Skip to main content
Log in

Cytogenetic damage in native Baltic Sea fish species: environmental risks associated with chemical munition dumping in the Gotland Basin of the Baltic Sea

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This study represents the first attempt to assess genotoxicity and cytotoxicity effects in herring (Clupea harengus membras), flounder (Platichthys flesus), and cod (Gadus morhua callarias) caught at 47 study stations, located close to chemical munition dumpsites in the Gotland Basin, the Baltic Sea. Herring sampled from stations located in the center of chemical munition dumpsites exhibited the highest levels of micronuclei (MN) and total genotoxicity (ΣGentox), which is defined as the sum of frequencies of such nuclear abnormalities as micronuclei, nuclear buds, nuclear buds on the filament, and bi-nucleated erythrocytes with nucleoplasmic bridges. Exceptionally high and high ΣGentox risks were determined for flounder (89.47%), herring (79.31%), and cod (50%) caught at the stations located close to the chemical munition dumpsites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahvo A, Lehtonen KK, Lastumäki A, Straumer K, Kraugerud M, Feist SW, Lang T, Tørnes JA (2020) The use of Atlantic hagfish (Myxine glutinosa) as a bioindicator species for studies on effects of dumped chemical warfare agents in the Skagerrak. 2. Biochemical biomarkers. Mar Environ Res 162:105097. https://doi.org/10.1016/j.marenvres.2020.105097

    Article  CAS  Google Scholar 

  • Appel D, Strehse JS, Martin HJ, Maser E (2018) Bioaccumulation of 2,4,6-trinitrotoluene (TNT) and its metabolites leaking from corroded munition in transplanted blue mussels (M. edulis). Mar Pollut Bull 135:1072–1078. https://doi.org/10.1016/j.marpolbul.2018.08.028

    Article  CAS  Google Scholar 

  • Ariyarathna T, Ballentine M, Vlahos P, Smith RW, Cooper C, Böhlke JK, Fallis S, Groshens TJ, Tobias C (2019) Tracing the cycling and fate of the munition, hexahydro-1,3,5-trinitro-1,3,5-triazine in a simulated sandy coastal marine habitat with a stable isotopic tracer, 15N-[RDX]. Sci Total Environ 647:369–378. https://doi.org/10.1016/j.scitotenv.2018.07.404

    Article  CAS  Google Scholar 

  • Baršienė J, Lyons B, Rybakovas A, Martinez-Gomez C, Andreikėnaitė L, Brooks S, Maes T (2012a) Background document: micronucleus assay as a tool for assessing cytogenetic/DNA damage in marine organisms. In: Davies IM et al. (eds) Integrated marine environmental monitoring of chemicals and their effects. ICES Cooperative Research Report 315 pp. 71–83. http://www.marinespecies.org/imis.php?module=ref&refid=222299

  • Baršienė J, Rybakovas A, Lang T, Grygiel W, Andreikėnaitė L, Michailovas A (2012c) Risk of environmental genotoxicity in the Baltic Sea over the period of 2009–2011 assessed by micronuclei frequencies in blood erythrocytes of flounder (Platichthys flesus), herring (Clupea harengus) and eelpout (Zoarces viviparus). Mar Environ Res 77:35–42. https://doi.org/10.1016/j.marenvres.2012.01.004

    Article  CAS  Google Scholar 

  • Baršienė J, Butrimavičienė L, Grygiel W, Lang T, Michailovas A, Jackūnas T (2014) Environmental genotoxicity and cytotoxicity in flounder (Platichthys flesus), herring (Clupea harengus) and Atlantic cod (Gadus morhua) from chemical munitions dumping zones in the southern Baltic Sea. Mar Environ Res 96:56–67. https://doi.org/10.1016/j.marenvres.2013.08.012

    Article  CAS  Google Scholar 

  • Baršienė J, Butrimavičienė L, Grygiel W, Stunžėnas V, Valskienė R, Greiciūnaitė J, Stankevičiūtė M (2016) Environmental genotoxicity assessment along the transport routes of chemical munitions leading to the dumping areas in the Baltic Sea. Mar Pollut Bull 103:45–53. https://doi.org/10.1016/j.marpolbul.2015.12.048

    Article  CAS  Google Scholar 

  • Bears H, Richards JG, Schulte PM (2006) Arsenic exposure alters hepatic arsenic species composition and stress-mediated gene expression in the common killifish (Fundulus heteroclitus). Aquat Toxicol 77:257–266. https://doi.org/10.1016/j.aquatox.2005.12.008

    Article  CAS  Google Scholar 

  • Beck AJ, Gledhill M, Schlosser C, Stamer B, Böttcher C, Sternheim J, Greinert J, Achterberg EP (2018) Spread, behavior, and ecosystem consequences of conventional munitions compounds in coastal marine waters. Front Mar Sci 5:141. https://doi.org/10.3389/fmars.2018.00141

    Article  Google Scholar 

  • Bełdowski J, Szubska M, Emelyanov E, Garnaga G, Drzewińska A, Bełdowska M, Vanninen P, Östin A, Fabisiak J (2016) Arsenic concentrations in Baltic Sea sediments close to chemical munitions dumpsites. Deep Sea Res Part II Top Stud Oceanogr 128:114–122. https://doi.org/10.1016/j.dsr2.2015.03.001

    Article  CAS  Google Scholar 

  • Bełdowski J, Long T, Söderström M (2018) Introduction. In: Bełdowski J, Been R, Turmus E (eds) Towards the monitoring of dumped munitions threat (MODUM), NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht

  • Bełdowski J, Szubska M, Siedlewicz G, Korejwo E, Grabowski M, Bełdowska M, Kwasigroch U, Fabisiak J, Łońska E, Szala M, Pempkowiak J (2019) Sea-dumped ammunition as a possible source of mercury to the Baltic Sea sediments. Sci Total Environ 674:363–373. https://doi.org/10.1016/j.scitotenv.2019.04.058

    Article  CAS  Google Scholar 

  • CHEMSEA Findings (2014) Bełdowski J, Fabisiak J, Popiel S, Őstin A, Olsson U, Vanninen P, Latsumaki A, Lang T, Fricke N, Brenner M, Berglind R, Baršienė J et al., Gdańsk, Institute of Oceanology, Polish Academy of Sciences, 86 pp

  • Chmielińska K, Hubé D, Bausinger T, Simon M, Rivière G, Fauser P, Sanderson H (2019) Environmental contamination with persistent cyclic mustard gas impurities and transformation products. Global Security: Health, Science and Policy 4:14–23. https://doi.org/10.1080/23779497.2019.1699848

    Article  Google Scholar 

  • Cybulska K, Łońska E, Fabisiak J (2019) Bacterial benthic community composition in the Baltic Sea in selected chemical and conventional weapons dump sites affected by munition corrosion. Sci Total Environ 709:136112. https://doi.org/10.1016/j.scitotenv.2019.136112

    Article  CAS  Google Scholar 

  • Czub M, Kotwicki L, Lang T, Sanderson H, Klusek Z, Grabowski M, Szubska M, Jakacki J, Andrzejewski J, Rak D, Bełdowski J (2018) Deep sea habitats in the chemical warfare dumping areas of the Baltic. Sea Sci Total Environ 616–617:1485–1497. https://doi.org/10.1016/j.scitotenv.2017.10.165

    Article  CAS  Google Scholar 

  • Czub M, Nawała J, Popiel S, Dziedzic D, Brzeziński T, Maszczyk P, Sanderson H, Fabisiak J, Bełdowski J, Kotwicki L (2020) Acute aquatic toxicity of sulfur mustard and its degradation products to Daphnia magna. Mar Environ Res 161:105077. https://doi.org/10.1016/j.marenvres.2020.105077

    Article  CAS  Google Scholar 

  • Czub M, Nawała J, Popiel S, Brzeziński T, Maszczyk P, Sanderson H, Maser E, Gordon D, Dziedzic D, Dawidziuk B, Pijanowska J, Fabisiak J, Szubska M, Lang T, Vanninen P, Niemikoski H, Missiaen T, Lehtonen KK, Bełdowski J, Kotwicki L (2021) Acute aquatic toxicity of arsenic-based chemical warfare agents to Daphnia magna. Aquat Toxicol 230:105693. https://doi.org/10.1016/j.aquatox.2020.105693

    Article  CAS  Google Scholar 

  • Della Torre C, Petochi T, Corsi I, Dinardo MM, Baroni D, Alcaro L, Focardi S, Tursi A, Marino G, Frigeri A, Amato E (2010) DNA damage, severe organ lesions and high muscle levels of As and Hg in two benthic fish species from a chemical warfare agent dumping site in the Mediterranean Sea. Sci Total Environ 408:2136–2145. https://doi.org/10.1016/j.scitotenv.2010.01.001

    Article  CAS  Google Scholar 

  • Della Torre C, Petochi T, Farchi C, Corsi I, Dinardo MM, Sammarini V, Alcaro L, Mechelli L, Focardi S, Tursi A, Marino G, Amato E (2013) Environmental hazard of yperite released at sea: sublethal toxic effects on fish. J Hazard Mater 248–249:246–253. https://doi.org/10.1016/j.jhazmat.2013.01.003

    Article  CAS  Google Scholar 

  • Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science 321:926–929. https://doi.org/10.1126/science.1156401

    Article  CAS  Google Scholar 

  • Fenech M, Chang WP, Kirsch-Volders M, Holland N, Bonassi S, Zeiger E (2003) HUMN project: detailed description of the scoring criteria for the cytokinesis-block micronucleus assay using isolated human lymphocyte cultures. Mutat Res 534:65–75. https://doi.org/10.1016/s1383-5718(02)00249-8

    Article  CAS  Google Scholar 

  • Francken F, Hafez AM (2009) A case study in modeling dispersion of yperite and CLARK I and II from munitions at Paardenmarkt, Belgium. Mar Technol Soc J 43:52–61. https://doi.org/10.4031/MTSJ.43.4.3

    Article  Google Scholar 

  • Gledhill M, Beck AJ, Stamer B, Schlosser C, Achterberg EP (2019) Quantification of munition compounds in the marine environment by solid phase extraction – ultra high performance liquid chromatography with detection by electrospray ionisation – mass spectrometry. Talanta 200:366–372. https://doi.org/10.1016/j.talanta.2019.03.050

    Article  CAS  Google Scholar 

  • Graca B, Staniszewska M, Zakrzewska D, Zalewska T (2016) Reconstruction of the pollution history of alkylphenols (4-tert-octylphenol, 4-nonylphenol) in the Baltic Sea. Environ Sci Pollut Res 23:11598–11610. https://doi.org/10.1007/s11356-016-6262-8

    Article  CAS  Google Scholar 

  • HELCOM (2010) Hazardous substances in the Baltic Sea. An integrated thematic assessment of hazardous substances in the Baltic Sea. In: Baltic Sea Environmental Process Series, pp. 120B

  • HELCOM (2013) Chemical munitions dumped in the Baltic Sea. Report of the Ad Hoc Expert Group to Update and Review the Existing Information on Dumped Chemical Munitions in the Baltic Sea (HELCOM MUNI). Balt Sea Environ Proc 142:36–56

    Google Scholar 

  • HELCOM (2018) State of the Baltic Sea – Second HELCOM holistic assessment 2011-2016. Balt Sea Environ Proc 155

  • Höher N, Turja R, Brenner M, Rattfelt J, Anders A, Leffler P, Butrimavičienė L, Baršienė J, Halme M, Karjalainen M, Niemikoski H, Vanninen P, Broeg K, Lehtonen KK, Berglind R (2019) Toxic effects of chemical warfare agent mixtures on the mussel Mytilus trossulus in the Baltic Sea: a laboratory exposure study. Mar Environ Res 145:112–122. https://doi.org/10.1016/j.marenvres.2019.02.001

    Article  CAS  Google Scholar 

  • International Council for the Exploration of the Sea (ICES) (2000) The status of fisheries and related environment of northern seas. Nordic Council of Ministers. 166 pp.

  • Kinoshita K, Ochi T, Suzuki T, Kita K, Kaise T (2006) Glutathione plays a role in regulating the formation of toxic reactive intermediates from diphenylarsinic acid. Toxicology 225:142–149. https://doi.org/10.1016/j.tox.2006.05.010

    Article  CAS  Google Scholar 

  • Knobloch T, Bełdowski J, Böttcher C, Söderström M, Rühl NP, Sternheim J (2013) Chemical munitions dumped in the Baltic Sea. Report of the ad hoc Expert Group to Update and Review the Existing Information on Dumped Chemical Munitions in the Baltic Sea (HELCOM MUNI). Balt Sea Environ Proc. 129 pp.

  • Kopecka J, Lehtonen KK, Baršiene J, Broeg K, Vuorinen PJ, Gercken J, Pempkowiak J (2006) Measurements of biomarker levels in flounder (Platichthys flesus) and blue mussel (Mytilus trossulus) from the Gulf of Gdańsk (southern Baltic). Mar Pollut Bull 53:406–421. https://doi.org/10.1016/j.marpolbul.2006.03.008

    Article  CAS  Google Scholar 

  • Koske D, Goldenstein NI, Kammann U (2019) Nitroaromatic compounds damage the DNA of zebrafish embryos (Danio rerio). Aquat Toxicol 217:105345. https://doi.org/10.1016/j.aquatox.2019.105345

    Article  CAS  Google Scholar 

  • Koske D, Straumer K, Goldenstein NI, Hanel R, Lang T, Kammann U (2020) First evidence of explosives and their degradation products in dab (Limanda limanda L.) from a munition dumpsite in the Baltic Sea. Mar Environ Res 155:111131. https://doi.org/10.1016/j.marpolbul.2020.111131

    Article  CAS  Google Scholar 

  • Kotwicki L, Grzelak K, Bełdowski J (2016) Benthic communities in chemical munitions dumping site areas within the Baltic deeps with special focus on nematodes. Deep Sea Res Part II Top Stud Oceanogr 128:123–130. https://doi.org/10.1016/j.dsr2.2015.12.012

    Article  CAS  Google Scholar 

  • Kumagai Y, Sumi D (2006) Arsenic: signal transduction, transcription factor, and biotransformation involved in cellular response and toxicity. Annu Rev Pharmacol Toxicol 47:243–262. https://doi.org/10.1146/annurev.pharmtox.47.120505.105144

    Article  CAS  Google Scholar 

  • Lang T, Kotwicki L, Czub M, Grzelak K, Weirup L, Straumer K (2018) The health status of fish and benthos communities in chemical munitions dumpsites in the Baltic Sea. In: Bełdowski J, Been R, Turmus E (eds) Towards the Monitoring of Dumped Munitions Threat (MODUM). NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1153-9_6

  • Lastumäki A, Turja R, Brenner M, Vanninen P, Niemikoski H, Butrimavičienė L, Stankevičiūtė M, Lehtonen KK (2020) Biological effects of dumped chemical weapons in the Baltic Sea: a multi-biomarker study using caged mussels at the Bornholm main dumping site. Mar Environ Res 161:105036. https://doi.org/10.1016/j.marenvres.2020.105036

    Article  CAS  Google Scholar 

  • MERCW (2006) Modelling of ecological risks related to sea-dumped chemical weapons. MERCW project deliverable 2.1 – synthesis report of available data. ISBN 978-951-53-2971-4, prepared by Missaen T. et al., (2006): www.mercw.org.

  • Missiaen T, Söderström M, Popescu I, Vanninen P (2010) Evaluation of a chemical munition dumpsite in the Baltic Sea based on geophysical and chemical investigations. Sci Total Environ 408:3536–3553. https://doi.org/10.1016/j.scitotenv.2010.04.056

    Article  CAS  Google Scholar 

  • Nahrgang J, Camus L, Carls MG, Gonzalez P, Jonsson M, Taban IC, Bechmann RK, Christiansen JS, Hopf H (2010) Biomarker responses in polar cod (Boreogadus saida) exposed to the water-soluble fraction of crude oil. Aquat Toxicol 97:234–242. https://doi.org/10.1016/j.aquatox.2009.11.003

    Article  CAS  Google Scholar 

  • Nawała J, Czupryński K, Popiel S, Dziedzic D, Bełdowski J (2016) Development of the HS-SPME-GC-MS/MS method for analysis of chemical warfare agent and their degradation products in environmental samples. Anal Chim Acta 933:103–116. https://doi.org/10.1016/j.aca.2016.05.033

    Article  CAS  Google Scholar 

  • Nawała J, Szala M, Dziedzic D, Gordon D, Dawidziuk B, Fabisiak J, Popiel S (2020) Analysis of samples of explosives excavated from the Baltic Sea floor. Sci Total Environ 708:135198. https://doi.org/10.1016/j.scitotenv.2019.135198

    Article  CAS  Google Scholar 

  • Niemikoski H, Söderström M, Vanninen P (2017) Detection of chemical warfare agent-related phenylarsenic compounds in marine biota samples by LC-HESI/MS/MS. Anal Chem 89(20):11129–11134. https://doi.org/10.1021/acs.analchem.7b03429

    Article  CAS  Google Scholar 

  • Niemikoski H, Koske D, Kammann U, Lang T, Vanninen P (2020a) Studying the metabolism of toxic chemical warfare agent-related phenylarsenic chemicals in vitro in cod liver. J Hazard Mater 391:122221. https://doi.org/10.1016/j.jhazmat.2020.122221

    Article  CAS  Google Scholar 

  • Niemikoski H, Straumer K, Ahvo A, Turja R, Brenner M, Rautanen T, Lang T, Lehtonen KK, Vanninen P (2020b) Detection of chemical warfare agent related phenylarsenic compounds and multi-biomarker responses in cod (Gadus morhua) from munition dumpsites. Mar Environ Res. 105160. 162:105160. https://doi.org/10.1016/j.marenvres.2020.105160

  • Ochi T, Kaise T, Oya-Ohta Y (1994) Glutathione plays different roles in the induction of the cytotoxic effects of inorganic and organic arsenic compounds in cultured BALB/c 3T3 cells. Experientia. 50:115–120. https://doi.org/10.1007/BF01984946

    Article  CAS  Google Scholar 

  • Ochi T, Nakajima F, Sakurai T, Kaise T, Oya-Ohta Y (1996) Dimethylarsinic acid causes apoptosis in HL-60 cells via interaction with glutathione. Arch Toxicol 70:815–821. https://doi.org/10.1007/s002040050344

    Article  CAS  Google Scholar 

  • Ochi T, Nakajima F, Nasui M (1999) Distribution of gamma-tubulin in multipolar spindles and multinucleated cells of induced by dimethylarsinic acid, a methylated derivative of inorganic arsenics, in Chinese hamster V79 cells. Toxicology. 136:79–88. https://doi.org/10.1016/S0300-483X(99)00061-X

    Article  CAS  Google Scholar 

  • Ochi T, Suzuki T, Isono H, Schlagenhaufen C, Goessler W, Tsutsui T (2003) Induction of structural and numerical changes of chromosome, centrosome abnormality, multipolar spindles and multipolar division in cultured Chinese hamster V79 cells by exposure to a trivalent dimethylarsenic compound. Mutat Res 530:59–71. https://doi.org/10.1016/S0027-5107(03)00137-4

    Article  CAS  Google Scholar 

  • Ochi T, Suzuki T, Isono H, Kaise T (2004) In vitro cytotoxic and genotoxic effects of diphenylarsinic acid, a degradation product of chemical warfare agents. Toxicol Appl Pharmacol 200:64–72. https://doi.org/10.1016/j.taap.2004.03.014

    Article  CAS  Google Scholar 

  • Ochi T, Kinoshita K, Suzuki T, Miyazaki K, Noguchi A, Kaise T (2006) The role of glutathione on the cytotoxic effects and cellular uptake of diphenylarsinic acid, a degradation product of chemical warfare agents. Arch Toxicol 80:486–491. https://doi.org/10.1007/s00204-006-0067-3

    Article  CAS  Google Scholar 

  • Oya-Ohta Y, Kaise T, Ochi T (1996) Induction of chromosomal aberrations in cultured human fibroblasts by inorganic and organic arsenic compounds and the different roles of glutathione in such induction. Mutat Res 357:123–129. https://doi.org/10.1016/0027-5107(96)00092-9

    Article  Google Scholar 

  • Petrick JS, Ayala-Fierro F, Cullen WR, Carter DE, Vasken Aposhian H (2000) Monomethylarsonous acid (MMAIII) is more toxic than arsenite in Chang human hepatocytes. Toxicol Appl Pharmacol 163:203–207. https://doi.org/10.1006/taap.1999.8872

    Article  CAS  Google Scholar 

  • Pikkarainen AL (2004) Polycyclic aromatic hydrocarbons in Baltic Sea bivalves. Polycycl Aromat Compd 24:681–695. https://doi.org/10.1080/10406630490472310

    Article  CAS  Google Scholar 

  • Ricking M, Schulz HM (2002) PAH-profiles in sediment cores from the Baltic Sea. Mar Pollut Bull 44:565–570. https://doi.org/10.1016/S0025-326X(02)00062-0

    Article  CAS  Google Scholar 

  • Sanderson H, Fauser P (2015) Environmental assessments of sea dumped chemical warfare agents. Aarhus University, DCE – Danish Centre for Environment and Energy, 116 pp. Scientific Report from DCE – Danish Centre for Environment and Energy No. 174. http://dce2.au.dk/pub/SR174.pdf

  • Sanderson H, Fauser P, Thomsen M, Sorensen PB (2008) Screening level fish community risk assessment of chemical warfare agents in the Baltic Sea. J Hazard Mater 154:846–857. https://doi.org/10.1016/j.jhazmat.2007.10.117

    Article  CAS  Google Scholar 

  • Schiedek D, Broeg K, Baršiene J, Lehtonen KK, Gercken J, Pfeifer S, Vuontisjarvi H, Vuorinen PJ, Dedonyte V, Koehler A, Balk L, Schneider R (2006) Biomarker responses as indication of contaminant effects in blue mussel (Mytilus edulis) and female eelpout (Zoarces viviparus) from the southwestern Baltic Sea. Mar Pollut Bull 53:387–405. https://doi.org/10.1016/j.marpolbul.2005.11.013

    Article  CAS  Google Scholar 

  • Söderström M, Östin A, Qvarnström J, Magnusson R, Rattfelt-Nyholm J, Vaher M, Jõul P, Lees H, Kaljurand M, Szubska M, Vanninen P, Bełdowski J (2018) Chemical analysis of dumped chemical warfare agents during the MODUM project. In: Bełdowski J, Been R, Turmus E (eds) Towards the Monitoring of Dumped Munitions Threat (MODUM), NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht

  • Straumer K, Kraugerud M, Feist SW, Ahvo A, Lehtonen K, Lastumäki A, Ljønes M, Tørnes JA, Lang T (2020) The use of Atlantic hagfish (Myxine glutinosa) as a bioindicator species for studies on effects of dumped chemical warfare agents in the Skagerrak. 1: Liver histopathology. Mar Environ Res 161:105046. https://doi.org/10.1016/j.marenvres.2020.105046

    Article  CAS  Google Scholar 

  • Strehse JS, Appel D, Geist C, Martin HJ, Maser E (2017) Biomonitoring of 2,4,6-trinitrotoluene and degradation products in the marine environment with transplanted blue mussels (M. edulis). Toxicology. 390:117–123. https://doi.org/10.1016/j.tox.2017.09.004

    Article  CAS  Google Scholar 

  • Thomas DJ, Waters SB, Styblo M (2004) Elucidating the pathway for arsenic methylation. Toxicol Appl Pharmacol 198:319–326. https://doi.org/10.1016/j.taap.2003.10.020

    Article  CAS  Google Scholar 

  • Tørnes JA, Opstad AM, Johnsen BA (2006) Determination of organoarsenic warfare agents in sediment samples from Skagerrak by gas chromatography–mass spectrometry. Sci Total Environ 356:235–246. https://doi.org/10.1016/j.scitotenv.2005.03.031

    Article  CAS  Google Scholar 

  • Valskienė R, Baršienė J, Butrimavičienė L, Grygiel W, Stunžėnas V, Jokšas K, Stankevičiūtė M (2018) Environmental genotoxicity and cytotoxicity levels in herring (Clupea harengus), flounder (Platichthys flesus) and cod (Gadus morhua) inhabiting the Gdańsk Basin of the Baltic Sea. Mar Pollut Bull 133:65–76. https://doi.org/10.1016/j.marpolbul.2018.05.023

    Article  CAS  Google Scholar 

  • Valskienė R, Baršienė J, Butrimavičienė L, Pažusienė J, Grygiel W, Stankevičiūtė M, Rybakovas A (2019) Induction of nuclear abnormalities in herring (Clupea harengus membras), flounder (Platichthys flesus), and Atlantic cod (Gadus morhua) collected from the southern part of the Gotland Basin—the Baltic Sea (2010–2017). Environ Sci Pollut Res 26:13366–13380. https://doi.org/10.1007/s11356-019-04687-0

    Article  CAS  Google Scholar 

  • Vanninen P, Östin A, Bełdowski J, Pedersen EA, Söderström M, Szubska M, Grabowski M, Siedlewicz G, Czub M, Popiel S, Nawała J, Dziedzic D, Jakacki J, Pączek B (2020) Exposure status of sea-dumped chemical warfare agents in the Baltic Sea. Mar Environ Res 161:105112. https://doi.org/10.1016/j.marenvres.2020.105112

    Article  CAS  Google Scholar 

  • Vickerstaff V, Omar RZ, Ambler G (2019) Methods to adjust for multiple comparisons in the analysis and sample size calculation of randomised controlled trials with multiple primary outcomes. BMC Med Res Methodol 19:129. https://doi.org/10.1186/s12874-019-0754-4

    Article  Google Scholar 

  • Zalewska T, Woroń J, Danowska B, Suplińska M (2015) Temporal changes in Hg, Pb, Cd and Zn environmental concentrations in the southern Baltic Sea sediments dated with 210Pb method. Oceanologia 57:32–43. https://doi.org/10.1016/j.oceano.2014.06.003

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Thomas Lang (Thűnen Institute of Fisheries Ecology, Cuxhaven, Germany) and Dr. Aleksandras Rybakovas (Nature Research Centre, Vilnius, Lithuania) for collecting samples from stations B14 (May 2012) and BP3 (December 2003) during the RV “Walther Herwig III” cruises. We are thankful to Laima Monkienė for the English language editing.

Data and materials availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Author information

Authors and Affiliations

Authors

Contributions

Janina Pažusienė: Formal analysis, investigation, writing - original draft, writing – review and editing. Milda Stankevičiūtė: Writing - original draft, writing - review and editing, supervision. Włodzimierz Grygiel: Material preparation, data collection, writing - original draft. Roberta Valskienė: Formal analysis, writing - original draft. Laura Butrimavičienė: Formal analysis, writing - original draft. Janina Baršienė: Conceptualization, methodology, supervision

Corresponding author

Correspondence to Janina Pažusienė.

Ethics declarations

Ethics approval

All applicable international, national, and institutional guidelines for the care and use of animals were followed (Directive 2010/63/EU).

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• About 2000 tons of chemical weapons were dumped into the Gotland Basin.

• Exceptionally high genotoxicity risks were determined for fish caught close to the CWA dumpsite.

• The highest ΣGentox and MN frequencies were recorded in herring caught at the station located in the CWA dumping zone.

Supplementary Information

ESM 1

(DOCX 108 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pažusienė, J., Valskienė, R., Grygiel, W. et al. Cytogenetic damage in native Baltic Sea fish species: environmental risks associated with chemical munition dumping in the Gotland Basin of the Baltic Sea. Environ Sci Pollut Res 28, 62200–62215 (2021). https://doi.org/10.1007/s11356-021-14827-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-14827-0

Keywords

Navigation