Skip to main content
Log in

Succinic acid inhibits photosynthesis of Microcystis aeruginosa via damaging PSII oxygen-evolving complex and reaction center

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

To elucidate the mechanism of succinic acid (SA) inhibition of Microcystis aeruginosa, the chlorophyll fluorescence transients, photosynthesis, photosynthetic electron transport activity, and gene expression of M. aeruginosa were evaluated under various doses of SA. The results demonstrated that, after treatment with 60 mg L−1 SA for 1 h, the chlorophyll fluorescence transients and related parameters changed significantly, indicating that the function and structure of photosynthetic apparatuses of Microcystis were seriously damaged. The initial quantum efficiency α, maximum net photosynthetic rate Pnmax, dark respiration rate Rd, and gross photosynthetic rate decreased to 57%, 49%, 49%, and 46%, respectively, relative to the control. Furthermore, photosystem II (PSII) activity (H2O→p-BQ) and the electron transport activity of H2O→MV and DPC→MV significantly decreased. Real-time PCR analysis revealed that, following incubation with 60 mg L−1 SA for 24 h, the expression level of core protein genes (psbA, psaB, psbD, and psbO) of the photosynthesis centers photosystem I (PSI) and PSII decreased significantly. However, the transcription of gene nblA encoding phycobilisome degradation protein was elevated. The downregulation of the rbcL gene, which encodes the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), resulted in the suppression of CO2 fixation and assimilation. High concentration (60 mg L−1) of SA resulted in damage to oxygen-evolving complex (OEC) and reaction center of PSII, blocking photosynthetic electron transport, thereby lowering the rate photosynthesis and inhibiting the growth of Microcystis. We concluded that inhibition of photosynthesis is an important mechanism of SA inhibition in M. aeruginosa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  • Amorim CA, Moura AN (2020) Effects of the manipulation of submerged macrophytes, large zooplankton, and nutrients on a cyanobacterial bloom: a mesocosm study in a tropical shallow reservoir. Environ Pollut 265:114997

    Article  CAS  Google Scholar 

  • Canton MC, Holguin FO, Boeing WJ (2019) Alkaloid gramine to control algal invaders: algae inhibition and gramine persistence. Bioresource Technol Rep 7:100304

    Article  Google Scholar 

  • Che X, Ding R, Li Y, Zhang Z, Gao H, Wang W (2018) Mechanism of long-term toxicity of CuO NPs to microalgae. Nanotoxicology. 12:923–939

    Article  CAS  Google Scholar 

  • Chen Q, Zhu B, Sun D, Liu W, Sun X, Duan S (2020) The effect of protocatechuic acid on the phycosphere in harmful algal bloom species Scrippsiella trochoidea. Aquat Toxicol 227:105591

    Article  CAS  Google Scholar 

  • Cheng L, He Y, Tian Y, Liu B, Zhang Y, Zhou Q, Wu Z (2017) Comparative biotoxicity of N-phenyl-1-naphthylamine and N-phenyl-2-naphthylamine on cyanobacteria Microcystis aeruginosa. Chemosphere. 176:183–191

    Article  CAS  Google Scholar 

  • Dong J, Chang M, Li C, Dai D, Gao Y (2019) Allelopathic effects and potential active substances of Ceratophyllum demersum L. on Chlorella vulgaris Beij. Aquat Ecol 53:651–663

    Article  Google Scholar 

  • Gao YN, Ge FJ, Zhang LP, He Y, Lu ZY, Zhang YY, Liu BY, Zhou QH, Wu ZB (2017) Enhanced toxicity to the cyanobacterium Microcystis aeruginosa by low-dosage repeated exposure to the allelochemical N-phenyl-1-naphthylamine. Chemosphere. 174:732–738

    Article  CAS  Google Scholar 

  • Han M, Wang R, Ding N, Liu X, Zheng N, Fu B, Sun L, Gao P (2018) Reactive oxygen species-mediated caspase-3 pathway involved in cell apoptosis of Karenia mikimotoi induced by linoleic acid. Algal Res 36:48–56

    Article  Google Scholar 

  • Hou X, Huang J, Tang J, Wang N, Zhang L, Gu L, Sun Y, Yang Z, Huang Y (2019) Allelopathic inhibition of juglone (5-hydroxy-1,4-naphthoquinone) on the growth and physiological performance in Microcystis aeruginosa. J Environ Manag 232:382–386

    Article  CAS  Google Scholar 

  • Hua Q, Liu Y, Yan Z, Zeng G, Liu S, Wang W, Tan X, Deng J, Tang X, Wang Q (2018) Allelopathic effect of the rice straw aqueous extract on the growth of Microcystis aeruginosa. Ecotoxicol Environ Saf 148:953–959

    Article  CAS  Google Scholar 

  • Huang H, Xiao X, Ghadouani A, Wu J, Nie Z, Peng C, Xu X, Shi J (2015) Effects of natural flavonoids on photosynthetic activity and cell integrity in Microcystis aeruginosa. Toxins. 7:66–80

    Article  CAS  Google Scholar 

  • Kong W, Huang S, Liu X, Tang T (2018) Establishment and application of a non-destructive method for measurement of constructed wetlands plant. Chin J Environ Eng 12:356–364

    Google Scholar 

  • Li J, Hu J, Cao L, Yuan Y (2020a) Growth, physiological responses and microcystin-production/-release dynamics of Microcystis aeruginosa exposed to various luteolin doses. Ecotoxicol Environ Saf 196:110540

    Article  CAS  Google Scholar 

  • Li J, Liu Y, Zhang P, Zeng G, Cai X, Liu S, Yin Y, Hu X, Hu X, Tan X (2016) Growth inhibition and oxidative damage of Microcystis aeruginosa induced by crude extract of Sagittaria trifolia tubers. J Environ Sci 43:40–47

    Article  CAS  Google Scholar 

  • Li N, Tong M, Glibert PM (2020b) Effect of allelochemicals on photosynthetic and antioxidant defense system of Ulva prolifera. Aquat Toxicol 224:105513

    Article  CAS  Google Scholar 

  • Liu L, Zhang S, Dai W, Bi X, Zhang D (2019) Comparing effects of berberine on the growth and photosynthetic activities of Microcystis aeruginosa and Chlorella pyrenoidosa. Water Sci Technol 80:1155–1162

    Article  CAS  Google Scholar 

  • Liu R, Ran X, Bai F, Xu J, Yang S, Shi J, Wu Z (2015) Use of chlorophyll a fluorescence to elucidate the toxicity target of N-phenyl-2-naphthylamine on photosynthetic system of Cylindrospermopsis raciborskii (Cyanobacteria). Phycologia. 54:12–19

    Article  CAS  Google Scholar 

  • Lu Y, Wang J, Yu Y, Shi L, Kong F (2014) Changes in the physiology and gene expression of Microcystis aeruginosa under EGCG stress. Chemosphere. 117:164–169

    Article  CAS  Google Scholar 

  • Mao F, He Y, Gin KY (2020) Antioxidant responses in cyanobacterium Microcystis aeruginosa caused by two commonly used UV filters, benzophenone-1 and benzophenone-3, at environmentally relevant concentrations. J Hazard Mater 396:122587

    Article  CAS  Google Scholar 

  • Markou G, Depraetere O, Muylaert K (2016) Effect of ammonia on the photosynthetic activity of Arthrospira and Chlorella: a study on chlorophyll fluorescence and electron transport. Algal Res 16:449–457

    Article  Google Scholar 

  • Men Y, Hu H, Li F (2007) Effects of the novel allelochemical ethyl 2-methylacetoacetate from the reed (Phragmitis australis Trin) on the growth of several common species of green algae. J Appl Phycol 19:521–527

    Article  CAS  Google Scholar 

  • Ni L, Rong S, Gu G, Hu L, Wang P, Li D, Yue F, Wang N, Wu H, Li S (2018) Inhibitory effect and mechanism of linoleic acid sustained-release microspheres on Microcystis aeruginosa at different growth phases. Chemosphere. 212:654–661

    Article  CAS  Google Scholar 

  • Paunov M, Koleva L, Vassilev A, Vangronsveld J, Goltsev V (2018) Effects of different metals on photosynthesis: cadmium and zinc affect chlorophyll fluorescence in durum wheat. Int J Mol Sci 19:787–799

    Article  CAS  Google Scholar 

  • Qian H, Pan X, Shi S, Yu S, Jiang H, Lin Z, Fu Z (2011) Effect of nonylphenol on response of physiology and photosynthesis-related gene transcription of Chlorella vulgaris. Environ Monit Assess 182:61–69

    Article  CAS  Google Scholar 

  • Qian H, Xu J, Lu T, Zhang Q, Qu Q, Yang Z, Pan X (2018) Responses of unicellular alga Chlorella pyrenoidosa to allelochemical linoleic acid. Sci Total Environ 625:1415–1422

    Article  CAS  Google Scholar 

  • Qian Y, Li X, Tian R (2019) Effects of aqueous extracts from the rhizome of Pontederia cordata on the growth and interspecific competition of two algal species. Ecotoxicol Environ Saf 168:401–407

    Article  CAS  Google Scholar 

  • Rivas-Ubach A, Poret-Peterson AT, Peñuelas J, Sardans J, Pérez-Trujillo M, Legido-Quigley C, Oravec M, Urban O, Elser JJ (2018) Coping with iron limitation: a metabolomic study of Synechocystis sp. PCC 6803. Acta Physiol Plant 40:1–13

    Article  CAS  Google Scholar 

  • Shao J, Liu D, Gong D, Zeng Q, Yan Z, Gu J (2013) Inhibitory effects of sanguinarine against the cyanobacterium Microcystis aeruginosa NIES-843 and possible mechanisms of action. Aquat Toxicol 142-143:257–263

    Article  CAS  Google Scholar 

  • Shao J, Wu X, Li R (2009) Physiological responses of Microcystis aeruginosa PCC7806 to nonanoic acid stress. Environ Toxicol 24:610–617

    Article  CAS  Google Scholar 

  • Takahashi S, Badger MR (2011) Photoprotection in plants: a new light on photosystem II damage. Trends Plant Sci 16:53–60

    Article  CAS  Google Scholar 

  • Wang H, Kong H, Zhang L (2017) Determination of polyphenol content and antialgal activities of typical emergent plants. Saf Environ Eng 24:75–78

    Article  CAS  Google Scholar 

  • Wang J, Chen Z, Chen H, Wen Y (2018) Effect of hydrogen peroxide on Microcystic aeruginosa: role of cytochromes P450. Sci Total Environ 626:211–218

    Article  CAS  Google Scholar 

  • Wang J, Liu Q, Feng J, Lv J, Xie S (2016a) Effect of high-doses pyrogallol on oxidative damage, transcriptional responses and microcystins synthesis in Microcystis aeruginosa TY001 (Cyanobacteria). Ecotoxicol Environ Saf 134:273–279

    Article  CAS  Google Scholar 

  • Wang J, Liu Q, Feng J, Lv J, Xie S (2016b) Photosynthesis inhibition of pyrogallol against the bloom-forming cyanobacterium Microcystis aeruginosa TY001. Pol J Environ Stud 25:2601–2608

    Article  CAS  Google Scholar 

  • Wu X, Wu H, Wang S, Wang Y, Zhang R, Hu X, Ye J (2018) Effect of propionamide on the growth of Microcystis flos-aquae colonies and the underlying physiological mechanisms. Sci Total Environ 630:526–535

    Article  CAS  Google Scholar 

  • Xu L, Tian R (2019) Effects of succinic acid, an allelopathic substance of Pontederi cordata, on the growth and competition of Microcystis aeruginosa and Scenedesmus obliquus. Chin J Ecol 38:770–777

    Google Scholar 

  • Ye Z, Ling Y, Yu Q, Duan H, Kang H, Huang G, Duan S, Chen X, Liu Y, Zhou S (2020) Quantifying light response of leaf-scale water-use efficiency and its interrelationships with photosynthesis and stomatal conductance in C3 and C4 species. Front Plant Sci 11:374

    Article  Google Scholar 

  • Yuan R, Li Y, Li J, Ji S, Wang S, Kong F (2020) The allelopathic effects of aqueous extracts from Spartina alterniflora on controlling the Microcystis aeruginosa blooms. Sci Total Environ 712:136332

    Article  CAS  Google Scholar 

  • Zhang C, Ling F, Yi Y, Zhang H, Wang G (2014) Algicidal activity and potential mechanisms of ginkgolic acids isolated from Ginkgo biloba exocarp on Microcystis aeruginosa. J Appl Phycol 26:323–332

    Article  CAS  Google Scholar 

  • Zhao P, Liu S, Huang W, He L, Li J, Zhou J, Zhou J (2020a) Influence of eugenol on algal growth, cell physiology of cyanobacteria Microcystis aeruginosa and its interaction with signaling molecules. Chemosphere. 255:126935

    Article  CAS  Google Scholar 

  • Zhao P, Wang Y, Huang W, He L, Lin Z, Zhou J, He Q (2020b) Toxic effects of terpinolene on Microcystis aeruginosa: physiological, metabolism, gene transcription, and growth effects. Sci Total Environ 719:137376

    Article  CAS  Google Scholar 

  • Zhong X, Li Y, Che X, Zhang Z, Li Y, Liu B, Li Q, Gao H (2019) Significant inhibition of photosynthesis and respiration in leaves of Cucumis sativus L. by oxybenzone, an active ingredient in sunscreen. Chemosphere. 219:456–462

    Article  CAS  Google Scholar 

  • Zhu J, Liu B, Wang J, Gao Y, Wu Z (2010) Study on the mechanism of allelopathic influence on cyanobacteria and chlorophytes by submerged macrophyte (Myriophyllum spicatum) and its secretion. Aquat Toxicol 98:196–203

    Article  CAS  Google Scholar 

  • Zhu X, Dao G, Tao Y, Zhan X, Hu H (2021) A review on control of harmful algal blooms by plant-derived allelochemicals. J Hazard Mater 401:123403

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Grant No. 31670698). We also thank the LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

Funding

The work was supported by the National Natural Science Foundation of China (Grant No. 31670698).

Author information

Authors and Affiliations

Authors

Contributions

YDC and RNT conceived and designed the study; YDC, YZ, and CZ performed the experiments; YDC, YZ, and JPX contributed significantly to analysis and manuscript preparation. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ru-nan Tian.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Vitor Vasconcelos

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 50 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Yd., Zhu, Y., Xin, Jp. et al. Succinic acid inhibits photosynthesis of Microcystis aeruginosa via damaging PSII oxygen-evolving complex and reaction center. Environ Sci Pollut Res 28, 58470–58479 (2021). https://doi.org/10.1007/s11356-021-14811-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-14811-8

Keywords

Navigation