Skip to main content

Photocatalytic membranes: a new perspective for persistent organic pollutants removal

Abstract

The presence of conventional and emerging pollutants infiltrating into our water bodies is a course of concern as they have seriously threatened water security. Established techniques such as photocatalysis and membrane technology have proven to be promising in removing various persistent organic pollutants (POP) from wastewaters. The emergence of hybrid photocatalytic membrane which incorporates both photocatalysis and membrane technology has shown greater potential in treating POP laden wastewater based on their synergistic effects. This article provides an in-depth review on the roles of both photocatalysis and membrane technology in hybrid photocatalytic membranes for the treatment of POP containing wastewaters. A concise introduction on POP’s in terms of examples, their origins and their effect on a multitude of organisms are critically reviewed. The fundamentals of photocatalytic mechanism, current directions in photocatalyst design and their employment to treat POP’s are also discussed. Finally, the challenges and future direction in this field are presented.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Abdalla O, Wahab A, Abdala A (2020) Mixed matrix membranes containing aspartic acid functionalized graphene oxide for enhanced oil-water emulsion separation. Biochem Pharmacol:104269. https://doi.org/10.1016/j.jece.2020.104269

  2. Abdi J, Vossoughi M, Mahmoodi NM, Alemzadeh I (2017) Synthesis of metal-organic framework hybrid nanocomposites based on GO and CNT with high adsorption capacity for dye removal. Chem Eng J 326:1145–1158. https://doi.org/10.1016/j.cej.2017.06.054

    CAS  Article  Google Scholar 

  3. Abdullah N, Ayodele BV, Mansor WNW, Abdullah S (2018) Effect of incorporating TiO2 photocatalyst in PVDF hollow fibre membrane for photo-assisted degradation of methylene blue. Bull Chem React Eng &amp. Catal 13:588–591. https://doi.org/10.9767/bcrec.13.3.2909.588-591

    CAS  Article  Google Scholar 

  4. Aerts R, Van Overmeire I, Colles A et al (2019) Determinants of persistent organic pollutant (POP) concentrations in human breast milk of a cross-sectional sample of primiparous mothers in Belgium. Environ Int 131:104979. https://doi.org/10.1016/j.envint.2019.104979

    CAS  Article  Google Scholar 

  5. Ahmad I (2020) Comparative study of metal (Al, Mg, Ni, Cu and Ag) doped ZnO/g-C3N4 composites: efficient photocatalysts for the degradation of organic pollutants. Sep Purif Technol 251:117372. https://doi.org/10.1016/j.seppur.2020.117372

    CAS  Article  Google Scholar 

  6. Ahmad R, Lee CS, Kim JH, Kim J (2020) Partially coated TiO2 on Al2O3 membrane for high water flux and photodegradation by novel filtration strategy in photocatalytic membrane reactors. Chem Eng Res Des 163:138–148. https://doi.org/10.1016/j.cherd.2020.08.027

    CAS  Article  Google Scholar 

  7. Ahmed MA, El-Katori EE, Gharni ZH (2013) Photocatalytic degradation of methylene blue dye using Fe2O3/TiO2 nanoparticles prepared by sol–gel method. J Alloys Compd 553:19–29. https://doi.org/10.1016/j.jallcom.2012.10.038

    CAS  Article  Google Scholar 

  8. Ali Hassan F (2013) Analysis of Domestic Water Consumption in Malaysia

  9. Ang WL, Nordin D, Mohammad AW, Benamor A, Hilal N (2017) Effect of membrane performance including fouling on cost optimization in brackish water desalination process. Chem Eng Res Des 117:401–413. https://doi.org/10.1016/j.cherd.2016.10.041

    CAS  Article  Google Scholar 

  10. Ansari SA, Khan MM, Ansari MO, Cho MH (2016) Nitrogen-doped titanium dioxide (N-doped TiO2) for visible light photocatalysis. New J Chem 40:3000–3009. https://doi.org/10.1039/c5nj03478g

    CAS  Article  Google Scholar 

  11. Arahman N, Nursidik M et al (2015) The stability of poly(ether sulfone) membranes treated in hot water and hypochlorite solution. Procedia Chem 16:709–715. https://doi.org/10.1016/j.proche.2015.12.017

    CAS  Article  Google Scholar 

  12. Argurio P, Fontananova E, Molinari R, Drioli E (2018) Photocatalytic membranes in photocatalytic membrane reactors. Processes 6:162. https://doi.org/10.3390/pr6090162

    CAS  Article  Google Scholar 

  13. Arimi MM (2017) Modified natural zeolite as heterogeneous fenton catalyst in treatment of recalcitrants in industrial effluent. Prog Nat Sci Mater Int 27:275–282. https://doi.org/10.1016/j.pnsc.2017.02.001

    CAS  Article  Google Scholar 

  14. Ashouri M (2014) Water use efficiency, irrigation management and nitrogen utilization in rice production in the north of Iran. APCBEE Procedia 8:70–74. https://doi.org/10.1016/j.apcbee.2014.03.003

    Article  Google Scholar 

  15. Aydin E, Talinli I (2013) Analysis, occurrence and fate of commonly used pharmaceuticals and hormones in the Buyukcekmece Watershed, Turkey. Chemosphere 90:2004–2012. https://doi.org/10.1016/j.chemosphere.2012.10.074

    CAS  Article  Google Scholar 

  16. Ayode Otitoju T, Jiang D, Ouyang Y et al (2019) Photocatalytic degradation of rhodamine B using CaCu3Ti4O12 embedded polyethersulfone hollow fiber membrane. J Ind Eng Chem 83:2–9. https://doi.org/10.1016/j.jiec.2019.11.022

    CAS  Article  Google Scholar 

  17. Azrague K, Aimar P, Benoit-Marquié F, Maurette MT (2007) A new combination of a membrane and a photocatalytic reactor for the depollution of turbid water. Appl Catal B Environ 72:197–204. https://doi.org/10.1016/j.apcatb.2006.10.007

    CAS  Article  Google Scholar 

  18. Bacha AUR, Nabi I, Fu Z, Li K, Cheng H, Zhang L (2019) A comparative study of bismuth-based photocatalysts with titanium dioxide for perfluorooctanoic acid degradation. Chin Chem Lett 30:2225–2230. https://doi.org/10.1016/j.cclet.2019.07.058

    CAS  Article  Google Scholar 

  19. Bae T, Tak T (2005) Preparation of TiO2 self-assembled polymeric nanocomposite membranes and examination of their fouling mitigation effects in a membrane bioreactor system. J Membr Sci 266:1–5. https://doi.org/10.1016/j.memsci.2005.08.014

    CAS  Article  Google Scholar 

  20. Balabanič D, Hermosilla D, Merayo N, Klemenčič AK, Blanco Á (2012) Comparison of different wastewater treatments for removal of selected endocrine-disruptors from paper mill wastewaters. J Environ Sci Heal Part A 47:1350–1363. https://doi.org/10.1080/10934529.2012.672301

    CAS  Article  Google Scholar 

  21. Barndõk H, Peláez M, Han C, Platten WE III, Campo P, Hermosilla D, Blanco A, Dionysiou DD (2013) Photocatalytic degradation of contaminants of concern with composite NF-TiO2 films under visible and solar light. Environ Sci Pollut Res Int 20:3582–3591. https://doi.org/10.1007/s11356-013-1550-z

    CAS  Article  Google Scholar 

  22. Benhabiles O, Galiano F, Marino T, Mahmoudi H, Lounici H, Figoli A (2019) Preparation and characterization of TiO2-PVDF/PMMA blend membranes using an alternative non-toxic solvent for UF/MF and photocatalytic application. Molecules 24:1–20. https://doi.org/10.3390/molecules24040724

    CAS  Article  Google Scholar 

  23. Bensalah N, Chair K, Bedoui A (2017) Efficient degradation of tannic acid in water by UV/H2O2 process. Sustain Environ Res 28:1–11. https://doi.org/10.1016/j.serj.2017.04.004

    CAS  Article  Google Scholar 

  24. Berger TE, Regmi C, Schäfer AI, Richards BS (2020) Photocatalytic degradation of organic dye via atomic layer deposited TiO2 on ceramic membranes in single-pass flow-through operation. J Membr Sci 604:118015. https://doi.org/10.1016/j.memsci.2020.118015

    CAS  Article  Google Scholar 

  25. Berradi M, Hsissou R, Khudhair M, Assouag M, Cherkaoui O, el Bachiri A, el Harfi A (2019) Textile finishing dyes and their impact on aquatic environs. Heliyon 5:e02711. https://doi.org/10.1016/j.heliyon.2019.e02711

    Article  Google Scholar 

  26. Byrne C, Moran L, Hermosilla D, Merayo N, Blanco Á, Rhatigan S, Hinder S, Ganguly P, Nolan M, Pillai SC (2019) Effect of Cu doping on the anatase-to-rutile phase transition in TiO2 photocatalysts: theory and experiments. Appl Catal B Environ 246:266–276. https://doi.org/10.1016/j.apcatb.2019.01.058

    CAS  Article  Google Scholar 

  27. Byrne C, Rhatigan S, Hermosilla D, Merayo N, Blanco Á, Michel MC, Hinder S, Nolan M, Pillai SC (2020) Modification of TiO2 with hBN: high temperature anatase phase stabilisation and photocatalytic degradation of 1,4-dioxane. JPhys Mater 3. https://doi.org/10.1088/2515-7639/ab5a31

  28. Byrne C, Dervin S, Hermosilla D, Merayo N, Blanco Á, Hinder S, Harb M, Dionysiou DD, Pillai SC (2021) Solar light assisted photocatalytic degradation of 1,4-dioxane using high temperature stable anatase W-TiO2 nanocomposites. Catal Today:1–10. https://doi.org/10.1016/j.cattod.2021.02.001

  29. Campbell J, Davies RP, Braddock DC, Livingston AG (2015) Improving the permeance of hybrid polymer/metal-organic framework (MOF) membranes for organic solvent nanofiltration (OSN)-development of MOF thin films via interfacial synthesis. J Mater Chem A 3:9668–9674. https://doi.org/10.1039/c5ta01315a

    CAS  Article  Google Scholar 

  30. Cao XP, Li D, Jing WH, Xing WH, Fan YQ (2012) Synthesis of visible-light responsive C, N and Ce co-doped TiO2 mesoporous membranes via weak alkaline sol–gel process. J Mater Chem 22:15309. https://doi.org/10.1039/c2jm31576a

    CAS  Article  Google Scholar 

  31. Cederroth CR, Zimmermann C, Nef S (2012) Soy, phytoestrogens and their impact on reproductive health. Mol Cell Endocrinol 355:192–200. https://doi.org/10.1016/j.mce.2011.05.049

    CAS  Article  Google Scholar 

  32. Chaudhary M, Maiti A (2020) Fe–Al–Mn@chitosan based metal oxides blended cellulose acetate mixed matrix membrane for fluoride decontamination from water: removal mechanisms and antibacterial behavior. J Membr Sci 611:118372. https://doi.org/10.1016/j.memsci.2020.118372

    CAS  Article  Google Scholar 

  33. Chen S, Li F, Li T, Cao W (2019) Loading AgCl@Ag on phosphotungstic acid modified macrocyclic coordination compound: Z-scheme photocatalyst for persistent pollutant degradation and hydrogen evolution. J Colloid Interface Sci 547:50–59. https://doi.org/10.1016/j.jcis.2019.03.092

    CAS  Article  Google Scholar 

  34. Chen D, Cheng Y, Zhou N, Chen P, Wang Y, Li K, Huo S, Cheng P, Peng P, Zhang R, Wang L, Liu H, Liu Y, Ruan R (2020) Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: a review. J Clean Prod 268:121725. https://doi.org/10.1016/j.jclepro.2020.121725

    CAS  Article  Google Scholar 

  35. Choo G, Wang W, Cho HS, Kim K, Park K, Oh JE (2020) Legacy and emerging persistent organic pollutants in the freshwater system: Relative distribution, contamination trends, and bioaccumulation. Environ Int 135:105377. https://doi.org/10.1016/j.envint.2019.105377

    CAS  Article  Google Scholar 

  36. Cong S, Xu Y (2011) Explaining the high photocatalytic activity of a mixed phase Ti2: a combined effect of O2 and crystallinity. J Phys Chem C 115:21161–21168. https://doi.org/10.1021/jp2055206

    CAS  Article  Google Scholar 

  37. Darbre PD (2019) The history of endocrine-disrupting chemicals. Curr Opin Endocr Metab Res 7:26–33. https://doi.org/10.1016/j.coemr.2019.06.007

    Article  Google Scholar 

  38. Das A, Patra M, Kumar PM et al (2021) Role of type II heterojunction in ZnO–In2O3 nanodiscs for enhanced visible-light photocatalysis through the synergy of effective charge carrier separation and charge transport. Mater Chem Phys 263:124431. https://doi.org/10.1016/j.matchemphys.2021.124431

    CAS  Article  Google Scholar 

  39. Deepracha S, Atfane L, Ayral A, Ogawa M (2021) Simple and efficient method for functionalizing photocatalytic ceramic membranes and assessment of its applicability for wastewater treatment in up-scalable membrane reactors. Sep Purif Technol 118307:118307. https://doi.org/10.1016/j.seppur.2021.118307

    CAS  Article  Google Scholar 

  40. Di Paola A, Bellardita M, Palmisano L (2013) Brookite, the least known TiO2 photocatalyst. Catalysts 3:36–73. https://doi.org/10.3390/catal3010036

    CAS  Article  Google Scholar 

  41. Dzinun H, Othman MHD, Ismail AF, Puteh MH, Rahman MA, Jaafar J (2015) Morphological study of co-extruded dual-layer hollow fiber membranes incorporated with different TiO2 loadings. J Membr Sci 479:123–131. https://doi.org/10.1016/j.memsci.2014.12.052

    CAS  Article  Google Scholar 

  42. Dzinun H, Othman MHD, Ismail AF, Puteh MH, Rahman MA, Jaafar J (2016) Photocatalytic degradation of nonylphenol using co-extruded dual-layer hollow fibre membranes incorporated with a different ratio of TiO2/PVDF. React Funct Polym 99:80–87. https://doi.org/10.1016/j.reactfunctpolym.2015.12.011

    CAS  Article  Google Scholar 

  43. Dzinun H, Othman MHD, Ismail AF, Puteh MH, Rahman MA, Jaafar J (2017) Stability study of PVDF/TiO2 dual layer hollow fibre membranes under long-term UV irradiation exposure. J Water Process Eng 15:78–82. https://doi.org/10.1016/j.jwpe.2016.05.009

    Article  Google Scholar 

  44. Dzinun H, Othman MHD, Ismail AF (2019) Photocatalytic performance of TiO2/Clinoptilolite: comparison study in suspension and hybrid photocatalytic membrane reactor. Chemosphere 228:241–248. https://doi.org/10.1016/j.chemosphere.2019.04.118

    CAS  Article  Google Scholar 

  45. Etacheri V, Di Valentin C, Schneider J et al (2015) Visible-light activation of TiO2 photocatalysts: advances in theory and experiments. J Photochem Photobiol C: Photochem Rev 25:1–29. https://doi.org/10.1016/j.jphotochemrev.2015.08.003

    CAS  Article  Google Scholar 

  46. Ezugbe EO, Rathilal S (2020) Membrane technologies in wastewater treatment: a review. Membranes (Basel) 10. https://doi.org/10.3390/membranes10050089

  47. Fernández RL, McDonald JA, Khan SJ, Le-Clech P (2014) Removal of pharmaceuticals and endocrine disrupting chemicals by a submerged membrane photocatalysis reactor (MPR). Sep Purif Technol 127:131–139. https://doi.org/10.1016/j.seppur.2014.02.031

    CAS  Article  Google Scholar 

  48. Fitzgerald L, Wikoff DS (2014) Persistent organic pollutants. In: Wexler PBT-E of T (Third E (ed) Encyclopedia of Toxicology (Third Edition). Academic Press, Oxford, pp 820–825

  49. Fu CC, Hsiao YS, Ke JW, Syu WL, Liu TY, Liu SH, Juang RS (2020) Adsorptive removal of p-cresol and creatinine from simulated serum using porous polyethersulfone mixed-matrix membranes. Sep Purif Technol 245:116884. https://doi.org/10.1016/j.seppur.2020.116884

    CAS  Article  Google Scholar 

  50. Galiano F, Song X, Marino T, Boerrigter M, Saoncella O, Simone S, Faccini M, Chaumette C, Drioli E, Figoli A (2018) Novel photocatalytic PVDF/Nano-TiO2 hollow fibers for environmental remediation. Polymers (Basel) 10:1–20. https://doi.org/10.3390/polym10101134

    CAS  Article  Google Scholar 

  51. Galvão SAO, Mota ALN, Silva DN, Moraes JEF, Nascimento CAO, Chiavone-Filho O (2006) Application of the photo-Fenton process to the treatment of wastewaters contaminated with diesel. Sci Total Environ 367:42–49. https://doi.org/10.1016/j.scitotenv.2006.01.014

    CAS  Article  Google Scholar 

  52. Gita S, Hussan A, Choudhury TG (2017) Impact of textile dyes waste on aquatic environments and its treatment. Environ Ecol 35:2349–2353

    Google Scholar 

  53. Giwa A, Hasan SW (2020) Novel polyethersulfone-functionalized graphene oxide (PES-fGO) mixed matrix membranes for wastewater treatment. Sep Purif Technol 241:116735. https://doi.org/10.1016/j.seppur.2020.116735

    CAS  Article  Google Scholar 

  54. Gkotsis PK, Banti DC, Peleka EN, Zouboulis A, Samaras P (2014) Fouling issues in membrane bioreactors (MBRs) for wastewater treatment: major mechanisms, prevention and control strategies. Processes 2:795–866. https://doi.org/10.3390/pr2040795

    Article  Google Scholar 

  55. Goei R, Lim TT (2014) Ag-decorated TiO2 photocatalytic membrane with hierarchical architecture: Photocatalytic and anti-bacterial activities. Water Res 59:207–218. https://doi.org/10.1016/j.watres.2014.04.025

    CAS  Article  Google Scholar 

  56. Goktas S, Goktas A (2021) A comparative study on recent progress in efficient ZnO based nanocomposite and heterojunction photocatalysts: a review. J Alloys Compd:863. https://doi.org/10.1016/j.jallcom.2021.158734

  57. Golshenas A, Sadeghian Z, Ashrafizadeh SN (2020) Performance evaluation of a ceramic-based photocatalytic membrane reactor for treatment of oily wastewater. J Water Process Eng:36. https://doi.org/10.1016/j.jwpe.2020.101186

  58. Gomes J, Lincho J, Domingues E, Quinta-Ferreira R, Martins R (2019) N-TiO2 photocatalysts: a review of their characteristics and capacity for emerging contaminants removal. Water (Switzerland) 11. https://doi.org/10.3390/w11020373

  59. Goulart S, Jaramillo Nieves LJ, Dal Bó AG, Bernardin AM (2020) Sensitization of TiO2 nanoparticles with natural dyes extracts for photocatalytic activity under visible light. Dyes Pigments 182:108654. https://doi.org/10.1016/j.dyepig.2020.108654

    CAS  Article  Google Scholar 

  60. Grech Annalise (2012) Household water consumption in the Maltese islands: an analytical study

  61. Grilli R, Di Camillo D, Lozzi L et al (2015) Surface characterisation and photocatalytic performance of N-doped TiO2 thin films deposited onto 200 nm pore size alumina membranes by sol-gel methods. Mater Chem Phys 159:25–37. https://doi.org/10.1016/j.matchemphys.2015.03.044

    CAS  Article  Google Scholar 

  62. Hassan MM, Carr CM (2018) A critical review on recent advancements of the removal of reactive dyes from dyehouse effluent by ion-exchange adsorbents. Chemosphere 209:201–219. https://doi.org/10.1016/j.chemosphere.2018.06.043

    CAS  Article  Google Scholar 

  63. Horovitz I, Avisar D, Baker MA, Grilli R, Lozzi L, di Camillo D, Mamane H (2016) Carbamazepine degradation using a N-doped TiO2 coated photocatalytic membrane reactor: influence of physical parameters. J Hazard Mater 310:98–107. https://doi.org/10.1016/j.jhazmat.2016.02.008

    CAS  Article  Google Scholar 

  64. Ibhadon AO, Fitzpatrick P (2013) Heterogeneous photocatalysis: recent advances and applications. Catalysts 3:189–218. https://doi.org/10.3390/catal3010189

    CAS  Article  Google Scholar 

  65. Jiang L, Choo KH (2016) Photocatalytic mineralization of secondary effluent organic matter with mitigating fouling propensity in a submerged membrane photoreactor. Chem Eng J 288:798–805. https://doi.org/10.1016/j.cej.2015.12.060

    CAS  Article  Google Scholar 

  66. Jiang Q, Huang J, Ma B, Yang Z, Zhang T, Wang X (2020) Recyclable, hierarchical hollow photocatalyst TiO2@SiO2 composite microsphere realized by raspberry-like SiO2. Colloids Surfaces A Physicochem Eng Asp 602:125112. https://doi.org/10.1016/j.colsurfa.2020.125112

    CAS  Article  Google Scholar 

  67. Kamaludin R, Othman MHD, Kadir SHSA et al (2017) The morphological properties study of photocatalytic TiO2/PVDF dual layer hollow fiber membrane for endocrine disrupting compounds degradation. Malaysian J Anal Sci 21:426–434

    Article  Google Scholar 

  68. Kamaludin R, Mohamad Puad AS, Othman MHD, Kadir SHSA, Harun Z (2019) Incorporation of N-doped TiO2 into dual layer hollow fiber (DLHF) membrane for visible light-driven photocatalytic removal of reactive black 5. Polym Test 78:105939. https://doi.org/10.1016/j.polymertesting.2019.105939

    CAS  Article  Google Scholar 

  69. Kamaludin R, Rasdi Z, Othman MHD, Abdul Kadir SHS, Mohd Nor NS, Khan J, Wan Mohamad Zain WNI’, Ismail AF, A Rahman M, Jaafar J (2020) Visible-light active photocatalytic dual layer hollow fiber (DLHF) membrane and its potential in mitigating the detrimental effects of bisphenol A in water. Membranes (Basel) 10. https://doi.org/10.3390/membranes10020032

  70. Kang JX, Lu L, Zhan W, Li B, Li DS, Ren YZ, Liu DQ (2011) Photocatalytic pretreatment of oily wastewater from the restaurant by a vacuum ultraviolet/TiO2 system. J Hazard Mater 186:849–854. https://doi.org/10.1016/j.jhazmat.2010.11.075

    CAS  Article  Google Scholar 

  71. Kang X, Liu S, Dai Z, et al (2019) Titanium dioxide: From engineering to applications

  72. Katan E, Narkis M, Siegmann A (1998) The effect of some fluoropolymers’ structures on their response to UV irradiation. J Appl Polym Sci 70:1471–1481. https://doi.org/10.1002/(SICI)1097-4628(19981121)70:8<1471::AID-APP6>3.0.CO;2-A

    CAS  Article  Google Scholar 

  73. Kazemi M, Peyravi M, Jahanshahi M (2020) Multilayer UF membrane assisted by photocatalytic NZVI@TiO2 nanoparticle for removal and reduction of hexavalent chromium. J Water Process Eng 37:101183. https://doi.org/10.1016/j.jwpe.2020.101183

    Article  Google Scholar 

  74. Khan SJ, Hankins NP, Shen L-C (2016) Submerged and attached growth membrane bioreactors and forward osmosis membrane bioreactors for wastewater treatment. In: Hankins NP, Singh RBT-EMT for SWT (eds) Emerging Membrane Technology for Sustainable Water Treatment. Elsevier, Boston, pp 277–296

    Chapter  Google Scholar 

  75. Komaraiah D, Radha E, Kalarikkal N, Sivakumar J, Ramana Reddy MV, Sayanna R (2019) Structural, optical and photoluminescence studies of sol-gel synthesized pure and iron doped TiO2 photocatalysts. Ceram Int 45:25060–25068. https://doi.org/10.1016/j.ceramint.2019.03.170

    CAS  Article  Google Scholar 

  76. Krishnaswamy S, Panigrahi PSSK, Nagarajan GS (2020) Effect of conducting polymer on photoluminescence quenching of green synthesized ZnO thin film and its photocatalytic properties. Nano-Structures and Nano-Objects 22:100446. https://doi.org/10.1016/j.nanoso.2020.100446

    CAS  Article  Google Scholar 

  77. Lai GS, Lau WJ, Gray SR, Matsuura T, Gohari RJ, Subramanian MN, Lai SO, Ong CS, Ismail AF, Emazadah D, Ghanbari M (2016) A practical approach to synthesize polyamide thin film nanocomposite (TFN) membranes with improved separation properties for water/wastewater treatment. J Mater Chem A 4:4134–4144. https://doi.org/10.1039/c5ta09252c

    CAS  Article  Google Scholar 

  78. Landmann M, Rauls E, Schmidt WG (2012) The electronic structure and optical response of rutile, anatase and brookite TiO2. J Phys Condens Matter 24:195503. https://doi.org/10.1088/0953-8984/24/19/195503

    CAS  Article  Google Scholar 

  79. Laoufi N, Tassalit D, Bentahar F (2008) The degradation of phenol in water solution by TiO2 photocatalysis in a helical reactor. Glob NEST J 10:404–418

    Google Scholar 

  80. Lawrence J, Yamaguchi T (2008) The degradation mechanism of sulfonated poly(arylene ether sulfone)s in an oxidative environment. J Membr Sci 325:633–640. https://doi.org/10.1016/j.memsci.2008.08.027

    CAS  Article  Google Scholar 

  81. Lellis B, Fávaro-Polonio CZ, Pamphile JA, Polonio JC (2019) Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol Res Innov 3:275–290. https://doi.org/10.1016/j.biori.2019.09.001

    Article  Google Scholar 

  82. Leong S, Razmjou A, Wang K, Hapgood K, Zhang X, Wang H (2014) TiO2 based photocatalytic membranes: A review. J Membr Sci 472:167–184. https://doi.org/10.1016/j.memsci.2014.08.016

    CAS  Article  Google Scholar 

  83. Li B, Meng M, Cui Y, Wu Y, Zhang Y, Dong H, Zhu Z, Feng Y, Wu C (2019) Changing conventional blending photocatalytic membranes (BPMs): focus on improving photocatalytic performance of Fe3O4/g-C3N4/PVDF membranes through magnetically induced freezing casting method. Chem Eng J 365:405–414. https://doi.org/10.1016/j.cej.2019.02.042

    CAS  Article  Google Scholar 

  84. Li K, Zhong Y, Luo S, Deng W (2020a) Fabrication of powder and modular H3PW12O40/Ag3PO4 composites: novel visible-light photocatalysts for ultra-fast degradation of organic pollutants in water. Appl Catal B Environ 278:119313. https://doi.org/10.1016/j.apcatb.2020.119313

    CAS  Article  Google Scholar 

  85. Li YX, Li P, Wu YZ, Xu ZL, Huang ML (2020b) Preparation and antifouling performance of thin inorganic ultrafiltration membrane via assisted sol-gel method with different composition of dual additives. Ceram Int 47:2180–2186. https://doi.org/10.1016/j.ceramint.2020.09.056

    CAS  Article  Google Scholar 

  86. Lin C-P, Chen H, Nakaruk A, Koshy P, Sorrell CC (2013) Effect of annealing temperature on the photocatalytic activity of TiO2 thin films. Energy Procedia 34:627–636. https://doi.org/10.1016/j.egypro.2013.06.794

    CAS  Article  Google Scholar 

  87. Lisovski O, Piskunov S, Zhukovskii YF, Ozolins J (2012) Ab initio modeling of sulphur doped TiO2 nanotubular photocatalyst for water-splitting hydrogen generation. IOP Conf Ser Mater Sci Eng 38:012057. https://doi.org/10.1088/1757-899X/38/1/012057

    Article  Google Scholar 

  88. Liu S, Guo E, Yin L (2012) Tailored visible-light driven anatase TiO2 photocatalysts based on controllable metal ion doping and ordered mesoporous structure. J Mater Chem 22:5031. https://doi.org/10.1039/c2jm15965a

    CAS  Article  Google Scholar 

  89. Liu T, Wang L, Liu X, Sun C, Lv Y, Miao R, Wang X (2020a) Dynamic photocatalytic membrane coated with ZnIn2S4 for enhanced photocatalytic performance and antifouling property. Chem Eng J 379:122379. https://doi.org/10.1016/j.cej.2019.122379

    CAS  Article  Google Scholar 

  90. Liu Y, Xia P, Li L, Wang X, Meng J, Yang Y, Guo Y (2020b) In-situ route for the graphitized carbon/TiO2 composite photocatalysts with enhanced removal efficiency to emerging phenolic pollutants. Chin J Catal 41:1378–1392. https://doi.org/10.1016/S1872-2067(20)63565-3

    CAS  Article  Google Scholar 

  91. Lu W, Duan C, Liu C, Zhang Y, Meng X, Dai L, Wang W, Yu H, Ni Y (2020) A self-cleaning and photocatalytic cellulose-fiber- supported “Ag@AgCl@MOF- cloth” membrane for complex wastewater remediation. Carbohydr Polym 247:116691. https://doi.org/10.1016/j.carbpol.2020.116691

    CAS  Article  Google Scholar 

  92. Mahmoudi E, Ng LY, Ang WL, Chung YT, Rohani R, Mohammad AW (2019) Enhancing morphology and separation performance of polyamide 6,6 membranes by minimal incorporation of silver decorated graphene oxide nanoparticles. Sci Rep 9:1–16. https://doi.org/10.1038/s41598-018-38060-x

    CAS  Article  Google Scholar 

  93. Mohtor NH, Othman MHD, Bakar SA, Kurniawan TA, Dzinun H, Norddin MNAM, Rajis Z (2018) Synthesis of nanostructured titanium dioxide layer onto kaolin hollow fibre membrane via hydrothermal method for decolourisation of reactive black 5. Chemosphere 208:595–605. https://doi.org/10.1016/j.chemosphere.2018.05.159

    CAS  Article  Google Scholar 

  94. Molinari R, Pirillo F, Loddo V, Palmisano L (2006) Heterogeneous photocatalytic degradation of pharmaceuticals in water by using polycrystalline TiO2 and a nanofiltration membrane reactor. Catal Today 118:205–213. https://doi.org/10.1016/j.cattod.2005.11.091

    CAS  Article  Google Scholar 

  95. Moriai K, Nakajima N, Moriyoshi C, Maruyama H (2008) Synthesis of TiO2 nanotubes: effect of post- treatment on crystallinity and photocatalytic activity. Jpn J Appl Phys 47:751–775

    Article  Google Scholar 

  96. Morikawa T, Asahi R, Ohwaki T (2005) Visible-light photocatalyst-nitrogen-doped titanium dioxide. R&D Rev Toyota CRDL 40:45–50

    CAS  Google Scholar 

  97. Mozia S, Heciak A, Darowna D, Morawski AW (2012) A novel suspended/supported photoreactor design for photocatalytic decomposition of acetic acid with simultaneous production of useful hydrocarbons. J Photochem Photobiol A Chem 236:48–53. https://doi.org/10.1016/j.jphotochem.2012.03.017

    CAS  Article  Google Scholar 

  98. Mukherjee R, De S (2016) Preparation of polysulfone titanium dioxide mixed matrix hollow fiber membrane and elimination of long term fouling by in situ photoexcitation during filtration of phenolic compounds. Chem Eng J 302:773–785. https://doi.org/10.1016/j.cej.2016.05.060

    CAS  Article  Google Scholar 

  99. Muruganandham M, Swaminathan M (2006) Photocatalytic decolourisation and degradation of reactive orange 4 by TiO2-UV process. Dyes Pigments 68:133–142. https://doi.org/10.1016/j.dyepig.2005.01.004

    CAS  Article  Google Scholar 

  100. Mutharasi Y, Kaleekkal NJ, Arumugham T, Banat F, Kapavarapu MSRS (2020) Antifouling and photocatalytic properties of 2-D Zn/Al layered double hydroxide tailored low-pressure membranes. Chem Eng Process Process Intensif 158:108191. https://doi.org/10.1016/j.cep.2020.108191

    CAS  Article  Google Scholar 

  101. Nascimbén Santos É, László Z, Hodúr C, Arthanareeswaran G, Veréb G (2020) Photocatalytic membrane filtration and its advantages over conventional approaches in the treatment of oily wastewater: a review. Asia-Pacific J Chem Eng 15:1–29. https://doi.org/10.1002/apj.2533

    CAS  Article  Google Scholar 

  102. Nasrollahi N, Ghalamchi L, Vatanpour V, Khataee A (2021) Photocatalytic-membrane technology: a critical review for membrane fouling mitigation. J Ind Eng Chem 93:101–116. https://doi.org/10.1016/j.jiec.2020.09.031

    CAS  Article  Google Scholar 

  103. Ng KH, Lee CH, Khan MR, Cheng CK (2016) Photocatalytic degradation of recalcitrant POME waste by using silver doped titania: photokinetics and scavenging studies. Chem Eng J 286:282–290. https://doi.org/10.1016/j.cej.2015.10.072

    CAS  Article  Google Scholar 

  104. Ng LY, Ahmad A, Mohammad AW (2017) Alteration of polyethersulphone membranes through UV-induced modification using various materials: A brief review. Arab J Chem 10:S1821–S1834. https://doi.org/10.1016/j.arabjc.2013.07.009

    CAS  Article  Google Scholar 

  105. Nor NAM, Jaafar J, Ismail AF, Rahman MA, Othman MHD, Matsuura T, Aziz F, Yusof N, Salleh WNW, Subramaniam MN (2017) Effects of heat treatment of TiO2 nanofibers on the morphological structure of PVDF nanocomposite membrane under UV irradiation. J Water Process Eng 20:193–200. https://doi.org/10.1016/j.jwpe.2017.11.007

    Article  Google Scholar 

  106. Ong CS, Lau WJ, Goh PS, Ng BC, Ismail AF (2014) Investigation of submerged membrane photocatalytic reactor (sMPR) operating parameters during oily wastewater treatment process. Desalination 353:48–56. https://doi.org/10.1016/j.desal.2014.09.008

    CAS  Article  Google Scholar 

  107. Ong CS, Lau WJ, Goh PS, Ng BC, Ismail AF, Choo CM (2015) The impacts of various operating conditions on submerged membrane photocatalytic reactors (SMPR) for organic pollutant separation and degradation: a review. RSC Adv 5:97335–97348. https://doi.org/10.1039/C5RA17357D

    CAS  Article  Google Scholar 

  108. Ong CS, Lau WJ, Al-Anzi B, Ismail AF (2017) Photodegradation stability study of PVDF- and PEI-based membranes for oily wastewater treatment process. Membr Water Treat 8:211–223. https://doi.org/10.12989/mwt.2017.8.3.211

    Article  Google Scholar 

  109. Pal S, Kumar S, Verma A, Kumar A, Ludwig T, Frank M, Mathur S, Prakash R, Sinha I (2020) Development of magnetically recyclable visible light photocatalysts for hydrogen peroxide production. Mater Sci Semicond Process 112:105024. https://doi.org/10.1016/j.mssp.2020.105024

    CAS  Article  Google Scholar 

  110. Paredes L, Murgolo S, Dzinun H, Dzarfan Othman MH, Ismail AF, Carballa M, Mascolo G (2019) Application of immobilized TiO2 on PVDF dual layer hollow fibre membrane to improve the photocatalytic removal of pharmaceuticals in different water matrices. Appl Catal B Environ 240:9–18. https://doi.org/10.1016/j.apcatb.2018.08.067

    CAS  Article  Google Scholar 

  111. Park Y, Kim W, Park H, Tachikawa T, Majima T, Choi W (2009) Carbon-doped TiO2 photocatalyst synthesized without using an external carbon precursor and the visible light activity. Appl Catal B Environ 91:355–361. https://doi.org/10.1016/j.apcatb.2009.06.001

    CAS  Article  Google Scholar 

  112. Patchaiyappan A, Saran S, Devipriya SP (2016) Recovery and reuse of TiO2 photocatalyst from aqueous suspension using plant based coagulant - a green approach. Korean J Chem Eng 33:2107–2113. https://doi.org/10.1007/s11814-016-0059-9

    CAS  Article  Google Scholar 

  113. Peyravi M, Jahanshahi M, Mona Mirmousaei S, Lau WJ (2020) Dynamically coated photocatalytic zeolite–TiO2 membrane for oil-in-water emulsion separation. Arab J Sci Eng. https://doi.org/10.1007/s13369-019-04335-2

  114. Putri SA, Humairo FY, Ong CS et al (2015) PVDF/PEG/TiO2 hollow fiber membrane for lead ( II ) removal. 1st Int Semin. Sci Technol:61–62

  115. Qin Y, Li H, Lu J, Ding Y, Ma C, Liu X, Meng M, Yan Y (2020) Fabrication of Bi2WO6/In2O3 photocatalysts with efficient photocatalytic performance for the degradation of organic pollutants: insight into the role of oxygen vacancy and heterojunction. Adv Powder Technol 31:2890–2900. https://doi.org/10.1016/j.apt.2020.05.014

    CAS  Article  Google Scholar 

  116. Qiu H, Zhang R, Yu Y, Shen R, Gao H (2020) BiOI-on-SiO2 microspheres: a floating photocatalyst for degradation of diesel oil and dye wastewater. Sci Total Environ 706:136043. https://doi.org/10.1016/j.scitotenv.2019.136043

    CAS  Article  Google Scholar 

  117. Quiroz MA, Bandala ER, Martínez-huitle CA (2011) Advanced oxidation processes (AOPs) for removal of pesticides from aqueous media. Pestic - Formul Eff Fate:686–727. https://doi.org/10.5772/13597

  118. Rafatullah M, Sulaiman O, Hashim R, Ahmad A (2010) Adsorption of methylene blue on low-cost adsorbents: a review. J Hazard Mater 177:70–80. https://doi.org/10.1016/j.jhazmat.2009.12.047

    CAS  Article  Google Scholar 

  119. Raha S, Ahmaruzzaman M (2020) Enhanced performance of a novel superparamagnetic g-C3N4/NiO/ZnO/Fe3O4 nanohybrid photocatalyst for removal of esomeprazole: Effects of reaction parameters , co-existing substances and water matrices. Chem Eng J 395:124969. https://doi.org/10.1016/j.cej.2020.124969

    CAS  Article  Google Scholar 

  120. Rahimpour A, Madaeni SS, Taheri AH, Mansourpanah Y (2008) Coupling TiO2 nanoparticles with UV irradiation for modification of polyethersulfone ultrafiltration membranes. J Membr Sci 313:158–169. https://doi.org/10.1016/j.memsci.2007.12.075

    CAS  Article  Google Scholar 

  121. Rajeswari A, Vismaiya S, Pius A (2017) Preparation, characterization of nano ZnO-blended cellulose acetate-polyurethane membrane for photocatalytic degradation of dyes from water. Chem Eng J 313:928–937. https://doi.org/10.1016/j.cej.2016.10.124

    CAS  Article  Google Scholar 

  122. Ramezani Darabi R, Jahanshahi M, Peyravi M (2018) A support assisted by photocatalytic Fe3O4/ZnO nanocomposite for thin-film forward osmosis membrane. Chem Eng Res Des 133:11–25. https://doi.org/10.1016/j.cherd.2018.02.029

    CAS  Article  Google Scholar 

  123. Rawindran H, Lim J-W, Goh P-S, Subramaniam MN, Ismail AF, Radi bin Nik M Daud NM, Rezaei-Dasht Arzhandi M (2019) Simultaneous separation and degradation of surfactants laden in produced water using PVDF/TiO2 photocatalytic membrane. J Clean Prod 221:490–501. https://doi.org/10.1016/j.jclepro.2019.02.230

    CAS  Article  Google Scholar 

  124. Raza W, Haque MM, Muneer M, Bahnemann D (2015) Synthesis of visible light driven TiO2 coated carbon nanospheres for degradation of dyes. Arab J Chem 12:3534–3545. https://doi.org/10.1016/j.arabjc.2015.09.002

    CAS  Article  Google Scholar 

  125. Ribeiro E, Ladeira C, Viegas S (2017) EDCs mixtures: a stealthy hazard for human health? Toxics 5:1–17. https://doi.org/10.3390/toxics5010005

    CAS  Article  Google Scholar 

  126. Rivero MJ, Ribao P, Gomez-ruiz B et al (2020) Comparative performance of TiO2-rGO photocatalyst in the degradation of dichloroacetic and perfluorooctanoic acids. Sep Purif Technol 240:116637. https://doi.org/10.1016/j.seppur.2020.116637

    CAS  Article  Google Scholar 

  127. Rosman N, Norharyati Wan Salleh W, Aqilah Mohd Razali N, Nurain Ahmad SZ, Hafiza Ismail N, Aziz F, Harun Z, Fauzi Ismail A, Yusof N (2020) Ibuprofen removal through photocatalytic filtration using antifouling PVDF- ZnO/Ag2CO3/Ag2O nanocomposite membrane. Mater Today Proc 42:2–7. https://doi.org/10.1016/j.matpr.2020.09.476

    CAS  Article  Google Scholar 

  128. Sakarkar S, Muthukumran S, Jegatheesan V (2020) Factors affecting the degradation of remazol turquoise blue (RTB) dye by titanium dioxide (TiO2) entrapped photocatalytic membrane. 272:

  129. Shan Y, Yang L, Perren K, Zhang Y (2015) Household water consumption: Insight from a survey in Greece and Poland. Procedia Eng 119:1409–1418. https://doi.org/10.1016/j.proeng.2015.08.1001

    Article  Google Scholar 

  130. Sharma SD, Singh D, Saini KK, Kant C, Sharma V, Jain SC, Sharma CP (2006) Sol-gel-derived super-hydrophilic nickel doped TiO2 film as active photo-catalyst. Appl Catal A Gen 314:40–46. https://doi.org/10.1016/j.apcata.2006.07.029

    CAS  Article  Google Scholar 

  131. Shen X, Chi Y, Xiong K (2019) The effect of heavy metal contamination on humans and animals in the vicinity of a zinc smelting facility. PLoS One 14:1–15. https://doi.org/10.1371/journal.pone.0207423

    CAS  Article  Google Scholar 

  132. Shi W, Yang W, Li Q, Gao S, Shang P, Shang J (2012) The synthesis of nitrogen/sulfur co-doped TiO2 nanocrystals with a high specific surface area and a high percentage of {001} facets and their enhanced visible-light photocatalytic performance. Nanoscale Res Lett 7:590. https://doi.org/10.1186/1556-276X-7-590

    CAS  Article  Google Scholar 

  133. Shi H, Liu F, Xue L (2013) Fabrication and characterization of antibacterial PVDF hollow fibre membrane by doping Ag-loaded zeolites. J Membr Sci 437:205–215. https://doi.org/10.1016/j.memsci.2013.03.009

    CAS  Article  Google Scholar 

  134. Si Y, Chen Y, Fu Y, Zhang X, Zuo F, Zhang T, Yan Q (2020) Hierarchical self-assembly of graphene-bridged on AgIO3/BiVO4: an efficient heterogeneous photocatalyst with enhanced photodegradation of organic pollutant under visible light. J Alloys Compd 831:154820. https://doi.org/10.1016/j.jallcom.2020.154820

    CAS  Article  Google Scholar 

  135. Siddiqa A, Masih D, Anjum D, Siddiq M (2015) Cobalt and sulfur co-doped nano-size TiO2 for photodegradation of various dyes and phenol. J Environ Sci (China) 37:100–109. https://doi.org/10.1016/j.jes.2015.04.024

    CAS  Article  Google Scholar 

  136. Starr BJ, Tarabara VV, Zhou M et al (2016) Coating porous membranes with a photocatalyst: comparison of LbL self-assembly and plasma-enhanced CVD techniques. J Membr Sci 514:340–349. https://doi.org/10.1016/j.memsci.2016.04.050

    CAS  Article  Google Scholar 

  137. Subramaniam MN, Goh PS, Lau WJ, Ng BC, Ismail AF (2018) AT-POME colour removal through photocatalytic submerged filtration using antifouling PVDF-TNT nanocomposite membrane. Sep Purif Technol 191:266–275. https://doi.org/10.1016/j.seppur.2017.09.042

    CAS  Article  Google Scholar 

  138. Sun B, Li Q, Zheng M, Su G, Lin S, Wu M, Li C, Wang Q, Tao Y, Dai L, Qin Y, Meng B (2020a) Recent advances in the removal of persistent organic pollutants (POPs) using multifunctional materials: a review. Environ Pollut 265:114908. https://doi.org/10.1016/j.envpol.2020.114908

    CAS  Article  Google Scholar 

  139. Sun T, Liu Y, Shen L, Xu Y, Li R, Huang L, Lin H (2020b) Magnetic field assisted arrangement of photocatalytic TiO2 particles on membrane surface to enhance membrane antifouling performance for water treatment. J Colloid Interface Sci 570:273–285. https://doi.org/10.1016/j.jcis.2020.03.008

    CAS  Article  Google Scholar 

  140. Syahida N, Anan M, Jaafar J et al (2019) Titanium dioxide incorporated thin film composite membrane for bisphenol A removal. Malaysian J Fundam Appl Sci 15:755–760

    Google Scholar 

  141. Tang J, Chen Y, Dong Z (2019) Effect of crystalline structure on terbuthylazine degradation by H2O2 assisted TiO2 photocatalysis under visible irradiation. J Environ Sci (China) 79:153–160. https://doi.org/10.1016/j.jes.2018.11.020

    Article  Google Scholar 

  142. Tavker N, Sharma M (2020) Fruit rinds extracted cellulose and its utility in fabricating visible light tin sulfide photocatalyst for the treatment of dye, pharmaceutical and textile effluents. J Clean Prod 271:122510. https://doi.org/10.1016/j.jclepro.2020.122510

    CAS  Article  Google Scholar 

  143. Teng H (2012) Overview of the development of the fluoropolymer industry. Appl Sci 2:496–512. https://doi.org/10.3390/app2020496

    Article  Google Scholar 

  144. Thuyavan YL, Arthanareeswaran G, Ismail AF et al (2020) Treatment of synthetic textile dye effluent using hybrid adsorptive ultrafiltration mixed matrix membranes. Chem Eng Res Des 159:92–104. https://doi.org/10.1016/j.cherd.2020.04.005

    CAS  Article  Google Scholar 

  145. Titchou FE, Zazou H, Afanga H, el Gaayda J, Akbour RA, Hamdani M (2021) Removal of persistent organic pollutants (POPs) from water and wastewater by adsorption and electrocoagulation process. Groundw Sustain Dev 13:100575. https://doi.org/10.1016/j.gsd.2021.100575

    Article  Google Scholar 

  146. Tran DT, Mendret J, Méricq JP, Faur C, Brosillon S (2020) Study of permeate flux behavior during photo-filtration using photocatalytic composite membranes. Chem Eng Process Process Intensif 148:107781. https://doi.org/10.1016/j.cep.2019.107781

    CAS  Article  Google Scholar 

  147. Tu W, Zhou Y, Zou Z (2014) Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: State-of-the-art accomplishment, challenges, and prospects. Adv Mater 26:4607–4626. https://doi.org/10.1002/adma.201400087

    CAS  Article  Google Scholar 

  148. Uthirakumar P, Devendiran M, Kuznetsov AY, Kim GC, Lee IH (2020) Efficient, recyclable, and affordable daylight induced Cu/Cu2O/CuI photocatalyst via an inexpensive iodine sublimation process. Appl Surf Sci 537:147007. https://doi.org/10.1016/j.apsusc.2020.147007

    CAS  Article  Google Scholar 

  149. Vargas X, Tauchert E, Marin JM, Restrepo G, Dillert R, Bahnemann D (2012) Fe-doped titanium dioxide synthesized: Photocatalytic activity and mineralization study for azo dye. J Photochem Photobiol A Chem 243:17–22. https://doi.org/10.1016/j.jphotochem.2012.06.001

    CAS  Article  Google Scholar 

  150. Verma AK, Dash RR, Bhunia P (2012) A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. J Environ Manag 93:154–168. https://doi.org/10.1016/j.jenvman.2011.09.012

    CAS  Article  Google Scholar 

  151. Waheed A, Baig N, Ullah N, Falath W (2021) Removal of hazardous dyes, toxic metal ions and organic pollutants from wastewater by using porous hyper-cross-linked polymeric materials: a review of recent advances. J Environ Manag 287:112360. https://doi.org/10.1016/j.jenvman.2021.112360

    CAS  Article  Google Scholar 

  152. Wang M, Yang G, Jin P, Tang H, Wang H, Chen Y (2016) Highly hydrophilic poly(vinylidene fluoride)/meso-titania hybrid mesoporous membrane for photocatalytic membrane reactor in water. Sci Rep 6:1–10. https://doi.org/10.1038/srep19148

    CAS  Article  Google Scholar 

  153. Wang S, Tian J, Wang Q, Xiao F, Gao S, Shi W, Cui F (2019) Development of CuO coated ceramic hollow fiber membrane for peroxymonosulfate activation: a highly efficient singlet oxygen-dominated oxidation process for bisphenol a degradation. Appl Catal B Environ 256:117783. https://doi.org/10.1016/j.apcatb.2019.117783

    CAS  Article  Google Scholar 

  154. Weber R, Watson A, Forter M, Oliaei F (2011) Review article: persistent organic pollutants and landfills - a review of past experiences and future challenges. Waste Manag Res 29:107–121. https://doi.org/10.1177/0734242X10390730

    CAS  Article  Google Scholar 

  155. Windsor FM, Ormerod SJ, Tyler CR (2018) Endocrine disruption in aquatic systems: Up-scaling research to address ecological consequences. Biol Rev 93:626–641. https://doi.org/10.1111/brv.12360

    Article  Google Scholar 

  156. Wu H, Inaba T, Wang ZM, Endo T (2020) Photocatalytic TiO2@CS-embedded cellulose nanofiber mixed matrix membrane. Appl Catal B Environ 276:119111. https://doi.org/10.1016/j.apcatb.2020.119111

    CAS  Article  Google Scholar 

  157. Xia QC, Liu ML, Cao XL, Wang Y, Xing W, Sun SP (2018) Structure design and applications of dual-layer polymeric membranes. J Membr Sci 562:85–111. https://doi.org/10.1016/j.memsci.2018.05.033

    CAS  Article  Google Scholar 

  158. Xiao S, Huo X, Fan S, Zhao K, Yu S, Tan X (2020) Design and synthesis of Al-MOF/PPSU mixed matrix membrane with pollution resistance. Chin J Chem Eng 29:110–120. https://doi.org/10.1016/j.cjche.2020.05.030

    Article  Google Scholar 

  159. Yaacob N, Goh PS, Ismail AF, Mohd Nazri NA, Ng BC, Zainal Abidin MN, Yogarathinam LT (2020) ZrO2–TiO2 incorporated PVDF dual-layer hollow fiber membrane for oily wastewater treatment: effect of air gap. Membranes (Basel) 10:1–18. https://doi.org/10.3390/membranes10060124

    CAS  Article  Google Scholar 

  160. Yamashita H, Nakao H, Takeuchi M, Nakatani Y, Anpo M (2003) Coating of TiO2 photocatalysts on super-hydrophobic porous teflon membrane by an ion assisted deposition method and their self-cleaning performance. Nucl Inst Methods Phys Res B 206:898–901. https://doi.org/10.1016/S0168-583X(03)00895-4

    CAS  Article  Google Scholar 

  161. Yang Z, Peng H, Wang W, Liu T (2010) PVDF–TiO2 composite hollow fiber ultrafiltration membranes prepared by TiO2-sol-gel method and blending method. J Appl Polym Sci 116:2658–2667. https://doi.org/10.1002/app

    CAS  Article  Google Scholar 

  162. Ylhäinen EK, Nunes MR, Silvestre AJ, Monteiro OC (2012) Synthesis of titanate nanostructures using amorphous precursor material and their adsorption/photocatalytic properties. J Mater Sci 47:4305–4312. https://doi.org/10.1007/s10853-012-6281-x

    CAS  Article  Google Scholar 

  163. You SJ, Semblante GU, Lu SC, Damodar RA, Wei TC (2012) Evaluation of the antifouling and photocatalytic properties of poly(vinylidene fluoride) plasma-grafted poly(acrylic acid) membrane with self-assembled TiO2. J Hazard Mater 237–238:10–19. https://doi.org/10.1016/j.jhazmat.2012.07.071

    CAS  Article  Google Scholar 

  164. Yousif E, Haddad R (2013) Photodegradation and photostabilization of polymers, especially polystyrene: review. Springerplus 2:1–32. https://doi.org/10.1186/2193-1801-2-398

    CAS  Article  Google Scholar 

  165. Youssef Z, Colombeau L, Yesmurzayeva N, Baros F, Vanderesse R, Hamieh T, Toufaily J, Frochot C, Roques-Carmes T, Acherar S (2018) Dye-sensitized nanoparticles for heterogeneous photocatalysis: Cases studies with TiO2, ZnO, fullerene and graphene for water purification. Dyes Pigments 159:49–71. https://doi.org/10.1016/j.dyepig.2018.06.002

    CAS  Article  Google Scholar 

  166. Yu L, Han M, He F (2017) A review of treating oily wastewater. Arab J Chem 10:S1913–S1922. https://doi.org/10.1016/j.arabjc.2013.07.020

    CAS  Article  Google Scholar 

  167. Yu Y, Zhu X, Wang L, Wu F, Liu S, Chang C, Luo X (2019) A simple strategy to design 3-layered Au-TiO2 dual nanoparticles immobilized cellulose membranes with enhanced photocatalytic activity. Carbohydr Polym 231:115694. https://doi.org/10.1016/j.carbpol.2019.115694

    CAS  Article  Google Scholar 

  168. Zhang M, Liu Z, Gao Y, Shu L (2017) Ag modified g-C3N4 composite entrapped PES UF membrane with visible-light-driven photocatalytic antifouling performance. RSC Adv 7:42919–42928. https://doi.org/10.1039/c7ra07775k

    CAS  Article  Google Scholar 

  169. Zhang R, Cai Y, Zhu X, Han Q, Zhang T, Liu Y, Li Y, Wang A (2019) A novel photocatalytic membrane decorated with PDA/RGO/Ag3PO4 for catalytic dye decomposition. Colloids Surfaces A Physicochem Eng Asp 563:68–76. https://doi.org/10.1016/j.colsurfa.2018.11.069

    CAS  Article  Google Scholar 

  170. Zhang X, Guo Y, Wang T, Wu Z, Wang Z (2020) Antibiofouling performance and mechanisms of a modified polyvinylidene fluoride membrane in an MBR for wastewater treatment: Role of silver@silica nanopollens. Water Res 176:115749. https://doi.org/10.1016/j.watres.2020.115749

    CAS  Article  Google Scholar 

  171. Zhao X, Du P, Cai Z et al (2018) Photocatalysis of bisphenol A by an easy-settling titania/titanate composite: Effects of water chemistry factors, degradation pathway and theoretical calculation. Environ Pollut 232:580–590. https://doi.org/10.1016/j.envpol.2017.09.094

    CAS  Article  Google Scholar 

  172. Zhu T, Gao S-P (2014) The stability, electronic structure, and optical property of TiO2 polymorphs. J Phys Chem C 118:11385–11396. https://doi.org/10.1021/jp412462m

    CAS  Article  Google Scholar 

  173. Zhu J, Zhou S, Li M, Xue A, Zhao Y, Peng W, Xing W (2020) PVDF mixed matrix ultrafiltration membrane incorporated with deformed rebar-like Fe3O4–palygorskite nanocomposites to enhance strength and antifouling properties. J Membr Sci 612:118467. https://doi.org/10.1016/j.memsci.2020.118467

    CAS  Article  Google Scholar 

Download references

Funding

The authors would like to acknowledge the financial supports provided by Ministry of Education under Fundamental Research Grant Scheme (FRGS) FRGS/1/2018/STG07/UTM/02/17 and Universiti Teknologi Malaysia under Research University Grants 07G71. MN Subramaniam would also like to thank Universiti Teknologi Malaysia for providing funding under the Zamalah UTM Scholarship Scheme.

Author information

Affiliations

Authors

Contributions

MNS, PSG and DK conceptualized the review; PSG, WJL, and AFI acquired the funding; PSG supervised the work; MNS and PSG wrote the draft manuscript; PSG, DK and JWL reviewed and revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Pei Sean Goh.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Angeles Blanco

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Subramaniam, M.N., Goh, P.S., Kanakaraju, D. et al. Photocatalytic membranes: a new perspective for persistent organic pollutants removal. Environ Sci Pollut Res (2021). https://doi.org/10.1007/s11356-021-14676-x

Download citation

Keywords

  • Photocatalytic membrane
  • Photocatalysis
  • Persistent organic pollutant
  • Wastewater
  • Mixed matrix membrane
  • Submerged membrane photoreactors