Skip to main content

Advertisement

Log in

Hg concentrations and stable isotope variations in tropical fish species of a gold-mining-impacted watershed in French Guiana

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The aim of the study was to determine if gold-mining activities could impact the mercury (Hg) concentrations and isotopic signatures in freshwater fish consumed by riparian people in French Guiana. Total Hg, MeHg concentrations, and Hg stable isotopes ratios were analyzed in fish muscles from different species belonging to three feeding patterns (herbivorous, periphytophagous, and piscivorous). We compared tributaries impacted by gold-mining activities (Camopi, CR) with a pristine area upstream (Trois-Sauts, TS), along the Oyapock River. We measured δ15N and δ 13C to examine whether Hg patterns are due to differences in trophic level. Differences in δ 15N and δ 13C values between both studied sites were only observed for periphytophagous fish, due to difference of CN baselines, with enriched values at TS. Total Hg concentrations and Hg stable isotope signatures showed that Hg accumulated in fish from both areas has undergone different biogeochemical processes. Δ199Hg variation in fish (−0.5 to 0.2‰) was higher than the ecosystem baseline defined by a Δ199Hg of −0.66‰ in sediments, and suggested limited aqueous photochemical MeHg degradation. Photochemistry-corrected δ202Hg in fish was 0.7‰ higher than the baseline, consistent with biophysical and chemical isotope fractionation in the aquatic environment. While THg concentrations in periphytophagous fish were higher in the gold-mining area, disturbed by inputs of suspended particles, than in TS, the ensemble of Hg isotope shifts in fish is affected by the difference of biotic (methylation/demethylation) and abiotic (photochemistry) processes between both areas and did therefore not allow to resolve the contribution of gold-mining-related liquid Hg(0) in fish tissues. Mercury isotopes of MeHg in fish and lower trophic level organisms can be complementary to light stable isotope tracers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The online version contains the raw data available in the supplementary material.

References

  • Acha D, Iñiguez V, Roulet M, Guimarães JRD, Luna R, Alanoca L, Sanchez S (2005) Sulfate-reducing bacteria in floating macrophyte rhizospheres from an Amazonian floodplain lake in Bolivia and their association with Hg methylation. Appl Environ Microbiol 71:7531–7535

    CAS  Google Scholar 

  • AMAP/UN Environment. (2019). Technical Background Report for the Global Mercury Assessment 2018. Arctic Monitoring and Assessment Programme, Oslo, Norway/UN Environment Programme, Chemicals and Health Branch, Geneva, Switzerland.

  • Bergamino L, Lercari D, Defeo O (2011) Food web structure of sandy beaches: temporal and spatial variation using stable isotope analysis. Estuar Coast Shelf Sci 91(4):536–543

    CAS  Google Scholar 

  • Bergquist BA, Blum JD (2007) Mass-dependent and -independent fractionation of Hg isotopes by photoreduction in aquatic systems. Science 318:417–420

    CAS  Google Scholar 

  • Bergquist BA, Blum JD (2009) The odds and evens of mercury isotopes: applications of mass-dependent and mass-independent isotope fractionation. Elements 5:353–357

    CAS  Google Scholar 

  • Blum JD (2011) Applications of stable mercury isotopes to biogeochemistry. In: In Handbook of Environmental Isotope Geochemistry. Springer, pp 229–245

  • Blum JD, Bergquist BA (2007) Reporting of variations in the natural isotopic composition of mercury. Anal Bioanal Chem 388:353–359

    CAS  Google Scholar 

  • Blum JD, Sherman LS, Johnson MW (2014) Mercury isotopes in Earth and environmental sciences. Annu Rev Earth Planet Sci 42:249–269

    CAS  Google Scholar 

  • Cabana G, Rasmussen JB (1994) Modelling food chain structure and contaminant bioaccumulation using stable nitrogen isotopes. Nature 372(6503):255–257

    CAS  Google Scholar 

  • Caut S, Angulo E, Courchamp F (2009) Variation in discrimination factors (Δ15N and Δ13C): the effect of diet isotopic values and applications for diet reconstruction. J Appl Ecol 46(2):443–453

    CAS  Google Scholar 

  • Chen CY, Borsuk ME, Bugge DM, Hollweg T, Balcom PH, Ward DM, Williams J, Mason RP (2014) Benthic and pelagic pathways of methylmercury bioaccumulation in estuarine food webs of the Northeast United States. PLoS One 9:e89305

    Google Scholar 

  • Cordier S, Grasmick C, Paquier-Passelaigue M, Mandereau L, Weber J-P, Jouan M (1998) Mercury exposure in French Guiana: levels and determinants. Arch Environ Health Int J 53:299–303

    CAS  Google Scholar 

  • Cordier S, Garel M, Mandereau L, Morcel H, Doineau P, Gosme-Seguret S, Josse D, White R, Amiel-Tison C (2002) Neurodevelopmental investigations among methylmercury-exposed children in French Guiana. Environ Res 89:1–11

    CAS  Google Scholar 

  • Demers JD, Blum JD, Zak DR (2013) Mercury isotopes in a forested ecosystem: Implications for air-surface exchange dynamics and the global mercury cycle. Global Biogeochem Cy 27(1):222–238

    CAS  Google Scholar 

  • Demers JD, Sherman LS, Blum JD, Marsik FJ, Dvonch JT (2015) Coupling atmospheric mercury isotope ratios and meteorology to identify sources of mercury impacting a coastal urbanindustrial region near Pensacola, Florida, USA. Global Biogeochem Cy 29(10):1689–1705

    CAS  Google Scholar 

  • Dominique Y, Muresan B, Duran R, Richard S, Boudou A (2007a) Simulation of the chemical fate and bioavailability of liquid elemental mercury drops from gold mining in Amazonian freshwater systems. Environ Sci Technol 41:7322–7329

    CAS  Google Scholar 

  • Dominique Y, Maury-Brachet R, Muresan B, Vigouroux R, Richard S, Cossa D, Mariotti A, Boudou A (2007b) Biofilm and mercury availability as key factors for mercury accumulation in fish (Curimata cyprinoides) from a disturbed Amazonian freshwater system. Environ Toxicol Chemistry/SETAC 26:45–52

    CAS  Google Scholar 

  • Donovan P, Blum JD, Bliss SM, Marvin-DiPasquale M, Tsui MTK (2016) Isotopic composition of inorganic mercury and methylmercury downstream of a historical gold-mining region. Environ Sci Technol 50:1691–1702

    CAS  Google Scholar 

  • Durrieu G, Maury-Brachet R, Boudou A (2005) Goldmining and mercury contamination of the piscivorous fish Hoplias aimara in French Guiana (Amazon basin). Ecotoxicol Environ Saf 60:315–323

    CAS  Google Scholar 

  • Enrico M, Le Roux G, Marusczak N, Heimburger L-E, Claustres A, Fu X, Sun R, Sonke JE (2016) Atmospheric mercury transfer to peat bogs dominated by gaseous elemental mercury dry deposition. Environ Sci Technol 50:2405–2412

    CAS  Google Scholar 

  • Estrade N, Carignan J, Sonke JE, Donard OFX (2009) Mercury isotope fractionation during liquid–vapor evaporation experiments. Geochim Cosmochim Acta 73:2693–27113

    CAS  Google Scholar 

  • Fleming EJ, Mack EE, Green PG, Nelson DC (2006) Mercury methylation from unexpected sources: molybdate-inhibited freshwater sediments and an iron-reducing bacterium. Appl Environ Microbiol 72:457–464

    CAS  Google Scholar 

  • Fréry N, Maury-Brachet R, Maillot E, Deheeger M, De Merona B, Boudou A (2001) Gold-mining activities and mercury contamination of native Amerindian communities in French Guiana: key role of fish in dietary uptake. Environ Health Perspect 109:449

    Google Scholar 

  • Fu X, Marusczak N, Wang X, Gheusi F, Sonke JE (2016) Isotopic composition of gaseous elemental mercury in the free troposphere of the Pic du Midi observatory. France Environ Sci Technol 50(11):5641–5650

    CAS  Google Scholar 

  • Gantner N, Hintelmann H, Zheng W, Muir DC (2009) Variations in stable isotope fractionation of Hg in food webs of Arctic lakes. Environ Sci Technol 43:9148–9154

    CAS  Google Scholar 

  • Gentès S, Coquery M, Vigouroux R, Hanquiez V, Allard L, Maury-Brachet R (2019) Application of the European Water Framework Directive: identification of reference sites and bioindicator fishspecies for mercury in tropical freshwater ecosystems (FrenchGuiana). Ecol Indic 106:105468

    Google Scholar 

  • Gehrke GE, Blum JD, Slotton DG, Greenfield BK (2011) Mercury isotopes link mercury in San Francisco Bay forage fish to surface sediments. Environ Sci Technol 45:1264–1270

  • Goix S, Maurice L, Laffont L, Rinaldo R, Lagane C, Bosq A, Chmeleff J, Menges J, Heimbürger LE, Maury-Brachet R, Sonke J (2019) A Hg stable isotope study of Hg cycling in the tropical environment and quantification of the gold-mining impact on French Guiana river sediments. Chemosphere 219:684–694

    CAS  Google Scholar 

  • Gratz LE, Keeler GJ, Blum JD, Sherman LS (2010) Isotopic composition and fractionation of mercury in Great Lakes precipitation and ambient air. Environ Sci Technol 44(20):7764–7770

    CAS  Google Scholar 

  • Grimaldi C, Grimaldi M, Guedron S (2008) Mercury distribution in tropical soil profiles related to origin of mercury and soil processes. Sci Total Environ 401:121–129

    CAS  Google Scholar 

  • Grimaldi M, Guédron S, Grimaldi C (2015) Impact of gold mining on mercury contamination and soil degradation in Amazonian ecosystems of French Guiana. In: Brearley FQ, Thomas AD (eds) Land-use change impacts on soil processes : tropical and savannah ecosystems. CABI, Wallingford, pp 95–107 ISBN 978-1-78064-210-9

    Google Scholar 

  • Guédron S, Amouroux D, Tessier E, Grimaldi C, Barre J, Berail S, Perrot V, Grimaldi M (2018) Mercury isotopic fractionation during pedogenesis in a tropical forest soil catena (French Guiana): deciphering the impact of historical gold mining. Environ Sci Technol 52(20):11573–11582

  • Guedron S, Grimaldi C, Chauvel C, Spadini L, Grimaldi M (2006) Weathering versus atmospheric contributions to mercury concentrations in French Guiana soils. Appl Geochem 21:2010–2022

    CAS  Google Scholar 

  • Guedron S, Grangeon S, Lanson B, Grimaldi M (2009) Mercury speciation in a tropical soil association; Consequence of gold mining on Hg distribution in French Guiana. Geoderma 153:331–346

    CAS  Google Scholar 

  • Guimarães JRD, Meili M, Malm O, Maria de Souza Brito E. (1998) Hg methylation in sediments and floating meadows of a tropical lake in the Pantanal floodplain. Brazil Sci Total Environ 213:165–175

    Google Scholar 

  • Hobson KA, Fisk A, Karnovsky N, Holst M, Gagnon JM, Fortier M (2002) A stable isotope (d13C, d15N) model for the NorthWater food web: implications for evaluating trophodynamics and the flow of energy and contaminants. Deep Sea Res Part II Top Stud Oceanogr 49(22e23):5131e5150

    Google Scholar 

  • Janssen SE, Riva-Murray K, DeWild JF, Ogorek JM, Tate MT, Van Metre PC, Krabbenhoft DP, Coles JF (2019) Chemical and physical controls on mercury source signatures in stream fish from the Northeastern United States. Environ Sci Technol 53(17):10110–10119

  • Keith P, Persat H, Feunteun E and Allardi J (2011). Les Poissons d’eau douce de France. Collection Inventaires & biodiversité. Biotope Editions, Publications scientifiques du Muséum 552 (in French)

  • Kerin EJ, Gilmour CC, Roden E, Suzuki MT, Coates JD, Mason RP (2006) Mercury methylation by dissimilatory iron-reducing bacteria. Appl Environ Microbiol 72:7919–7921

    CAS  Google Scholar 

  • Klaus JE, Hammerschmidt CR, Costello DM, Burton GA (2016) Net methylmercury production in 2 contrasting stream sediments and associated accumulation and toxicity to periphyton. Environ Toxicol Chem 35(7):1759–1765

    CAS  Google Scholar 

  • Kwon SY, McIntyre PB, Flecker AS, Campbell LM (2012a) Mercury biomagnification in the food web of a Neotropical stream. Sci Total Environ 417-418:92–97

    CAS  Google Scholar 

  • Kwon SY, Blum JD, Carvan MJ, Basu N, Head JA, Madenjian CP, David SR (2012b) Absence of fractionation of mercury isotopes during trophic transfer of methylmercury to Freshwater fish in captivity. Environ Sci Technol 46:7527–7534

    CAS  Google Scholar 

  • Laffont L, Sonke JE, Maurice L, Hintelmann H, Pouilly M, Sánchez BY, Perez T, Behra P (2009) Anomalous mercury isotopic compositions of fish and human hair in the Bolivian Amazon. Environ Sci Technol 43:8985–8990

    CAS  Google Scholar 

  • Laffont L, Sonke JE, Maurice L, Monrroy SL, Chincheros J, Amouroux D, Behra P (2011) Hg speciation and stable isotope signatures in human hair as a tracer for dietary and occupational exposure to mercury. Environ Sci Technol 45:9910–9916

    CAS  Google Scholar 

  • Lamberti GA (1996). The role of periphyton in benthic food webs. Algal ecology, The Role of Periphyton in Benthic Food Webs

  • Laperche V, Maury-Brachet R, Blanchard F, Dominique Y, Durrieu G, Massabuau JC, Bouillard H, Joseph B, Laporte P, Mesmer Dudons N, Duflo V, Callier L (2007). Répartition régionale du mercure dans les sédiments et les poissons de six fleuves de Guyane: Rapport BRGM/RP55965-FR, 203.

  • Layman CA, Araujo MS, Boucek R, Hammerschlag-Peyer CM, Harrison E, Jud ZR, Matich P, Rosenblatt AE, Vaudo JJ, Yeager LA, Post DM, Bearhop S (2012) Applying stable isotopes to examine food-web structure: an overview of analytical tools. Biol Rev 87(3):545–562

    Google Scholar 

  • Le Bail PY, Keith P and Planquette P (2000). Atlas des poissons d’eau douce de Guyane ; Tome 2, fascicule II: Siluriformes. Patrimoines naturels (MNHN/SPN), 43, 307. Paris (in French).

  • Le Bail P-Y, Covain R, Jégu M, Fisch-Muller S, Vigouroux R, Keith P (2012) Updated checklist of the freshwater and estuarine fishes of French Guiana. Cybium: Int J Ichthyol 36(1):293–319

    Google Scholar 

  • Lepak R, Yin R, Krabbenhoft DP, Ogorek JM, DeWild JF, Holsen TM, Hurley JP (2015) Use of stable isotope signatures to determine mercury sources in the Great Lakes. Environ Sci Technol Lett 2(12):335–341

    CAS  Google Scholar 

  • Marshall BG, Veiga MM, Kaplan RJ, Adler MR, Schudel G, Bergquist BA, Guimarães JRD, Sobrald LGS, Gonzalez-Mueller C (2018) Evidence of transboundary mercury and other pollutants in the Puyango-Tumbes River basin, Ecuador–Peru. Environ Sci Process Impacts 20:632–641

    CAS  Google Scholar 

  • Masbou J (2014). Etude des processus metaboliques, ecologiques et biogeochimiques controlant le fractionnement isotopique du Hg chez les mammiferes marins de l’Arctique. PhD dissertation, Université Toulouse Paul Sabatier, pp 275

  • Masbou J, Point D, Sonke JE (2013) Application of a selective extraction method for methylmercury compound specific stable isotope analysis (MeHg-CSIA) in biological materials. J Anal At Spectrom 28:1620

    CAS  Google Scholar 

  • Mason RP, Reinfelder JR, Morel FMM (1995) Bioaccumulation of mercury and methylmercury. Water Air Soil Pollut 80:915–921

    CAS  Google Scholar 

  • Maurice-Bourgoin L, Quiroga I, Guyot IL, Malm O (1999) Mercury pollution in the upper Beni River basin Bolivia. Ambio 28(4):302–306

    Google Scholar 

  • Maurice-Bourgoin L, Quiroga I, Chincheros J, Courau P (2000) Mercury distribution in waters and fishes of the upper Madeira rivers and mercury exposure in riparian Amazonian populations. Sci Total Environ 260:73–86

    CAS  Google Scholar 

  • Maury-Brachet R, Durrieu G, Dominique Y, Boudou A (2006) Mercury distribution in fish organs and food regimes: significant relationships from twelve species collected in French Guiana (Amazonian basin). Sci Total Environ 368:262–270

    Google Scholar 

  • Maury-Brachet R, Gentes S, Dassié EP, Feurtet-Mazel A, Vigouroux R, Laperche V, Gonzalez P, Hanquiez V, Mesmer-Dudons N, Durrieu G, Legeay A (2020) Mercury contamination levels in the bioindicator piscivorous fish Hoplias aïmara in French Guiana rivers: mapping for risk assessment. Environ Sci Pollut Res 27:3624–3636

    CAS  Google Scholar 

  • Meech JA, Veiga MM, Tromans D (1997) Emission and stability of mercury in the Amazon. Can Metall Q 36:231–239

    CAS  Google Scholar 

  • Mergler D, Anderson HA, Chan LHM, Mahaffey KR, Murray M, Sakamoto M, Stern AH (2007) Methylmercury exposure and health effects in humans: a worldwide concern. Ambio 36:3–11

    CAS  Google Scholar 

  • Monperrus M, Rodriguez-Gonzalez P, Amouroux D, J. Garcia Alonso I. and Donard O. F. X. (2008) Evaluating the potential and limitations of double-spiking species-specific isotope dilution analysis for the accurate quantification of mercury species in different environmental matrices. Anal Bioanal Chem 390(2):655–666

    CAS  Google Scholar 

  • Navarro P, Clémens S, Perrot V, Bolliet V, Tabouret H, Guérin T, Monperrus M, Amouroux D (2011) Simultaneous determination of mercury and butyltin species using a multiple species-specific isotope dilution methodology on the European, Anguilla anguilla glass eel and yellow eel. Int J Environ Anal Chem 93(2):166–182

    Google Scholar 

  • Neres-Lima V, Machado-Silva F, Baptista DF, Oliveira RBS, Andrade PM, Oliveira AF, Sasada-Sato CY, Silva-Junior EF, Feijó-Lima R, Angelini R, Camargo PB, Moulton TP (2017) Allochthonous and autochthonous carbon flows in food webs of tropical forest streams. Freshw Biol 62(6):1012–1023

    CAS  Google Scholar 

  • Obrist D, Agnan Y, Jiskra M, Olson CL, Colegrove DP, Hueber J, Moore CW, Sonke JE, Helmig D (2017) Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution. Nature. 547(7662):201–204

    CAS  Google Scholar 

  • Pacyna EG, Pacyna JM, Sundseth K, Munthe J, Kindbom K, Wilson S, Steenhuisen F, Maxson P (2010) Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020. Atmos Environ 44:2487–2499

    CAS  Google Scholar 

  • PAG, Suivi environnemental des impacts de l’orpaillage illégal. 2017 Bulletin n°5 5p.

  • Perrot V, Epov VN, Pastukhov MV, Grebenshchikova VI, Zouiten C, Sonke JE, Husted S, Donard OFX, Amouroux D (2010) Tracing sources and bioaccumulation of mercury in fish of Lake Baikal- Angara River using Hg isotopic composition. Environ Sci Technol 44:8030–8037

    CAS  Google Scholar 

  • Perrot V, Pastukhov MV, Epov VN, Husted S, Donard OFX, Amouroux D (2012) Higher mass-independent isotope fractionation of methylmercury in the pelagic food web of Lake Baikal (Russia). Environ Sci Technol 46:5902–5911

    CAS  Google Scholar 

  • Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Annu Rev Ecol Syst 18:293–320

    Google Scholar 

  • Planquette P, Keith P and Le Bail PY. (1996). Atlas des poissons d’eau douce de Guyane. Museum d’Histoire Naturelle. Paris

  • Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–718

    Google Scholar 

  • Post DM, Layman CA, Arrington DA, Takimoto G, Quattrochi J, Montana CG (2007) Getting to the fat of the matter: models, methods and assumption for dealing with lipids in stable isotope analyses. Oecologia. 152:179–189

    Google Scholar 

  • Rahm M, Thibault P, Shapiro A, Smartt T, Paloeng C, Crabbe S, Farias P, Carvalho R, Joubert P (2017). Monitoring the impact of gold mining on the forest cover and freshwater in the Guiana Shield. Reference year 2015. REDD+ for the Guiana Shield Project and WWF Guianas. Report pp.20

  • Rimbaud D, Restrepo M, Louison A, Boukhari R, Ardillon V, Carles G, Lambert V, Jolivet A (2017) Blood lead levels and risk factors for lead exposure among pregnant women in western French Guiana: the role of manioc consumption. J Toxic Environ Health A 80:382–393. https://doi.org/10.1080/15287394.2017.1331490

    Article  CAS  Google Scholar 

  • Roulet M. and Maury-Brachet R. (2001). Le mercure dans les organismes aquatiques amazoniens. In Le mercure en Amazonie. IRD Editions, Annexe 4. Le mercure dans les organismes aquatiques amazoniens

  • Roulet M, Lucotte M, Canuel R, Rheault I, Tran S, De Freitos Gog YG, Farella N, Souza do Vale R, Sousa Passos CJ, Jesus da Silva E, Mergler D, Amorim M (1998) Distribution and partition of mercury in waters of Tapajos. Sci Total Environ 213:203–2011

    CAS  Google Scholar 

  • Roulet M, Lucotte M, Guimarães JRD, Rheault I (2000) Methylmercury in water, seston, and epiphyton of an Amazonian river and its floodplain, Tapajos River. Brazil Sci Total Environ 261:43–59

    CAS  Google Scholar 

  • Roulet M, Guimaraes JRD, Lucotte M (2001) Methylmercury production and accumulation in sediments and soils of an Amazonian floodplain–effect of seasonal inundation. Water Air Soil Pollut 128:41–60

    CAS  Google Scholar 

  • Senn DB, Chesney EJ, Blum JD, Bank MS, Maage A, Shine JP (2010) Stable isotope (N, C, Hg) study of methylmercury sources and trophic transfer in the Northern Gulf of Mexico. Environ Sci Technol 44:1630–1637

    CAS  Google Scholar 

  • Smith RS, Wiederhold JG, Jew AD, Brown GE, Bourdon B, Kretzschmar R (2014) Small-scale studies of roasted ore waste reveal extreme ranges of stable mercury isotope signatures. Geochim Cosmochim Acta 137:1–17

    CAS  Google Scholar 

  • Sonke JE (2011) A global Hg isotope box-model for mass-independent Hg isotope fractionation. Geochim Cosmochim Acta 75:4577–4590

    CAS  Google Scholar 

  • Sonke JE, Blum JD (2013) Advances in mercury stable isotope biogeochemistry. Chem Geol 336:1–4

    CAS  Google Scholar 

  • Telmer K, Costa M, Simões AR, Araujo ES, Maurice Y (2006) The source and fate of sediment and mercury in the Tapajós River, Pará, Brazilian Amazon: ground- and space-based evidence. J Environ Manag 81:101–113

    CAS  Google Scholar 

  • Tsui MTK, Blum JD, Kwon SY, Finlay JC, Balogh SJ, Nollet YH (2012) Sources and transfers of methylmercury in adjacent river and forest food webs. Environ Sci Technol 46:10957–10964

    CAS  Google Scholar 

  • Tsui, M. T. K., Blum, J. D., Finlay, J. C., Balogh, S .J., Kwon, S. Y., Nollet, Y. H. (2013). Photodegradation of methylmercury in stream ecosystems. Limnol Oceanogr 58: 13–22.

  • Tsui MTK, Blum JD, Kwon SY (2020) Review of stable mercury isotopes in ecology and biogeochemistry. Sci Total Environ 716:135386

    CAS  Google Scholar 

  • US Environmental Protection Agency. (2012). https://www.epa.gov/fish-tech/epa-fda-fish-advice-technical-information

  • Vander Zanden J, Rasmussen JB (1996) A trophic position model of pelagic food webs: impact on contaminant bioaccumulation in lake trout. Ecol Monogr 66(4):451e477

    Google Scholar 

  • Velásquez-López, P. C. (2010). Mercury in artisanal and small scale gold mining: identifying strategies to reduce environmental contamination in Southern Ecuador. University of British Columbia. doi:10.14288/1.0071256

  • WHO. (1990). Environmental health criteria 101. http://www.inchem.org/documents/ehc/ehc/ehc101.htm, 02.12.2014

  • Yin R, Feng X, Hurley JP, Krabbenhoft DP, Lepak RF, Kang S, Yang H, Li X (2016) Historical records of mercury stable isotopes in sediments of Tibetan Lakes. Sci Rep 6:23332

    CAS  Google Scholar 

  • Zanden MJV, Rasmussen JB (2001) Variation in δ N and δ C trophic fractionation: implications for aquatic food web studies. Limnol Oceanogr 46(8): 2061–2066

Download references

Acknowledgements

All the analyses were performed in two laboratories of the Midi-Pyrénées Observatory (OMP-GET and ECOLAB) in France. We would like to thank both teams of the HYDRECO laboratory and the Parc Amazonien de Guyane (PAG) for their help during sampling campaigns and the sharing of material devices. We sincerely acknowledge the indigenous communities (Wayãpi and Teko) of the study villages, the doctors from local Health Centers for their kind cooperation during the field work, and the fishermen for sharing their knowledge of the territory. We also thank Marc Pouilly and Fabrice Duponchelle from the French Research Institute for the Development (IRD) for their helpful comments on Amazonian fish behavior and diet. J. Chmeleff is thanked for expert management of the OMP mass spectrometry division in the GET laboratory.

Funding

Open access funding was provided by the IRD (French Research Institute for Sustainable Development). This work was supported by the French National Research Agency (ANR-11-CESA-0013, RIMNES Program).

Author information

Authors and Affiliations

Authors

Contributions

LM was the coordinator of the RIMNES Research Program (funded by the French ANR). LM and RM-B designed the study dedicated to the ichthyologic part of the program. Formal analysis (THg, speciation, and Hg stable isotopes) and geochemical lab work were performed by LL, JM, and SGx under the supervision of JS. RR helped with logistics in French Guiana. Fish sampling was realized by RM-B, AL, and PG. Statistical analyses were performed by LL and SGx. Funds were acquired by LM and RR. The original draft was written by LL, SGx, JM, and LM and revised and edited by all authors.

Corresponding authors

Correspondence to Laure Laffont or Laurence Maurice.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(XLSX 29 kb)

ESM 2

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laffont, L., Menges, J., Goix, S. et al. Hg concentrations and stable isotope variations in tropical fish species of a gold-mining-impacted watershed in French Guiana. Environ Sci Pollut Res 28, 60609–60621 (2021). https://doi.org/10.1007/s11356-021-14858-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-14858-7

Keywords

Navigation