Skip to main content

Advertisement

Log in

Heavy metal tolerance of bacterial isolates associated with overburden strata of an opencast coal mine of Assam (India)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Coal overburden strata (OBS) vary in thickness, geochemical composition, and physical properties from stratum to stratum. Here, we enumerated the cultivable bacterial diversity and their distribution in different OBS taken from the opencast mining of Tikok colliery, Assam. The pH of the coal OBS ranged from 2.46 to 7.93, but 73% of the OBS was acidic. The OBS samples were mostly of shale types except for a few that were sandstone, mudstone, and red soil. The bacterial CFUs per gram OBS samples were highly diverse ranging from 52 to 57.4×104. A total of 79 bacterial pure culture isolates belonging to 19 genera, 12 family, and 3 phyla (Actinobacteria, Firmicutes, and Proteobacteria) were recovered in nutrient agar plates. Firmicutes appeared dominant over the others. All the isolates were screened for heavy metal tolerance in broth culture augmented with five different metals (Ni2+, Cu2+, Cr6+, As3+, and Cd2+) separately. The number of isolates that showed tolerance was 95% for Cr6+, 69.6% for Ni2+, 50.6% each for As3+ and Cu2+, and 7.6% for Cd2+. The bacterial isolates with high metal tolerance, i.e., 5 to 12 mM could be promising for bioremediation of Ni2+, Cu2+, Cr6+, and As3+ from the sites contaminated with these heavy metals.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

CFU:

Colony-forming unit

OB:

Overburden

OBD:

Overburden dump

OBM:

Overburden material

OBS:

Overburden strata

References

  • Afzal AM, Rasool MH, Waseem M, Aslam B (2017) Assessment of heavy metal tolerance and biosorptive potential of Klebsiella variicola isolated from industrial effluents. AMB Express 7:184. https://doi.org/10.1186/s13568-017-0482-2

    Article  CAS  Google Scholar 

  • Ayangbenro AS, Babalola OO (2017) A new strategy for heavy metal polluted environments: a review of microbial biosorbents. Int J Environ Res Public Health 14. https://doi.org/10.3390/ijerph14010094

  • Badar U, Ahmed N, Beswick AJ, Pattanapipitpaisal P, Macaskie LE (2000) Reduction of chromate by microorganisms isolated from metal contaminated sites of Karachi, Pakistan. Biotechnol Lett 22:829–836. https://doi.org/10.1023/A:1005649113190

    Article  CAS  Google Scholar 

  • Belfiore C, Ordoñez OF, M.E (2013) Farías. Proteomic approach of adaptive response to arsenic stress in Exiguobacterium sp. S17, an extremophile strain isolated from a high-altitude Andean Lake stromatolite. Extremophiles 17:421–431. https://doi.org/10.1007/s00792-013-0523-y

  • Bhattacharya A, Gupta A (2013) Evaluation of Acinetobacter sp. B9 for Cr (VI) resistance and detoxification with potential application in bioremediation of heavy-metals-rich industrial wastewater. Environ Sci Pollut Res 20:6628–6637. https://doi.org/10.1007/s11356-013-1728-4

    Article  CAS  Google Scholar 

  • Biswas CK, Mukherjee A, Mishra SP (2013) Physico-chemical properties of overburden dumps of different ages at Sonepur bazari coalmine area, Raniganj, West bengal (India). The Ecoscan 7:57–60

    CAS  Google Scholar 

  • Busse HJ (2016) Review of the taxonomy of the genus Arthrobacter, emendation of the genus arthrobacter sensu lato, proposal to reclassify selected species of the genus Arthrobacter in the novel genera Glutamicibacter gen. Nov., Paeniglutamicibacter gen. nov., Pseudoglutamicibacter gen. nov., Paenarthrobacter gen. nov. and pseudarthrobacter gen. nov., and emended description of Arthrobacter roseus. Int J Syst Evol Microbiol 66:9–37. https://doi.org/10.1099/ijsem.0.000702

    Article  CAS  Google Scholar 

  • Busse HJ, Schumann P (2019) Reclassification of arthrobacter enclensis as pseudarthrobacter enclensis comb. Nov., and emended descriptions of the genus pseudarthrobacter, and the species pseudarthrobacter phenanthrenivorans and pseudarthrobacter scleromae. Int J Syst Evol Microbiol 69:3508–3511. https://doi.org/10.1099/ijsem.0.003652

    Article  CAS  Google Scholar 

  • Castro-Silva MA, De Souza Lima AO, Gerchenski AV, Jaques DB, Rodrigues AL, De Souza PL, Rörig LR (2003) Heavy metal resistance of microorganisms isolated from coal mining environments of Santa Catarina. Braz J Microbiol 34:45–47. https://doi.org/10.1590/S1517-83822003000500015

    Article  Google Scholar 

  • Chang JS, Yoon IH, Lee JH, Kim KR, An J, Kim KW (2010) Arsenic detoxification potential of aox genes in arsenite-oxidizing bacteria isolated from natural and constructed wetlands in the Republic of Korea. Environ Geochem Health 32:95–105. https://doi.org/10.1007/s10653-009-9268-z

    Article  CAS  Google Scholar 

  • Chaturvedi MK (2011) Studies on chromate removal by chromium-resistant Bacillus sp. isolated from tannery effluent. J Environ Prot (Irvine, Calif) 02:76–82. https://doi.org/10.4236/jep.2011.21008

    Article  CAS  Google Scholar 

  • Chen S, Shao Z (2009) Isolation and diversity analysis of arsenite-resistant bacteria in communities enriched from deep-sea sediments of the Southwest Indian Ocean Ridge. Extremophiles 13:39–48. https://doi.org/10.1007/s00792-008-0195-1

    Article  CAS  Google Scholar 

  • Choudhury R, Srivastava S (2001) Zinc resistance mechanisms in bacteria. Curr Sci. https://doi.org/10.2307/24106396

  • Congeevaram S, Dhanarani S, Park J, Dexilin M, Thamaraiselvi K (2007) Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates. J Hazard Mater 146:270–277. https://doi.org/10.1016/j.jhazmat.2006.12.017

    Article  CAS  Google Scholar 

  • Daniels W, Zipper C (2010) Creation and management of productive minesoils. Virginia Coop Ext Publ 12:460–121 https://pubs.ext.vt.edu/460/460-121/460-121_pdf.pdf%5Cnhttps://vtechworks.lib.vt.edu/handle/10919/55040(accessed December 6, 2019)

  • Dobson AP, Bradshaw AD, Baker AJM (1997) Hopes for the future: restoration ecology and conservation biology. Science 277:515–522. https://doi.org/10.1126/science.277.5325.515

    Article  CAS  Google Scholar 

  • Dowarah J, Deka Boruah HP, Gogoi J, Pathak N, Saikia N, Handique AK (2009) Eco-restoration of a high-sulfur coal mine overburden dumping site in northeast India: a case study. J Earth Syst Sci 118:597–608. https://doi.org/10.1007/s12040-009-0042-5

    Article  Google Scholar 

  • Dussán J, Numpaque M (2012) Degradation of diesel, a component of the explosive ANFO, by bacteria selected from an open cast coal mine in La Guajira, Colombia. J Bioprocess Biotechniq 2:1–5. https://doi.org/10.4172/2155-9821.1000126

    Article  CAS  Google Scholar 

  • Dutta M, Khare P, Chakravarty S, Saikia D, Saikia BK (2018) Physico-chemical and elemental investigation of aqueous leaching of high sulfur coal and mine overburden from Ledo coalfield of Northeast India. Int J Coal Sci Technol 5:265–281. https://doi.org/10.1007/s40789-018-0210-9

    Article  CAS  Google Scholar 

  • Emenike CU, Agamuthu P, Fauziah SH (2016) Blending Bacillus sp., Lysinibacillus sp. and Rhodococcus sp. for optimal reduction of heavy metals in leachate contaminated soil. Environ. Earth Sci 75:1–8. https://doi.org/10.1007/s12665-015-4805-9

    Article  CAS  Google Scholar 

  • Englen MD, Kelley LC (2000) A rapid DNA isolation procedure for the identification of Campylobacter jejuni by the polymerase chain reaction. Lett Appl Microbiol 31:421–426. https://doi.org/10.1046/j.1365-2672.2000.00841.x

    Article  CAS  Google Scholar 

  • Ferreira PAA, Dahmer SFB, Backes T, Silveira AO, Jacques RJS, Zafar M, Pauletto EA, dos Santos MAO, da Silva K, Giachini AJ, Antoniolli ZI (2018) Isolation, characterization and symbiotic efficiency of nitrogen-fixing and heavy metal-tolerant bacteria from a coalmine wasteland. Rev Bras Ciência do Solo 42. https://doi.org/10.1590/18069657rbcs20170171

  • Galkiewicz JP, Kellogg CA (2008) Cross-kingdom amplification using bacteria-specific primers: complications for studies of coral microbial ecology. Appl Environ Microbiol 74:7828–7831. https://doi.org/10.1128/AEM.01303-08

    Article  CAS  Google Scholar 

  • Gandhi VP, Priya A, Priya S, Daiya V, Kesari J, Prakash K, Jha K, Kumar K, Kumar N (2015) Isolation and molecular characterization of bacteria to heavy metals isolated from soil samples in Bokaro Coal Mines, India. Pollution 1:287–295. https://doi.org/10.7508/PJ.2015.03.005

    Article  Google Scholar 

  • Ghose MK (2004) Effect of opencast mining on soil fertility. J Sci Ind Res 63:1006–1009

    Google Scholar 

  • Giri DD, Shukla PN, Ritu S, Kumar A, Pandey KD (2013) Substrate utilization of stress tolerant methylotrophs isolated from revegetated heavy metal polluted coalmine spoil. World J Microbiol Biotechnol 29:635–643. https://doi.org/10.1007/s11274-012-1219-7

    Article  CAS  Google Scholar 

  • Gogoi J, Pathak N, Duarah I, Deka Boruah HP, Saikia N, Handique AK (2012) Microbial activity in high-sulfur reclaimed coal mine overburden sites. Soil Sediment Contam. An Int J 21:42–50. https://doi.org/10.1080/15320383.2012.636774

    Article  CAS  Google Scholar 

  • Gupta A, Joia J, Sood A, Sood R, Sidhu C, Kaur G (2016) Microbes as potential tool for remediation of heavy metals: a review. J Microb Biochem Technol 8:364–372. https://doi.org/10.4172/1948-5948.1000310

    Article  CAS  Google Scholar 

  • Hall TA (1999) BIOEDIT: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/ NT. Nucleic Acids Symp Ser 41:95–98. 10.14601/phytopathol_mediterr-14998U1.29

  • Hazarika P, Dutta D, Talukdar NC (2018) Microbial technology for revegetation in overburden dumps of coal mined area of Assam, India - a review. Int Res J Environ Sci 7:56–62

    CAS  Google Scholar 

  • Hou H, Wang C, Ding Z, Zhang S, Yang Y, Ma J, Chen F, Li J (2018) Variation in the soil microbial community of reclaimed land over different reclamation periods. Sustain 10:2286. https://doi.org/10.3390/su10072286

    Article  CAS  Google Scholar 

  • Igiri BE, Okoduwa SIR, Idoko GO, Akabuogu EP, Adeyi AO, Ejiogu IK (2018) Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: a review. J Toxicol 2018:1–16. https://doi.org/10.1155/2018/2568038

    Article  CAS  Google Scholar 

  • Juwarkar AA, Jambhulkar HP (2008) Phytoremediation of coal mine spoil dump through integrated biotechnological approach. Bioresour Technol 99:4732–4741. https://doi.org/10.1016/j.biortech.2007.09.060

    Article  CAS  Google Scholar 

  • Kimura M (1980) Journal of Molecular Evolution A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  Google Scholar 

  • Kuang JL, Huang LN, Chen LX, Hua ZS, Li SJ, Hu M, Li JT, Shu WS (2013) Contemporary environmental variation determines microbial diversity patterns in acid mine drainage. ISME J 7:1038–1050. https://doi.org/10.1038/ismej.2012.139

    Article  CAS  Google Scholar 

  • Kumar BL, Gopal DVRS (2015) Effective role of indigenous microorganisms for sustainable environment. 3. Biotech 5:867–876. https://doi.org/10.1007/s13205-015-0293-6

    Article  Google Scholar 

  • Kumar S, Stecher G, Li M, nyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  Google Scholar 

  • Kumari D, Pan X, Achal V, Zhang D, Al-Misned FA, Golam Mortuza M (2015a) Multiple metal-resistant bacteria and fungi from acidic copper mine tailings of Xinjiang, China. Environ Earth Sci 74:3113–3121. https://doi.org/10.1007/s12665-015-4349-z

    Article  CAS  Google Scholar 

  • Kumari D, Pan X, Zhang D, Zhao C, Al-Misned FA, Mortuza MG (2015b) Bioreduction of hexavalent chromium from soil column leachate by Pseudomonas stutzeri. Bioremediat J 19:249–258. https://doi.org/10.1080/10889868.2015.1029116

    Article  CAS  Google Scholar 

  • Kusuma GJ, Shimada H, Sasaoka T, Matsui K, Nugraha C, Gautama RS, Sulistianto B (2012) Physical and geochemical characteristics of coal mine overburden dump related to acid mine drainage generation. Memoirs of the Faculty of Engineering, Kyushu University 72:23–38

    CAS  Google Scholar 

  • Leff JW, Jones SE, Prober SM, Barberán A, Borer ET, Firn JL, Harpole WS, Hobbie SE, Hofmockel KS, Knops JMH, McCulley RL, La Pierre K, Risch AC, Seabloom EW, Schütz M, Steenbock C, Stevens CJ, Fierer N (2015) Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc Natl Acad Sci U S A 112:10967–10972. https://doi.org/10.1073/pnas.1508382112

    Article  CAS  Google Scholar 

  • Li M, Tromp J, Zhang L (1996) On the nearest neighbour interchange distance between evolutionary trees. J Theor Biol 182:463–467. https://doi.org/10.1006/jtbi.1996.0188

    Article  CAS  Google Scholar 

  • Li J, Sun W, Wang S, Sun Z, Lin S, Peng X (2014a) Bacteria diversity, distribution and insight into their role in S and Fe biogeochemical cycling during black shale weathering. Environ Microbiol 16:3533–3547. https://doi.org/10.1111/1462-2920.12536

    Article  CAS  Google Scholar 

  • Li Y, Wen H, Chen L, Yin T (2014b) Succession of bacterial community structure and diversity in soil along a chronosequence of reclamation and re-vegetation on coal mine spoils in China. PLoS One 9:e115024. https://doi.org/10.1371/journal.pone.0115024

    Article  CAS  Google Scholar 

  • Maharana JK, Patel AK (2013) Physico-chemical characterization and mine soil genesis in age series coal mine overburden spoil in chronosequence in a dry tropical environment. J Phylogen Evol Biol 1:101. https://doi.org/10.4172/2329-9002

    Article  Google Scholar 

  • Maiti SK (2007) Bioreclamation of coalmine overburden dumps - with special empasis on micronutrients and heavy metals accumulation in tree species. Environ. Monit Assess 125:111–122. https://doi.org/10.1007/s10661-006-9244-3

    Article  CAS  Google Scholar 

  • Majumder P, Palit D (2017) Isolation, identification and characterization of bacteria of coal mine soil at Sonepur Bazari of Raniganj coalfield, West Bengal. Int J of Appl Env Sci 12:1131–1140

    Google Scholar 

  • Margesin R, Schinner F (1996) Bacterial heavy metal-tolerance - extreme resistance to nickel in Arthrobacter spp. strains. J Basic Microbiol 36:269–282. https://doi.org/10.1002/jobm.3620360410

    Article  CAS  Google Scholar 

  • Marzan LW, Hossain M, Mina SA, Akter Y, Chowdhury AMMA (2017) Isolation and biochemical characterization of heavy-metal resistant bacteria from tannery effluent in Chittagong city, Bangladesh: bioremediation viewpoint. Egypt J Aquat Res 43:65–74. https://doi.org/10.1016/j.ejar.2016.11.002

    Article  Google Scholar 

  • Matlakowska R, Sklodowska A (2009) The culturable bacteria isolated from organic-rich black shale potentially useful in biometallurgical procedures. J Appl Microbiol 107:858–866. https://doi.org/10.1111/j.1365-2672.2009.04261.x

    Article  CAS  Google Scholar 

  • Matlakowska R, Skłodowska A, Nejbert K (2012) Bioweathering of Kupferschiefer black shale (Fore-Sudetic Monocline, SW Poland) by indigenous bacteria: implication for dissolution and precipitation of minerals in deep underground mine. FEMS Microbiol Ecol 81:99–110. https://doi.org/10.1111/j.1574-6941.2012.01326.x

    Article  CAS  Google Scholar 

  • Mello BL, Alessi AM, McQueen-Mason S, Bruce NC, Polikarpov I (2016) Nutrient availability shapes the microbial community structure in sugarcane bagasse compost-derived consortia. Sci Rep 6:1–8. https://doi.org/10.1038/srep38781

    Article  CAS  Google Scholar 

  • Mishra V (2014) Biosorption of zinc ion: a deep comprehension. Appl Water Sci 4:311–332. https://doi.org/10.1007/s13201-013-0150-x

    Article  CAS  Google Scholar 

  • Ojuederie OB, Babalola OO (2017) Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review. Int J Environ Res Public Health 14:1504. https://doi.org/10.3390/ijerph14121504

    Article  CAS  Google Scholar 

  • Oyuntsetseg B, Cho SH, Jeon SJ, Lee HB, Shin KS, Kim IS, Kim SB (2017) Amycolatopsis acidiphila sp. Nov., a moderately acidophilic species isolated from coal mine soil. Int J Syst Evol Microbiol 67:3387–3392. https://doi.org/10.1099/ijsem.0.002126

    Article  CAS  Google Scholar 

  • Panda S, Kusum Yadav K, Sarthi Nayak P, Arakha M, Jha S (2016) Screening of metal-resistant coal mine bacteria for biofabrication of elemental silver nanoparticle. Bull Mater Sci 39:397–404

    Article  CAS  Google Scholar 

  • Pandey P, Kumar Verma M, Mukhopadhyay R, De N, Dwivedi R, Karmakar NC, Pandey S, Singh RK (2016) Biological properties of selected overburdens of Singrauli coalfields. Nat Environ Pollut Technol 15:853–858

    CAS  Google Scholar 

  • Pandit RJ, Patel B, Kunjadia PD, Nagee A (2013) Isolation , characterization and molecular identification of heavy metal resistant bacteria from industrial effluents , Amala-khadi - Ankleshwar , Gujarat. Int J Environ Sci 3:1689–1699. https://doi.org/10.6088/ijes.2013030500037

    Article  CAS  Google Scholar 

  • Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M (2020) List of prokaryotic names with standing in nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 70:5607–5612. https://doi.org/10.1099/ijsem.0.004332

    Article  Google Scholar 

  • Quadros PD, Zhalnina K, Davis-Richardson AG, Drew JC, Menezes FB, FAdO C, Triplett EW (2016) Coal mining practices reduce the microbial biomass, richness and diversity of soil. Appl Soil Ecol 98:195–203. https://doi.org/10.1016/j.apsoil.2015.10.016

    Article  Google Scholar 

  • Rai AK, Paul B, Singh G (2011) A study on physico chemical properties of overburden dump materials from selected coal mining areas of Jharia coalfields, Jharkhand, India. Int J Environ Sci 1:1350–1360

    CAS  Google Scholar 

  • Rajarathnam S, Chandra D, Handique GK (1996) An overview of chemical properties of marine-influenced Oligocene coal from the northeastern part of the Assam-Arakan basin, India. Int J Coal Geol 29:337–361. https://doi.org/10.1016/0166-5162(95)00025-9

    Article  CAS  Google Scholar 

  • Rayment GE, Lyons DJ (2011) Ion-exchange properties, in soil chemical methods -Australasia. Australian Soil and Land Survey Handbooks Series, CSIRO Publishing, Australia, p 291

    Google Scholar 

  • Sarangi A, Krishnan C (2008) Comparison of in vitro Cr(VI) reduction by CFEs of chromate resistant bacteria isolated from chromate contaminated soil. Bioresour Technol 99:4130–4137. https://doi.org/10.1016/j.biortech.2007.08.059

    Article  CAS  Google Scholar 

  • Sethy K, Behera N (2009) Isolation of bacteria from coal mine spoil and study of their sensitivity to temperature and pH. The Ecoscan 3:339–342

    Google Scholar 

  • Sethy K, Behera N (2012) Antimicrobial activity of thermotolerant bacterial isolate from coal mine spoil. Afr J Microbiol Res 6:5459–5463. https://doi.org/10.5897/AJMR11.1551

    Article  Google Scholar 

  • Shen C, Shi Y, Fan K, He JS, Adams JM, Ge Y, Chu H (2019) Soil pH dominates elevational diversity pattern for bacteria in high elevation alkaline soils on the Tibetan Plateau. FEMS Microbiol Ecol 2019:95. https://doi.org/10.1093/femsec/fiz003

    Article  CAS  Google Scholar 

  • Singh S, Shrivastava A, Barla A, Bose S (2015) Isolation of arsenic-resistant bacteria from Bengal Delta sediments and their efficacy in arsenic removal from soil in association with Pteris vittata. Geomicrobiol J 32:712–723

    Article  CAS  Google Scholar 

  • Slepecky RA, Hemphill HE (2006) The genus Bacillus—nonmedical, in The Prokaryotes. Springer US, pp:530–562. https://doi.org/10.1007/0-387-30744-3_16

  • Stoppel R, Schlegel HG (1995) Nickel-resistant bacteria from anthropogenically nickel-polluted and naturally nickel-percolated ecosystems. Appl Environ Microbiol:61

  • Tapadar SA, Jha DK (2014) Influence of open cast mining on the soil properties of Ledo Colliery of Tinsukia district of Assam. India Int J Sci Res Publ 5

  • Travis RB (1955) Classification of sedimentary rocks. Quarterly of the Colorado School of Mines 50 http://www.kgs.ku.edu/General/Class/sedimentary.html (accessed August 25, 2020)

  • Upadhyay N, Verma S, Singh AP, Devi S, Vishwakarma K, Kumar N, Pandey A, Dubey K, Mishra R, Tripathi DK, Rani R, Sharma S (2016) Soil ecophysiological and microbiological indices of soil health: a study of coal mining site in Sonbhadra, Uttar Pradesh. J Soil Sci Plant Nutr 16:778–800. https://doi.org/10.4067/s0718-95162016005000056

    Article  CAS  Google Scholar 

  • Upadhyay N, Vishwakarma K, Singh J, Mishra M, Kumar V, Rani R, Mishra RK, Chauhan DK, Tripathi DK, Sharma S (2017) Tolerance and reduction of chromium(VI) by Bacillus sp. MNU16 isolated from contaminated coal mining soil. Front Plant Sci 8. https://doi.org/10.3389/fpls.2017.00778

  • Weil RR, Brady NC (2017) The soils around us. Nat Prop Soils:19–50

  • Włodarczyk A, Lirski M, Fogtman A, Koblowska M, Bidziński G, Matlakowska R (2018) The oxidative metabolism of fossil hydrocarbons and sulfide minerals by the lithobiontic microbial community inhabiting deep subterrestrial Kupferschiefer black shale. Front Microbiol 9. https://doi.org/10.3389/fmicb.2018.00972

  • Wu Y, Zeng J, Zhu Q, Zhang Z, Lin X (2017) pH is the primary determinant of the bacterial community structure in agricultural soils impacted by polycyclic aromatic hydrocarbon pollution. Sci Rep 7:1–7. https://doi.org/10.1038/srep40093

  • Xi L, Qiao N, Liu D, Li J, Zhang J, Liu J (2018) Pannonibacter carbonis sp. nov., isolated from coal mine water. Int J Syst Evol Microbiol 68:2042–2047. https://doi.org/10.1099/ijsem.0.002794

    Article  CAS  Google Scholar 

  • Yun Y, Wang H, Man B, Xiang X, Zhou J, Qiu X, Duan Y, Engel AS (2016) The relationship between pH and bacterial communities in a single karst ecosystem and its implication for soil acidification. Front Microbiol 7:1955. https://doi.org/10.3389/fmicb.2016.01955

    Article  Google Scholar 

  • Zou C (2013) Shale gas, in Unconventional Petroleum Geology. Elsevier; San Diego, CA 92101-4495, USA, pp 149–90. 10.1016/B978-0-12-397162-3.00005-0

Download references

Acknowledgements

The authors are very much thankful to the CIL office, Margherita, for allowing us to visit the coal mining site for sample collections. DN is also thankful to the Department of Botany, Gauhati University for providing necessary facilities. KNS is thankful to the CSIR, Govt. of India for the research fellowship.

Funding

This study is funded by the DBT, Govt. of India (BT/408/NE/U-Excel/2013) under the Unit of Excellence scheme.

Author information

Authors and Affiliations

Authors

Contributions

DN conceptualized the research project. KNS did the experimental works and data analysis. KNS compiled the data and manuscript. DN edited and finalized the manuscript.

Corresponding author

Correspondence to Diganta Narzary.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Diane Purchase

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary materials

ESM 1

(DOCX 22 kb)

ESM 2

(DOCX 19 kb)

ESM 3

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, K.N., Narzary, D. Heavy metal tolerance of bacterial isolates associated with overburden strata of an opencast coal mine of Assam (India). Environ Sci Pollut Res 28, 63111–63126 (2021). https://doi.org/10.1007/s11356-021-15153-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-15153-1

Keywords

Navigation