Skip to main content

Advertisement

Log in

Ecotoxicological effects of microplastics on aquatic organisms: a review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Microplastics   ( <5 mm), which are classified based on primary or secondary sources, are widely distributed in the environment and exert significant effects on aquatic life forms; however, evidence regarding the ecotoxicological effects of microplastics on aquatic organisms is still limited. This research aims at filling a knowledge gap regarding generation sources, distribution, physicochemical properties, and biological behavior of microplastics (MP) in aquatic environments and their interaction with aquatic organisms. The literature indicates that concentrations of MPs observed in such environments are higher than the threshold for safe concentration (6650 buoyant particles/m3). MPs having large specific surface area, low polarity, and hydrophobic properties have been shown to absorb dichlorodiphenyltrichloroethane (DDT), polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbon (PAHs), bisphenol A (BPA), polyfluoroalkyl substances (PFAS), antibiotics, and heavy metals. MPs adsorb large amounts of toxic organic chemicals (18,700 ng/g PCBs; 24,000 ng/g PAHs) and heavy metals (0.21–430 μg/g Cr; 0.0029–930 μg/g Cd; 0.35–2.89 μg/g As; 0.26–698,000 μg/g Pb). MPs originating from polystyrene (PS), polypropylene (PP), and polyvinylchloride (PVC) show greater toxicity toward aquatic organisms, with effects on the immune system, reproductive system, nervous system, and endocrine system. Thus, elucidating the cumulative toxic expression of MPs in different polluted environments is critical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  • Ahrendt C, Perez-Venegas DJ, Urbina M, Gonzalez C, Echeveste P, Aldana M, Pulgar J, Galban-Malagon C (2020) Microplastic ingestion cause intestinal lesions in the intertidal fish Girella laevifrons. Mar Pollut Bull 151:110795

    Article  CAS  Google Scholar 

  • Alam R, Ahmed Z, Howladar MF (2020) Evaluation of heavy metal contamination in water, soil and plant around the open landfill site Mogla bazar in Sylhet, Bangladesh. Groundwater Sustain Dev 10:100311

    Article  Google Scholar 

  • Andrady A (2017) The plastic in microplastics: a review. Mar Pollut Bull 119:12–22

    Article  CAS  Google Scholar 

  • Andrady AL (2011) Microplastics in the marine environment. Mar Pollut Bull 62:1596–1605

    Article  CAS  Google Scholar 

  • Arruda-Santos RH, Schettini CAF, Yogui GT, Maciel DC, Zanardi-Lamardo E (2018) Sources and distribution of aromatic hydrocarbons in a tropical marine protected area estuary under influence of sugarcane cultivation. Sci Total Environ 624:935–944

    Article  CAS  Google Scholar 

  • Avio CG, Gorbi S, Milan M, Benedetti M, Fattorini D, Errico G, Pauletto M, Bargelloni L, Regoli F (2015) Pollutants bioavailability and toxicological risk from microplastics to marine mussels. Environ Pollut 198:211–222

  • Bakir A, Rowland SJ, Thompson RC (2014) Enhanced desorption of persistent organic pollutants from microplastics under simulated physiological conditions. Environ Pollut 185:16–23

    Article  CAS  Google Scholar 

  • Batel A, Baumann L, Carteny CC, Cormier B, Keiter SH, Braunbeck T (2020) Histological, enzymatic and chemical analyses of the potential effects of differently sized microplastic particles upon long-term ingestion in zebrafish (Danio rerio). Mar Pollut Bull 153:111022

    Article  CAS  Google Scholar 

  • Besley A, Vijver MG, Behrens P, Bosker T (2017) A standardized method for sampling and extraction methods for quantifying microplastics in beach sand. Mar Pollut Bull 114:77–83

    Article  CAS  Google Scholar 

  • Brown DM, Wilson MR, MacNee W, Stone V, Donaldson K (2001) Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol Appl Pharmacol 175:191–199

    Article  CAS  Google Scholar 

  • Carr SA, Liu J, Tesoro AG (2016) Transport and fate of microplastic particles in wastewater treatment plants. Water Res 91:174–182

    Article  CAS  Google Scholar 

  • Chen G, Feng Q, Wang J (2020) Mini-review of microplastics in the atmosphere and their risks to humans. Sci Total Environ 703:135504

    Article  CAS  Google Scholar 

  • Cheung PK, Fok L (2017) Characterisation of plastic microbeads in facial scrubs and their estimated emissions in mainland China. Water Res 122:53–61

    Article  CAS  Google Scholar 

  • Cheung PK, Hung PL, Fok L (2018) River microplastic contamination and dynamics upon a rainfall event in Hong Kong, China. Environ Process 6:253–264

    Article  Google Scholar 

  • Desforges JP, Galbraith M, Dangerfield N, Ross PS (2014) Widespread distribution of microplastics in subsurface seawater in the NE Pacific Ocean. Mar Pollut Bull 79:94–99

    Article  CAS  Google Scholar 

  • Duis K, Coors A (2016) Microplastics in the aquatic and terrestrial environment: sources (with a specific focus on personal care products), fate and effects. Environ Sci Eur 28:2

    Article  CAS  Google Scholar 

  • Endo S, Yuyama M, Takada H (2013) Desorption kinetics of hydrophobic organic contaminants from marine plastic pellets. Mar Pollut Bull 74:125–131

    Article  CAS  Google Scholar 

  • Enyoh CE, Verla AW, Verla EN, Ibe FC, Amaobi CE (2019) Airborne microplastics: a review study on method for analysis, occurrence, movement and risks. Environ Monit Assess 191:668

    Article  CAS  Google Scholar 

  • Espinosa C, Esteban MA, Cuesta A (2019) Dietary administration of PVC and PE microplastics produces histological damage, oxidative stress and immunoregulation in European sea bass (Dicentrarchus labrax L.). Fish Shellfish Immunol 95:574–583

    Article  CAS  Google Scholar 

  • Everaert G, Van Cauwenberghe L, De Rijcke M, Koelmans AA, Mees J, Vandegehuchte M, Janssen CR (2018) Risk assessment of microplastics in the ocean: modelling approach and first conclusions. Environ Pollut 242:1930–1938

    Article  CAS  Google Scholar 

  • Fred-Ahmadu OH, Bhagwat G, Oluyoye I, Benson NU, Ayejuyo OO, Palanisami T (2020) Interaction of chemical contaminants with microplastics: principles and perspectives. Sci Total Environ 706:135978

    Article  CAS  Google Scholar 

  • Frias JP, Sobral P, Ferreira AM (2010) Organic pollutants in microplastics from two beaches of the Portuguese coast. Mar Pollut Bull 60:1988–1992

    Article  CAS  Google Scholar 

  • Gao F, Li J, Sun C, Zhang L, Jiang F, Cao W, Zheng L (2019) Study on the capability and characteristics of heavy metals enriched on microplastics in marine environment. Mar Pollut Bull 144:61–67

    Article  CAS  Google Scholar 

  • Gasperi J, Wright SL, Dris R, Collard F, Mandin C, Guerrouache M, Langlois V, Kelly FJ, Tassin B (2018) Microplastics in air: are we breathing it in? Curr Opin Environ Sci Health 1:1–5

    Article  Google Scholar 

  • Gassel M, Rochman CM (2019) The complex issue of chemicals and microplastic pollution: a case study in North Pacific lanternfish. Environ Pollut 248:1000–1009

    Article  CAS  Google Scholar 

  • Granby K, Rainieri S, Rasmussen R, Kotterman MJJ, Sloth J, Cederberg T, Barranco A, Marques A, Larsen B (2018) The influence of microplastics and halogenated contaminants in feed on toxicokinetics and gene expression in European seabass (Dicentrarchus labrax). Environ Res 164:430–443

    Article  CAS  Google Scholar 

  • Hamed M, Soliman HAM, Osman AGM, Sayed AEH (2019) Assessment the effect of exposure to microplastics in Nile Tilapia (Oreochromis niloticus) early juvenile: I. blood biomarkers. Chemosphere 228:345–350

    Article  CAS  Google Scholar 

  • Hildebrandt L, Voigt N, Zimmermann T, Reese A, Proefrock D (2019) Evaluation of continuous flow centrifugation as an alternative technique to sample microplastic from water bodies. Mar Environ Res 151:104768

    Article  CAS  Google Scholar 

  • Hirai H, Takada H, Ogata Y, Yamashita R, Mizukawa K, Saha M, Kwan C, Moore C, Gray H, Laursen D, Zettler ER, Farrington JW, Reddy CM, Peacock EE, Ward MW (2011) Organic micropollutants in marine plastics debris from the open ocean and remote and urban beaches. Mar Pollut Bull 62:1683–1692

    Article  CAS  Google Scholar 

  • Holmes LA, Turner A, Thompson RC (2012) Adsorption of trace metals to plastic resin pellets in the marine environment. Environ Pollut 160:42–48

    Article  CAS  Google Scholar 

  • Horton AA, Walton A, Spurgeon DJ, Lahive E, Svendsen C (2017) Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci Total Environ 586:127–141

    Article  CAS  Google Scholar 

  • Huffer T, Hofmann T (2016) Sorption of non-polar organic compounds by micro-sized plastic particles in aqueous solution. Environ Pollut 214:194–201

    Article  CAS  Google Scholar 

  • Hurley R, Woodward J, Rothwell JJ (2018) Microplastic contamination of river beds significantly reduced by catchment-wide flooding. Nat Geosci 11:251–257

    Article  CAS  Google Scholar 

  • Hussain K, Hoque R, Balachandran S, Medhi S, Idris M, Rahman M, Hussain F (2018): Monitoring and Risk Analysis of PAHs in the Environment, pp 1-35

  • Isobe A (2016) Percentage of microbeads in pelagic microplastics within Japanese coastal waters. Mar Pollut Bull 110:432–437

    Article  CAS  Google Scholar 

  • Jemec Kokalj A, Kuehnel D, Puntar B, Zgajnar Gotvajn A, Kalcikova G (2019) An exploratory ecotoxicity study of primary microplastics versus aged in natural waters and wastewaters. Environ Pollut 254:112980

    Article  CAS  Google Scholar 

  • Kim MK, Zoh KD (2012) Fate and transport of mercury in environmental media and human exposure. J Prev Med Public Health 45:335–343

    Article  Google Scholar 

  • Kjeldsen P, Barlaz MA, Rooker AP, Baun A, Ledin A, Christensen TH (2002) Present and long-term composition of MSW landfill leachate: a review. Crit Rev Environ Sci Technol 32:297–336

    Article  CAS  Google Scholar 

  • Lassen C, Foss Hansen S, Magnusson K, Norén F, Bloch Hartmann NI, Rehne Jensen P, Gissel Nielsen TAB 2015: Microplastics - Occurrence, effects and sources of releases to the environment in Denmark, The Danish Environmental Protection Agency

  • Lee H, Lee HJ, Kwon JH (2019) Estimating microplastic-bound intake of hydrophobic organic chemicals by fish using measured desorption rates to artificial gut fluid. Sci Total Environ 651:162–170

    Article  CAS  Google Scholar 

  • Li J, Zhang K, Zhang H (2018) Adsorption of antibiotics on microplastics. Environ Pollut 237:460–467

  • Llorca M, Schirinzi G, Martinez M, Barcelo D, Farre M (2018) Adsorption of perfluoroalkyl substances on microplastics under environmental conditions. Environ Pollut 235:680–691

    Article  CAS  Google Scholar 

  • Mani T, Hauk A, Walter U, Burkhardt-Holm P (2015) Microplastics profile along the Rhine River. Sci Rep 5:17988

    Article  CAS  Google Scholar 

  • Marshall S, Sharley D, Jeppe K, Sharp S, Rose G, Pettigrove V (2016): Potentially Toxic Concentrations of Synthetic Pyrethroids Associated with Low Density Residential Land Use. Frontiers in Environmental Science 4

  • Marsic-Lucic J, Lusic J, Tutman P, Bojanic Varezic D, Siljic J, Pribudic J (2018) Levels of trace metals on microplastic particles in beach sediments of the island of Vis, Adriatic Sea, Croatia. Mar Pollut Bull 137:231–236

    Article  CAS  Google Scholar 

  • Mathalon A, Hill P (2014) Microplastic fibers in the intertidal ecosystem surrounding Halifax Harbor, Nova Scotia. Mar Pollut Bull 81:69–79

    Article  CAS  Google Scholar 

  • McClements DJ, Xiao H (2017) Is nano safe in foods? Establishing the factors impacting the gastrointestinal fate and toxicity of organic and inorganic food-grade nanoparticles. NPJ Sci Food 1:6

    Article  Google Scholar 

  • Mizukawa K, Takada H, Ito M, Geok YB, Hosoda J, Yamashita R, Saha M, Suzuki S, Miguez C, Frias J, Antunes JC, Sobral P, Santos I, Micaelo C, Ferreira AM (2013) Monitoring of a wide range of organic micropollutants on the Portuguese coast using plastic resin pellets. Mar Pollut Bull 70:296–302

    Article  CAS  Google Scholar 

  • Mohsen M, Wang Q, Zhang L, Sun L, Lin C, Yang H (2019) Heavy metals in sediment, microplastic and sea cucumber Apostichopus japonicus from farms in China. Mar Pollut Bull 143:42–49

    Article  CAS  Google Scholar 

  • Moore RC, Loseto L, Noel M, Etemadifar A, Brewster JD, MacPhee S, Bendell L, Ross PS (2020) Microplastics in beluga whales (Delphinapterus leucas) from the eastern Beaufort Sea. Mar Pollut Bull 150:110723

    Article  CAS  Google Scholar 

  • Nan B, Su L, Kellar C, Craig NJ, Keough MJ, Pettigrove V (2020) Identification of microplastics in surface water and Australian freshwater shrimp Paratya australiensis in Victoria, Australia. Environ Pollut 259:113865

    Article  CAS  Google Scholar 

  • Napper IE, Thompson RC (2016) Release of synthetic microplastic plastic fibres from domestic washing machines: effects of fabric type and washing conditions. Mar Pollut Bull 112:39–45

    Article  CAS  Google Scholar 

  • Oliveira M, Ribeiro A, Hylland K, Guilhermino L (2013) Single and combined effects of microplastics and pyrene on juveniles (0+ group) of the common goby Pomatoschistus microps (Teleostei, Gobiidae). Ecol Indic 34:641–647

    Article  CAS  Google Scholar 

  • Oz N, Kadizade G, Yutsever M (2019) Investigation of heavy metal adsorption on microplastics. Appl Ecol Environ Res 17:7301–7310

    Article  Google Scholar 

  • Peng L, Fu D, Qi H, Lan CQ, Yu H, Ge C (2020) Micro- and nano-plastics in marine environment: source, distribution and threats - a review. Sci Total Environ 698:134254

    Article  CAS  Google Scholar 

  • Qu H, Ma R, Barrett H, Wang B, Han J, Wang F, Chen P, Wang W, Peng G, Yu G (2020) How microplastics affect chiral illicit drug methamphetamine in aquatic food chain? From green alga (Chlorella pyrenoidosa) to freshwater snail (Cipangopaludian cathayensis). Environ Int 136:105480

    Article  CAS  Google Scholar 

  • Rochman CM, Browne MA, Halpern BS, Hentschel BT, Hoh E, Karapanagioti HK, Rios-Mendoza LM, Takada H, Teh S, Thompson RC (2013) Long-term field measurement of sorption of organic contaminants to five types of plastic pellets implications for plastic marine debris. Nature 494:169–171

    Article  CAS  Google Scholar 

  • Sadler DE, Brunner FS, Plaistow SJ (2019) Temperature and clone-dependent effects of microplastics on immunity and life history in Daphnia magna. Environ Pollut 255:113178

    Article  CAS  Google Scholar 

  • Shi W, Han Y, Sun S, Tang Y, Zhou W, Du X, Liu G (2020) Immunotoxicities of microplastics and sertraline, alone and in combination, to a bivalve species: size-dependent interaction and potential toxication mechanism. J Hazard Mater 396:122603

    Article  CAS  Google Scholar 

  • Sleight VA, Bakir A, Thompson RC, Henry TB (2017) Assessment of microplastic-sorbed contaminant bioavailability through analysis of biomarker gene expression in larval zebrafish. Mar Pollut Bull 116:291–297

    Article  CAS  Google Scholar 

  • Su L, Xue Y, Li L, Yang D, Kolandhasamy P, Li D, Shi H (2016) Microplastics in Taihu Lake, China. Environ Pollut 216:711–719

    Article  CAS  Google Scholar 

  • Su Y, Zhang Z, Wu D, Zhan L, Shi H, Xie B (2019) Occurrence of microplastics in landfill systems and their fate with landfill age. Water Res 164:114968

    Article  CAS  Google Scholar 

  • Sun J, Dai X, Wang Q, van Loosdrecht MCM, Ni BJ (2019) Microplastics in wastewater treatment plants: detection, occurrence and removal. Water Res 152:21–37

    Article  CAS  Google Scholar 

  • Sutton R, Mason SA, Stanek SK, Willis-Norton E, Wren IF, Box C (2016) Microplastic contamination in the San Francisco Bay, California, USA. Mar Pollut Bull 109:230–235

    Article  CAS  Google Scholar 

  • Tan X, Yu X, Cai L, Wang J, Peng J (2019) Microplastics and associated PAHs in surface water from the Feilaixia reservoir in the Beijiang River, China. Chemosphere 221:834–840

    Article  CAS  Google Scholar 

  • Tang Y, Rong J, Guan X, Zha S, Shi W, Han Y, Du X, Wu F, Huang W, Liu G (2020) Immunotoxicity of microplastics and two persistent organic pollutants alone or in combination to a bivalve species. Environ Pollut 258:113845

    Article  CAS  Google Scholar 

  • Thompson RC, Moore CJ, vom Saal FS, Swan SH (2009) Plastics, the environment and human health: current consensus and future trends. Philos Trans R Soc Lond Ser B Biol Sci 364:2153–2166

    Article  CAS  Google Scholar 

  • Tourinho PS, Koci V, Loureiro S, van Gestel CAM (2019) Partitioning of chemical contaminants to microplastics: sorption mechanisms, environmental distribution and effects on toxicity and bioaccumulation. Environ Pollut 252:1246–1256

    Article  CAS  Google Scholar 

  • Van Cauwenberghe L, Vanreusel A, Mees J, Janssen CR (2013) Microplastic pollution in deep-sea sediments. Environ Pollut 182:495–499

    Article  CAS  Google Scholar 

  • van der Hal N, Ariel A, Angel D (2017) Exceptionally high abundances of microplastics in the oligotrophic Israeli Mediterranean coastal waters. Mar Pollut Bull 116

  • Velzeboer I, Kwadijk CJ, Koelmans AA (2014) Strong sorption of PCBs to nanoplastics, microplastics, carbon nanotubes, and fullerenes. Environ Sci Technol 48:4869–4876

    Article  CAS  Google Scholar 

  • Verla AW, Enyoh CE, Verla EN, Nwarnorh KO (2019): Microplastic–toxic chemical interaction: a review study on quantified levels, mechanism and implication. SN Applied Sciences 1

  • Waldschläger K, Lechthaler S, Stauch G, Schüttrumpf H (2020) The way of microplastic through the environment – application of the source-pathway-receptor model (review). Sci Total Environ 713:136584

    Article  CAS  Google Scholar 

  • Wu C, Zhang K, Xiong X (2018): Microplastic Pollution in Inland Waters Focusing on Asia. 58, 85-99

  • Xia B, Zhang J, Zhao X, Feng J, Teng Y, Chen B, Sun X, Zhu L, Sun X, Qu K (2020) Polystyrene microplastics increase uptake, elimination and cytotoxicity of decabromodiphenyl ether (BDE-209) in the marine scallop Chlamys farreri. Environ Pollut 258:113657

    Article  CAS  Google Scholar 

  • Xiong X, Tu Y, Chen X, Jiang X, Shi H, Wu C, Elser JJ (2019) Ingestion and egestion of polyethylene microplastics by goldfish (Carassius auratus): influence of color and morphological features. Heliyon 5:e03063

    Article  Google Scholar 

  • Yu Q, Hu X, Yang B, Zhang G, Wang J, Ling W (2020) Distribution, abundance and risks of microplastics in the environment. Chemosphere 249:126059

    Article  CAS  Google Scholar 

  • Zhang C, Yu ZG, Zeng GM, Jiang M, Yang ZZ, Cui F, Zhu MY, Shen LQ, Hu L (2014) Effects of sediment geochemical properties on heavy metal bioavailability. Environ Int 73:270–281

    Article  CAS  Google Scholar 

  • Zhang X, Zheng M, Wang L, Lou Y, Shi L, Jiang S (2018) Sorption of three synthetic musks by microplastics. Mar Pollut Bull 126:606–609

    Article  CAS  Google Scholar 

  • Zhang X, Chen J, Li J (2020) The removal of microplastics in the wastewater treatment process and their potential impact on anaerobic digestion due to pollutants association. Chemosphere 251:126360

    Article  CAS  Google Scholar 

  • Zhou W, Han Y, Tang Y, Shi W, Du X, Sun S, Liu G (2020) Microplastics aggravate the bioaccumulation of two waterborne veterinary antibiotics in an edible bivalve species: potential mechanisms and implications for human health. Environ Sci Technol 54:8115–8122

    Article  CAS  Google Scholar 

  • Zhu M, Chernick M, Rittschof D, Hinton DE (2020) Chronic dietary exposure to polystyrene microplastics in maturing Japanese medaka (Oryzias latipes). Aquat Toxicol 220:105396

    Article  CAS  Google Scholar 

  • Zobkov M, Esiukova E (2017) Microplastics in Baltic bottom sediments: quantification procedures and first results. Mar Pollut Bull 114:724–732

    Article  CAS  Google Scholar 

  • Zocchi M, Sommaruga R (2019) Microplastics modify the toxicity of glyphosate on Daphnia magna. Sci Total Environ 697:134194

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate the Department of Environmental Technology for providing all necessary facilities for this work.

Funding

The study was financed by Vietnam National University of Agriculture (grant number SV2020-04-29).

Author information

Authors and Affiliations

Authors

Contributions

VH Cong and PM Hen contributed equally to this work. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Huu Cong Vo.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors confirm that the manuscript has not been submitted anywhere else for simultaneous consideration. The submitted work is original and not has been published elsewhere in any form or language.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vo, H.C., Pham, M.H. Ecotoxicological effects of microplastics on aquatic organisms: a review. Environ Sci Pollut Res 28, 44716–44725 (2021). https://doi.org/10.1007/s11356-021-14982-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-14982-4

Keywords

Navigation