEE Ile-de-France. http://www.driee.ile-de-france.developpement-durable.gouv.fr/inondations-r183.html. Accessed 3 Nov 2018

  • Du Laing G, Rinklebe J, Vandecasteele B et al (2009) Trace metal behaviour in estuarine and riverine floodplain soils and sediments: a review. Science of The Total Environment 407:3972–3985. https://doi.org/10.1016/j.scitotenv.2008.07.025

    Article  Google Scholar 

  • Dunne T, Leopold LB (1978) Water in environmental planning, 1st edn. W. H, Freeman, San Francisco

    Google Scholar 

  • ENPF (2017) Espace Naturel de la Pierre-Fitte. https://fr-fr.facebook.com/EspaceNaturelPierreFitte/. Accessed 29 Aug 2017

  • Fang W, Wei Y, Liu J, Kosson DS, van der Sloot HA, Zhang P (2016) Effects of aerobic and anaerobic biological processes on leaching of heavy metals from soil amended with sewage sludge compost. Waste Management 58:324–334. https://doi.org/10.1016/j.wasman.2016.07.036

    Article  Google Scholar 

  • Gasperi J, Gromaire MC, Kafi M, Moilleron R, Chebbo G (2010) Contributions of wastewater, runoff and sewer deposit erosion to wet weather pollutant loads in combined sewer systems. Water Research 44:5875–5886. https://doi.org/10.1016/j.watres.2010.07.008

    Article  Google Scholar 

  • Gasperi J, Sebastian C, Ruban V, Delamain M, Percot S, Wiest L, Mirande C, Caupos E, Demare D, Kessoo MD, Saad M, Schwartz JJ, Dubois P, Fratta C, Wolff H, Moilleron R, Chebbo G, Cren C, Millet M, Barraud S, Gromaire MC (2014) Micropollutants in urban stormwater: occurrence, concentrations, and atmospheric contributions for a wide range of contaminants in three French catchments. Environmental Science and Pollution Research 21:5267–5281. https://doi.org/10.1007/s11356-013-2396-0

    Article  Google Scholar 

  • Gasperi J, Zgheib S, Cladière M, Rocher V, Moilleron R, Chebbo G (2012) Priority pollutants in urban stormwater: Part 2 – case of combined sewers. Water Research 46:6693–6703. https://doi.org/10.1016/j.watres.2011.09.041

    Article  Google Scholar 

  • Gonzalez M, Mitton FM, Miglioranza KSB, Peña A (2019) Role of a non-ionic surfactant and carboxylic acids on the leaching of aged DDT residues in undisturbed soil columns. J Soils Sediments 19:1745–1755. https://doi.org/10.1007/s11368-018-2172-3

    Article  Google Scholar 

  • Gounou C, Bousserrhine N, Varrault G, Mouchel J-M (2010) Influence of the iron-reducing bacteria on the release of heavy metals in anaerobic river sediment. Water Air Soil Pollut 212:123–139. https://doi.org/10.1007/s11270-010-0327-y

    Article  Google Scholar 

  • Gromaire M-C, Lamprea-Bretaudeau K, Seidl M, Mirande-Bret C (2014) Organic micropollutants in roof runoff – a study of the emission / retention potential of green roofs. In: ICUD 2014,13th International Conference on Urban Drainage, Sarawak, Malaysia, 7-12 September 2014

  • Gromaire-Mertz MC, Garnaud S, Gonzalez A, Chebbo G (1999) Characterisation of urban runoff pollution in Paris. Water Science and Technology 39:1–8. https://doi.org/10.1016/S0273-1223(99)00002-5

    Article  Google Scholar 

  • Guittard A, et al. (2013) Evaluation quantitative des risques sanitaires (EQRS) Prestation codifiée A320 selon NF X31-620

  • Harris-Hellal J, Grimaldi M, Garnier-Zarli E, Bousserrhine N (2011) Mercury mobilisation by chemical and microbial iron oxide reduction in soils of French Guyana. Biogeochemistry 103:223–234. https://doi.org/10.1007/s10533-010-9457-y

    Article  Google Scholar 

  • Holoubek I, Dušek L, Sáňka M, Hofman J, Čupr P, Jarkovský J, Zbíral J, Klánová J (2009) Soil burdens of persistent organic pollutants – their levels, fate and risk. Part I. Variation of concentration ranges according to different soil uses and locations. Environmental Pollution 157:3207–3217. https://doi.org/10.1016/j.envpol.2009.05.031

    Article  Google Scholar 

  • Huguet A, Vacher L, Relexans S et al (2009) Properties of fluorescent dissolved organic matter in the Gironde Estuary. Organic Geochemistry 40:706–719. https://doi.org/10.1016/j.orggeochem.2009.03.002

    Article  Google Scholar 

  • Huguet A, Vacher L, Saubusse S, Etcheber H, Abril G, Relexans S, Ibalot F, Parlanti E (2010) New insights into the size distribution of fluorescent dissolved organic matter in estuarine waters. Organic Geochemistry 41:595–610. https://doi.org/10.1016/j.orggeochem.2010.02.006

    Article  Google Scholar 

  • ISO (2019) ISO 21268-3 Soil quality — leaching procedures for subsequent chemical and ecotoxicological testing of soil and soil-like materials — Part 3: up-flow percolation test

  • Jin Z, Zhang Z, Zhang H, Liu CQ, Li FL (2015) Assessment of lead bioaccessibility in soils around lead battery plants in East China. Chemosphere 119:1247–1254. https://doi.org/10.1016/j.chemosphere.2014.09.100

    Article  Google Scholar 

  • Kafi M, Gasperi J, Moilleron R, Gromaire MC, Chebbo G (2008) Spatial variability of the characteristics of combined wet weather pollutant loads in Paris. Water Research 42:539–549. https://doi.org/10.1016/j.watres.2007.08.008

    Article  Google Scholar 

  • Legifrance (1998) Arrêté du 8 janvier 1998 fixant les prescriptions techniques applicables aux épandages de boues sur les sols agricoles pris en application du décret no 97-1133 du 8 décembre 1997 relatif à l’épandage des boues issues du traitement des eaux usées. JORF n°26 du 31 janvier 1998 page 1563

  • Legifrance (2007) Arrêté du 11 janvier 2007 relatif aux limites et références de qualité des eaux brutes et des eaux destinées à la consommation humaine mentionnées aux articles R. 1321-2, R. 1321-3, R. 1321-7 et R. 1321-38 du code de la santé publique. JORF JORF n° 31 du 06/02/2007 texte numéro 17

  • Legifrance (2012) Arrêté du 26 mars 2012 relatif aux prescriptions générales applicables aux installations classées relevant du régime de l’enregistrement au titre de la rubrique n° 2710-2 (installations de collecte de déchets non dangereux apportés par leur producteur initial) de la nomenclature des installations classées pour la protection de l’environnement - Article 35 | Legifrance. JORF

  • Li J, Jia C, Lu Y, Tang S, Shim H (2015) Multivariate analysis of heavy metal leaching from urban soils following simulated acid rain. Microchemical Journal 122:89–95. https://doi.org/10.1016/j.microc.2015.04.015

    Article  Google Scholar 

  • Lovley DR, Phillips EJP (1986) Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl Environ Microbiol 51:683–689

    Article  Google Scholar 

  • MEDDM, DGALN, DEB (2009) Recueil de textes sur l’assainissement : Textes techniques relatifs à l’épandage des boues d’épuration résultant du traitement des eaux usées domestiques. Ministère de l’écologie, de l’énergie, du développement durable et de la mer (MEDDM), Direction générale de l’aménagement, du logement et de la nature (DGALN) Direction de l’eau et de la biodiversité (DEB) Bureau de la lutte contre les pollutions domestiques et industrielles

  • Motelay-Massei A, Ollivon D, Garban B, Teil MJ, Blanchard M, Chevreuil M (2004) Distribution and spatial trends of PAHs and PCBs in soils in the Seine River basin, France. Chemosphere 55:555–565. https://doi.org/10.1016/j.chemosphere.2003.11.054

    Article  Google Scholar 

  • Naka A, Yasutaka T, Sakanakura H, Kalbe U, Watanabe Y, Inoba S, Takeo M, Inui T, Katsumi T, Fujikawa T, Sato K, Higashino K, Someya M (2016) Column percolation test for contaminated soils: key factors for standardization. Journal of Hazardous Materials 320:326–340. https://doi.org/10.1016/j.jhazmat.2016.08.046

    Article  Google Scholar 

  • Nasri B, Fouché O, Ramier D (2015) Monitoring infiltration under a real on-site treatment system of domestic wastewater and evaluation of soil transfer function (Paris Basin, France). Environmental Earth Sciences 73:7435–7444. https://doi.org/10.1007/s12665-014-3917-y

    Article  Google Scholar 

  • Oh S, Wang Q, Shin WS, Song D-I (2013) Effect of salting out on the desorption-resistance of polycyclic aromatic hydrocarbons (PAHs) in coastal sediment. Chemical Engineering Journal 225:84–92. https://doi.org/10.1016/j.cej.2013.03.069

    Article  Google Scholar 

  • Pot V, Benoit P, Menn ML, Eklo OM, Sveistrup T, Kvaerner J (2011) Metribuzin transport in undisturbed soil cores under controlled water potential conditions: experiments and modelling to evaluate the risk of leaching in a sandy loam soil profile. Pest Management Science 67:397–407. https://doi.org/10.1002/ps.2077

    Article  Google Scholar 

  • Pyzola S (2013) Nitrate reduction coupled to iron (II) and manganese (II) oxidation in an agricultural soil. University of Kentucky

    Google Scholar 

  • Reemtsma T, Mehrtens J (1997) Determination of polycyclic aromatic hydrocarbon (PAH) leaching from contaminated soil by a column test with on-line solid phase extraction. Chemosphere 35:2491–2501. https://doi.org/10.1016/S0045-6535(97)00317-2

    Article  Google Scholar 

  • Rennert T, Meißner S, Rinklebe J, Totsche KU (2010) Dissolved inorganic contaminants in a floodplain soil: comparison of in situ soil solutions and laboratory methods. Water Air Soil Pollut 209:489–500. https://doi.org/10.1007/s11270-009-0217-3

    Article  Google Scholar 

  • Rennert T, Rinklebe J (2010) Release of Ni and Zn from contaminated floodplain soils under saturated flow conditions. Water Air Soil Pollut 205:93–105. https://doi.org/10.1007/s11270-009-0058-0

    Article  Google Scholar 

  • RFSC (2019) R: A language and environment for statistical computing. R Foundation for Statistical Computing

    Google Scholar 

  • Roden EE, Wetzel RG (2002) Kinetics of microbial Fe (III) oxide reduction in freshwater wetland sediments. Limnology and Oceanography 47:198–211

    Article  Google Scholar 

  • Schlautman MA, Morgan JJ (1993) Effects of aqueous chemistry on the binding of polycyclic aromatic hydrocarbons by dissolved humic materials. Environ Sci Technol 27:961–969. https://doi.org/10.1021/es00042a020

    Article  Google Scholar 

  • Schuwirth N, Hofmann T (2006) Comparability of and alternatives to leaching tests for the assessment of the emission of inorganic soil contamination (11 pp). J Soils Sediments 6:102–112. https://doi.org/10.1065/jss2005.10.149

    Article  Google Scholar 

  • Seidl M, Gromaire M-C, Saad M, De Gouvello B (2013) Effect of substrate depth and rain-event history on the pollutant abatement of green roofs. Environmental Pollution 183:195–203. https://doi.org/10.1016/j.envpol.2013.05.026

    Article  Google Scholar 

  • Seidl M, Huang V, Mouchel JM (1998) Toxicity of combined sewer overflows on river phytoplankton: the role of heavy metals. Environmental Pollution 101:107–116. https://doi.org/10.1016/S0269-7491(98)00008-6

    Article  Google Scholar 

  • Shaheen SM, Rinklebe J (2014) Geochemical fractions of chromium, copper, and zinc and their vertical distribution in floodplain soil profiles along the Central Elbe River, Germany. Geoderma 228–229:142–159. https://doi.org/10.1016/j.geoderma.2013.10.012

    Article  Google Scholar 

  • Souvestre Q (2013) Aménagement dans une zone de fortes contraintes

  • Suna Erses A, Onay TT (2003) In situ heavy metal attenuation in landfills under methanogenic conditions. Journal of Hazardous Materials 99:159–175. https://doi.org/10.1016/S0304-3894(02)00354-0

    Article  Google Scholar 

  • Thums CR, Farago ME, Thornton I (2008) Bioavailability of trace metals in brownfield soils in an urban area in the UK. Environ Geochem Health 30:549–563. https://doi.org/10.1007/s10653-008-9185-6

    Article  Google Scholar 

  • Tian W, Wang L, Li D, Li F (2015) Leachability of phenanthrene from soil under acid rain and its relationship with dissolved organic matter. Environ Earth Sci 73:3675–3681. https://doi.org/10.1007/s12665-014-3653-3

    Article  Google Scholar 

  • US EPA (2017) Leaching environmental assessment framework (LEAF) how-to guide

  • US EPA O (2015) The SW-846 compendium. In: US EPA. https://www.epa.gov/hw-sw846/sw-846-compendium. Accessed 11 Nov 2020

  • Van der Sloot HA (1996) Developments in evaluating environmental impact from utilization of bulk inert wastes using laboratory leaching tests and field verification. Waste Management 16:65–81

    Article  Google Scholar 

  • Walsh CJ, Roy AH, Feminella JW, et al (2005) The urban stream syndrome : current knowledge and the search for a cure

  • Wang W, Massey Simonich SL, Xue M, Zhao J, Zhang N, Wang R, Cao J, Tao S (2010) Concentrations, sources and spatial distribution of polycyclic aromatic hydrocarbons in soils from Beijing, Tianjin and surrounding areas, North China. Environ Pollut 158:1245–1251. https://doi.org/10.1016/j.envpol.2010.01.021

    Article  Google Scholar 

  • Zsolnay A, Baigar E, Jimenez M, Steinweg B, Saccomandi F (1999) Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying. Chemosphere 38:45–50. https://doi.org/10.1016/S0045-6535(98)00166-0

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Conseil départmental Val-de-Marne for their indispensable assistance during the fieldwork and Olivier Fouché for the field permeability data.

Funding

The authors acknowledge the Region Ile-de-France for its financial support to the REFUJ project, coordinated by Mathieu Bagard, through the partnership between research institutions and the civil society (PICRI).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Martin Seidl. Methodology: Remi Mazerolle, Martin Seidl and Julien Le Roux. Investigation: Remi Mazerolle and Martin Seidl. Formal analysis: Martin Seidl and Julien Le Roux. Writing, original draft preparation: Martin Seidl. Writing, review and editing: Martin Seidl, Julien Le Roux and Noureddine Bousserrhine. Funding acquisition: Martin Seidl and Noureddine Bousserrhine. Resources: Martin Seidl, Julien Le Roux and Noureddine Bousserrhine. Supervision: Martin Seidl

Corresponding author

Correspondence to Martin Seidl.

Ethics declarations

Ethics approval

Not applicable

Consent to participate

Not applicable

Consent for publication

All authors consent to publish.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 81 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seidl, M., Le Roux, J., Mazerolles, R. et al. Assessment of leaching risk of trace metals, PAHs and PCBs from a brownfield located in a flooding zone. Environ Sci Pollut Res 29, 3600–3615 (2022). https://doi.org/10.1007/s11356-021-15491-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-15491-0

Keywords

Navigation