Skip to main content
Log in

Connecting the dots between mitochondrial dysfunction and Parkinson’s disorder: focus mitochondria-targeting therapeutic paradigm in mitigating the disease severity

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

A Correction to this article was published on 06 May 2024

This article has been updated

Abstract

Mitochondria are unique cell organelles, which exhibit multifactorial roles in numerous cell physiological processes, significantly preserving the integrity of neural synaptic interconnections, mediating ATP production, and regulating apoptotic signaling pathways and calcium homeostasis. Multiple neurological disorders occur as a consequence of impaired mitochondrial functioning, with greater sensitivity of dopaminergic (DA) neurons to mitochondrial dysfunction, due to oxidative nature and low mitochondrial mass, thus supporting the contribution of mitochondrial impairment in Parkinson’s disorder (neuronal damage due to curbed dopamine levels). The pathophysiology of the second most common disorder, PD, is potentiated by various mitochondrial homeostasis regulating genes, as discussed in the review. The PD symptoms are known to be aggravated by multiple mitochondria-linked alterations, like reactive oxygen species (ROS) production, Ca2+ buffering, imbalanced mitochondrial dynamics (fission, fusion, mitophagy), biogenetic dysfunctions, disrupted mitochondrial membrane potential (MMP), protein aggregation, neurotoxins, and genetic mutations, which manifest the central involvement of unhealthy mitochondria in neurodegeneration, resulting in retarded DA neurons in region of substantia nigra pars compacta (SNpc), causing PD. Furthermore, the review tends to target altered mitochondrial components, like oxidative stress, inflammation, biogenetic alterations, impaired dynamics, uncontrolled homeostasis, and genetic mutations, to provide a sustainable and reliable alternative in PD therapeutics and to overcome the pitfalls of conventional therapeutic agents. Therefore, the authors elaborate the relationship between PD pathogenesis and mitochondrial dysfunctions, followed by a suitable mitochondria-targeting therapeutic portfolio, as well as future considerations, aiding the researchers to investigate novel strategies to mitigate the severity of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

References

  • Abdelkader NF, Safar MM, Salem HA (2016) Ursodeoxycholic acid ameliorates apoptotic cascade in the rotenone model of Parkinson’s disease: modulation of mitochondrial perturbations. Mol Neurobiol 53:810e817

    Article  Google Scholar 

  • Abou-Sleiman PM, Muqit MM, Wood NW (2006) Expanding insights of mitochondrial dysfunction in Parkinson’s disease. Nat Rev Neurosci 7:207–219

    Article  CAS  Google Scholar 

  • Agarwal S, Yadav A, Chaturvedi RK (2017) Peroxisome proliferator-activated receptors (PPARs) as therapeutic target in neurodegenerative disorders. Biochem Biophys Res Commun 483:1166e1177

    Article  Google Scholar 

  • Ahuja M, Ammal Kaidery N, Yang L, Calingasan N et al (2016) Distinct Nrf2 signaling mechanisms of fumaric acid esters and their role in neuroprotection against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced experimental Parkinson’s-like disease. J Neurosci 36:6332e6351

    Article  Google Scholar 

  • Alavian KN, Beutner G, Lazrove E, Sacchetti S, Park HA, Licznerski P, Li H, Nabili P, Hockensmith K, Graham M, Porter GA Jr, Jonas EA (2014) An uncoupling channel within the c-subunit ring of the F1FO ATP synthase is the mitochondrial permeability transition pore. Proc Natl Acad Sci USA 111:10580e10585

    Article  Google Scholar 

  • Anglade P, Vyas S, Javoy-Agid F, Herrero MT, Michel PP, Marquez J, Mouatt-Prigent A, Ruberg M, Hirsch EC, Agid Y (1997) Apoptosis and autophagy in nigral neurons of patients with Parkinson’s disease. Histol Histopathol 12:25–31

    CAS  Google Scholar 

  • Arroyo DS, Gaviglio EA, Peralta-Ramos JM, Bussi C, Rodriguez-Galan MC, Iribarren P (2014) Autophagy in inflammation, infection, neurodegeneration and cancer. Int Immunopharmacol 18(1):55–65

    Article  CAS  Google Scholar 

  • Bannwarth S, Ait-El-Mkadem S, Chaussenot A et al (2014) A mitochondrial origin for frontotemporal dementia and amyotrophic lateral sclerosis through CHCHD10 involvement. Brain 137:2329–2345

    Article  Google Scholar 

  • Barsoum MJ, Yuan H, Gerencser AA, Liot G, Kushnareva Y, Gräber S, Kovacs I, Lee WD, Waggoner J, Cui J, White AD, Bossy B, Martinou JC, Youle RJ, Lipton SA, Ellisman MH, Perkins GA, Bossy-Wetzel E (2006) Nitric oxide-induced mitochondrial fission is regulated by dynamin-related GTPases in neurons. EMBO J 25:3900–3911

    Article  CAS  Google Scholar 

  • Bartels AL, Leenders KL (2007) Neuroinflammation in the pathophysiology of Parkinson’s disease: evidence from animal models to human in vivo studies with [11C]-PK11195 PET. Mov Disord 22(13):1852–1856

    Article  Google Scholar 

  • Beal MF (2011) Neuroprotective effects of creatine. Amino Acids 40:1305e1313

    Article  Google Scholar 

  • Bernardi P, Rasola A, Forte M, Lippe G (2015) The mitochondrial permeability transition pore: channel formation by F-ATP synthase, integration in signal transduction, and role in pathophysiology. Physiol Rev 95:1111e1155

    Article  Google Scholar 

  • Bertolin G, Jacoupy M, Traver S, Ferrando-Miguel R, Saint Georges T, Grenier K, Ardila-Osorio H, Muriel MP, Takahashi H, Lees AJ, Gautier C, Guedin D, Coge F, Fon EA, Brice A, Corti O (2015) Parkin maintains mitochondrial levels of the protective Parkinson’s disease-related enzyme 17-β hydroxysteroid dehydrogenase type 10. Cell Death Differ 22:1563–1576. https://doi.org/10.1038/cdd.2014.224

    Article  CAS  Google Scholar 

  • Betarbet R (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3:1301–1306

    Article  CAS  Google Scholar 

  • Betarbet R, Sherer TB, MacKenzie G, Garcia-OsunaM M, Panov AV, Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3(12):1301–1306

    Article  CAS  Google Scholar 

  • Bhat S, Acharya UR, Hagiwara Y, Dadmehr N, Adeli H (2018) Parkinson’s disease: cause factors, measurable indicators, and early diagnosis. Comput Biol Med 102:234–241. https://doi.org/10.1016/j.compbiomed.2018.09.008

    Article  Google Scholar 

  • Bonifati V, Rizzu P, Squitieri F, Krieger E, Vanacore N, van Swieten JC, Brice A, van Duijn CM, Oostra B, Meco G, Heutink P (2003) DJ-1( PARK7), a novel gene for autosomal recessive, early onset parkinsonism. Neurol Sci 24:159–160

    Article  CAS  Google Scholar 

  • Bonora M, Bononi A, De Marchi E, Giorgi C et al (2013) Role of the c subunit of the FO ATP synthase in mitochondrial permeability transition. Cell Cycle 12:674e683

    Article  Google Scholar 

  • Brichta L, Greengard P (2014) Molecular determinants of selective dopaminergic vulnerability in Parkinson’s disease: an update. Front Neuroanat 8:152–152. https://doi.org/10.3389/fnana.2014.00152

    Article  Google Scholar 

  • Brini M, Cali T, Ottolini D, Carafoli E (2014) Neuronal calcium signaling: function and dysfunction. Cell Mol Life Sci 71:2787e2814

    Article  Google Scholar 

  • Burté F, De Girolamo LA, Hargreaves AJ, Billett EE (2011) Alterations in the mitochondrial proteome of neuroblastoma cells in response to complex 1 inhibition. J Proteome Res 10:1974–1986

    Article  Google Scholar 

  • Cataldi S, Follett J, Fox JD, Tatarnikov I, Kadgien C, Gustavsson EK (2018) Altered dopamine release and monoamine transporters in Vps35 p.D620N knock-in mice. NPJ Parkinson’s Dis 4:27

    Article  Google Scholar 

  • Chan CS, Guzman JN, Ilijic E, Mercer JN, Rick C, Tkatch T, Meredith GE, Surmeier DJ (2007) ‘Rejuvenation’ protects neurons in mouse models of Parkinson’s disease. Nature 447:1081e1086

    Article  Google Scholar 

  • Chen Y, Zhang Y, Li L, Holscher C (2015) Neuroprotective effects of geniposide in the MPTP mouse model of Parkinson’s disease. Eur J Pharmacol 768:21e27

    Article  Google Scholar 

  • Chen C, Turnbull DM, Reeve AK (2019) Mitochondrial dysfunction in Parkinson’s disease—cause or consequence? Biology 8:38. https://doi.org/10.3390/biology8020038

    Article  CAS  Google Scholar 

  • Chinta SJ, Andersen JK (2008) Redox imbalance in Parkinson’s disease. Biochim Biophys Acta 1780:1362–1367

    Article  CAS  Google Scholar 

  • Chinta SJ, Mallajosyula JK, Rane A, Andersen JK (2010) Mitochondrial α-synuclein accumulation impairs complex I function in dopaminergic neurons and results in increased mitophagy in vivo. Neurosci Lett 486:235–239

    Article  CAS  Google Scholar 

  • Choi J, Sullards MC, Olzmann JA, Rees HD, Weintraub ST, Bostwick DE, Gearing M, Levey AI, Chin LS, Li L (2006) Oxidative damage of DJ-1 is linked to sporadic Parkinson and Alzheimer diseases. J Biol Chem 281(16):10816–10824

    Article  CAS  Google Scholar 

  • Choi WS, Kruse SE, Palmiter RD, Xia Z (2008) Mitochondrial complex I inhibition is not required for dopaminergic neuron death induced by rotenone, MPP+, or paraquat. Proc Natl Acad Sci U S A 105:15136–15141

    Article  CAS  Google Scholar 

  • Clark J, Clore EL, Zheng K, Adame A, Masliah E, Simon DK (2010) Oral N-acetyl-cysteine attenuates loss of dopaminergic terminals in alpha-synuclein overexpressing mice. PLoS One 5:e12333

    Article  Google Scholar 

  • Clark J, Dai Y, Simon DK (2011) Do somatic mitochondrial DNA mutations contribute to Parkinson’s disease ? Parkinsons Dis 2011:659694

    Google Scholar 

  • Cochemé HM, Murphy MP (2008) Complex I is the major site of mitochondrial superoxide production by paraquat. J Biol Chem 283:1786–1798

    Article  Google Scholar 

  • Contreras L, Drago I, Zampese E, Pozzan T (2010) Mitochondria: the calcium connection. Biochim Biophys Acta 1797:607e618

    Google Scholar 

  • Contu VR, Kotake Y, Toyama T, Okuda K, Miyara M, Sakamoto S, Samizo S, Sanoh S, Kumagai Y, Ohta S (2014) Endogenous neurotoxic dopamine derivative covalently binds to Parkinson’s disease-associated ubiquitin C-terminal hydrolase L1 and alters its structure and function. J Neurochem 130:826–838

    Article  CAS  Google Scholar 

  • Dagda RK, Cherra SJ 3rd, Kulich SM, Tandon A, Park D, Chu CT (2009) Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. J Biol Chem 284:13843–13855

    Article  CAS  Google Scholar 

  • Davis AA, Racette B (2016) Parkinson disease and cognitive impairment: five new things. Neurol Clin Pract 6(5):452–458. https://doi.org/10.1212/CPJ.0000000000000285

    Article  Google Scholar 

  • De Stefani D, Raffaello A, Teardo E, Szabo I, Rizzuto R (2011) A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476:336e340

    Article  Google Scholar 

  • Dehay B, Martinez-Vicente M, Caldwell GA, Caldwell KA, Yue Z, Cookson MR, Klein C, Vila M, Bezard E (2013) Lysosomal impairment in Parkinson’s disease. Mov Disord 28:725–732

    Article  CAS  Google Scholar 

  • Desai VG, Feuers RJ, Hart RW, Ali SF (1996) MPP(+)- induced neurotoxicity in mouse is age-dependent: evidenced by the selective inhibition of complexes of electron transport. Brain Res 715:1–8

    Article  CAS  Google Scholar 

  • Dolgacheva LP, Berezhnov AV, Fedotova EI, Zinchenko VP, Abramov AY (2019) Role of DJ-1 in the mechanism of pathogenesis of Parkinson’s disease. J Bioenerg Biomembr 51:175–188. https://doi.org/10.1007/s10863-019-09798-4

    Article  CAS  Google Scholar 

  • Exner N (2007) Loss-of-function of human PINK1 results in mitochondrial pathology and can be rescued by parkin. J Neurosci 27:12413–12418

    Article  CAS  Google Scholar 

  • Exner N, Lutz AK, Haass C, Winklhofer KF (2012) Mitochondrial dysfunction in Parkinson’s disease: molecular mechanisms and pathophysiological consequences. EMBO J 31:3038–3062

    Article  CAS  Google Scholar 

  • Fabre E, Monserrat J, Herrero A, Barja G, Leret ML (1999) Effect of MPTP on brain mitochondrial H2O2 and ATP production and on dopamine and DOPAC in the striatum. J Physiol Biochem 55:325–331

    CAS  Google Scholar 

  • Fomenko DE, Koc A, Agisheva N, Jacobsen M, Kaya A, Malinouski M, Rutherford JC, Siu KL, Jin DY, Winge DR, Gladyshev VN (2011) Thiol peroxidases mediate specific genome-wide regulation of gene expression in response to hydrogen peroxide. Proc Natl Acad Sci USA 108:2729–2734

    Article  CAS  Google Scholar 

  • Funayama M, Hasegawa K, Kowa H, Saito M, Tsuji S, Obata F (2002) A new locus for Parkinson’s disease (PARK8) maps to chromosome 12p11.2-q13.1. Ann Neurol 51:296–301

    Article  CAS  Google Scholar 

  • Funayama M, Ohe K, Amo T, Furuya N, Yamaguchi J, Saiki S, Li Y, Ogaki K, Ando M, Yoshino H, Tomiyama H, Nishioka K, Hasegawa K, Saiki H, Satake W, Mogushi K, Sasaki R, Kokubo Y, Kuzuhara S, Toda T, Mizuno Y, Uchiyama Y, Ohno K, Hattori N (2015) CHCHD2mutations in autosomal dominant late-onset Parkinson’s disease: a genome-wide linkage and sequencing study. Lancet Neurol 14:274–282

    Article  CAS  Google Scholar 

  • Gagliardi M, Iannello G, Colica C, Annesi G, Quattrone A (2017) Analysis of CHCHD2 gene in familial Parkinson’s disease from Calabria. Neurobiol Aging 50:169.e5–169.e6

    Article  CAS  Google Scholar 

  • Gandhi PN, Chen SG, Wilson-Delfosse AL (2009) Leucine-rich repeat kinase 2 (LRRK2): a key player in the pathogenesis of Parkinson’s disease. J Neurosci Res 87(6):1283–1295

    Article  CAS  Google Scholar 

  • Gazaryan IG, Thomas B (2016) The status of Nrf2-based therapeutics: current perspectives and future prospects. Neural Regen Res 11:1708e1711

    Article  Google Scholar 

  • Giorgio V, von Stockum S, Antoniel M et al (2013) Dimers of mitochondrial ATP synthase form the permeability transition pore. Proc Natl Acad Sci USA 110:5887e5892

    Article  Google Scholar 

  • Gitler AD (2009) Alpha-synuclein is part of a diverse and highly conserved interaction network that includes PARK9 and manganese toxicity. Nat Genet 41:308–315

    Article  CAS  Google Scholar 

  • Grote C, Clement HW, Wesemann W, Bringmann G, Feineis D, Riederer P, Sontag KH (1995) Biochemical lesions of the nigrostriatal system by TaClo (1- trichloromethyl-1,2,3,4-tetrahydro-β-carboline) and derivatives. J Neural Transm Suppl 46:275–281

    CAS  Google Scholar 

  • Gupta M et al (2018) Evaluation of in silico anti-Parkinson potential of β-asarone. Central Nervous System Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry - Central Nervous System Agents) 18(2)

  • Guzman JN, Sanchez-Padilla J, Wokosin D, Kondapalli J, Ilijic E, Schumacker PT, Surmeier DJ (2010) Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1. Nature 468:696e700

    Article  Google Scholar 

  • Hald A, Lotharius J (2005) Oxidative stress and inflammation in Parkinson’s disease: is there a causal link? Exp Neurol 193:279–290

    Article  CAS  Google Scholar 

  • Hatano Y, Li Y, Sato K, Asakawa S, Yamamura Y, Tomiyama H, Yoshino H, Asahina M, Kobayashi S, Hassin-Baer S, Lu CS, Ng AR, Rosales RL, Shimizu N, Toda T, Mizuno Y, Hattori N (2004) Novel PINK1 mutations in early-onset parkinsonism. Ann Neurol 56:424–427

    Article  CAS  Google Scholar 

  • Hauser DN, Hastings TG (2013) Mitochondrial dysfunction and oxidative stress in Parkinson’s disease and monogenic parkinsonism. Neurobiol Dis 51:35–42

    Article  CAS  Google Scholar 

  • Heim C, Sontag KH (1997) The halogenated tetrahydro-β- carboline ’TaClo’: a progressively-acting neurotoxin. J Neural Transm 50:107–111

    CAS  Google Scholar 

  • Henchcliffe C, Beal MF (2008) Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Nat Clin Pract Neurol 4:600–609

    Article  CAS  Google Scholar 

  • Hirrlinger J, Schulz JB, Dringen R (2002) Glutathione release from cultured brain cells: multidrug resistance protein 1 mediates the release of GSH from rat astroglial cells. J Neurosci Res 69:318–326

    Article  CAS  Google Scholar 

  • Hu Q, Wang G (2016) Mitochondrial dysfunction in Parkinson’s disease. Translational Neurodegeneration 5:14. https://doi.org/10.1186/s40035-016-0060-6

    Article  CAS  Google Scholar 

  • Isobe C, Abe T, Terayama Y (2010) Levels of reduced and oxidized coenzyme Q-10 and 8-hydroxy-20-deoxyguanosine in the cerebrospinal fluid of patients with living Parkinson’s disease demonstrate that mitochondrial oxidative damage and/or oxidative DNA damage contributes to the neurodegenerative process. Neurosci Lett 469:159–163

    Article  CAS  Google Scholar 

  • Janetzky B, God R, Bringmann G, Reichmann H (1995) 1-Trichloromethyl-1,2,3,4-tetrahydro-β-carboline, a new inhibitor of complex I. Journal of Neural Transmission,Supplement 46:265–273

    CAS  Google Scholar 

  • Janetzky B, Gille G, Abdel-mohsen M, God R, Rausch WD, Bringmann G, Reichmann H (1999) Effect of highly halogenated β-carbolines on dopaminergic cells in culture and on mitochondrial respiration. Drug Dev Res 46(1):51–56

    Article  CAS  Google Scholar 

  • Jansen IE, Bras JM, Lesage S, Schulte C, Gibbs JR, Nalls MA, Brice A, Wood NW, Morris H, Hardy JA, Singleton AB, Gasser T, Heutink P, Sharma M, IPDGC (2015) CHCHD2 and Parkinson’s disease. Lancet Neurol 14:678–679

    Article  Google Scholar 

  • Jhang JJ, Cheng YT, Ho CY, Yen GC (2015) Monosodium urate crystals trigger Nrf2- and heme oxygenase-1-dependent inflammation in THP-1 cells. Cell Mol Immunol 12:424e434

    Article  Google Scholar 

  • Jin H, Kanthasamy A, Ghosh A, Anantharam V, Kalyanaraman B, Kanthasamy AG (2014) Mitochondria-targeted antioxidants for treatment of Parkinson’s disease: preclinical and clinical outcomes. Biochim Biophys Acta 1842:1282e1294

    Google Scholar 

  • Johri A, Beal MF (2012) Mitochondrial dysfunction in neurodegenerative diseases. J Pharmacol Exp Ther 342:619–630

    Article  CAS  Google Scholar 

  • Kachroo A, Irizarry MC, Schwarzschild MA (2010) Caffeine protects against combined paraquat and maneb-induced dopaminergic neuron degeneration. Exp Neurol 223:657–661

    Article  CAS  Google Scholar 

  • Kaidery NA, Thomas B (2018) Current perspective of mitochondrial biology in Parkinson’s disease. Neurochem Int 117:91–113

    Article  Google Scholar 

  • Kang MY, Oh TJ, Cho YM (2015) Glucagon-like Peptide-1 increases mitochondrial biogenesis and function in INS-1 rat insulinoma cells. Endocrinol Metab (Seoul) 30:216e220

    Article  Google Scholar 

  • Kao SY (2009) DNA damage induces nuclear translocation of parkin. J Biomed Sci 16(1):67

    Article  Google Scholar 

  • Karl PI, Friedman PA (1983) Competition between paraquat and putrescine for accumulation by rat lung slices. Toxicology 26(3-4):317–323

    Article  CAS  Google Scholar 

  • Keeney PM, Xie J, Capaldi RA, Bennett JP Jr (2006) Parkinson’s disease brain mitochondrial complex I has oxidatively damaged subunits and is functionally impaired and misassembled. J Neurosci Off J Soc Neurosci 26:5256–5264

    Article  CAS  Google Scholar 

  • Kieburtz K, Tilley BC, Elm JJ, Babcock D et al (2015) Effect of creatine monohydrate on clinical progression in patients with Parkinson disease: a randomized clinical trial. JAMA 313:584e593

    Google Scholar 

  • Klein C, Westenberger A (2012) A genetics of Parkinson’s disease. Cold Spring Harb Perspect Med 2:a008888

    Article  Google Scholar 

  • Kruse SE, Watt WC, Marcinek DJ, Kapur RP, Schenkman KA, Palmiter RD (2008) Mice with Mitochondrial Complex I Deficiency Develop a Fatal Encephalomyopathy. Cell Metab 7:312–320

    Article  CAS  Google Scholar 

  • Langston JW (2017) The MPTP Story. J Parkinsons Dis 7(s1):S11–S19. https://doi.org/10.3233/JPD-179006

    Article  Google Scholar 

  • Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219:979–980

    Article  CAS  Google Scholar 

  • Langston JW, Irwin I, Langston EB, Forno LS (1984) 1-Methyl-4-phenylpyr- idinium ion (MPP+): identification of a metabolite of MPTP, a toxin selective to the substantia nigra. Neurosci Lett 48:87–92

    Article  CAS  Google Scholar 

  • Lastres-Becker I, Garcia-Yague AJ, Scannevin RH, Casarejos MJ, Kugler S, Rabano A, Cuadrado A (2016) Repurposing the NRF2 activator dimethyl fumarate as therapy against synucleinopathy in Parkinson’s disease. Antioxid Redox Signal 25:61e77

    Article  Google Scholar 

  • Lautenschlager J, Stephens AD, Fusco G et al (2018) C-terminal calcium binding of alpha-synuclein modulates synaptic vesicle interaction. Nat Commun 9:712

    Article  Google Scholar 

  • Lee RG, Sedghi M, Salari M, Shearwood AMJ, Stentenbach M, Kariminejad A, Goullee H, Rackham O, Laing NG, Tajsharghi H, Filipovska A (2018) Early-onset Parkinson disease caused by a mutation in CHCHD2 and mitochondrial dysfunction. Neurol Genet 4:e276

    Article  Google Scholar 

  • Lev N, Roncevic D, Ickowicz D, Melamed E, Offen D (2006) Role of DJ-1 in Parkinson’s disease. J Mol Neurosci 29:215–225

    Article  CAS  Google Scholar 

  • Li HM, Niki T, Taira T, Iguchi-Ariga SMM, Ariga H (2005) Association of DJ-1 with chaperones and enhanced association and colocalization with mitochondrial Hsp70 by oxidative stress. Free Radic Res 39(10):1091–1099. https://doi.org/10.1080/10715760500260348

    Article  CAS  Google Scholar 

  • Li B, Hu Q, Wang H, Man N, Ren H, Wen L, Nukina N, Fei E, Wang G (2010) Omi/HtrA2 is a positive regulator of autophagy that facilitates the degradation of mutant proteins involved in neurodegenerative diseases. Cell Death Differ 17:1773–1784

    Article  CAS  Google Scholar 

  • Liang CL, Wang TT, Luby-Phelps K, German DC (2007) Mitochondria mass is low in mouse substantia nigra dopamine neurons: implications for Parkinson’s disease. Exp Neurol 203:370–380

    Article  CAS  Google Scholar 

  • Lin MT, Cantuti-Castelvetri I, Zheng K, Jackson KE, Tan YB, Arzberger T, Lees AJ, Betensky RA, Beal MF, Simon DK (2012) Somatic mitochondrial DNA mutations in early Parkinson and incidental Lewy body disease. Ann Neurol 71:850–854

    Article  CAS  Google Scholar 

  • Liou HH, Tsai MC, Chen CJ, Jeng JS, Chang YC, Chen SY, Chen RC (1997) Environmental risk factors and Parkinson’s disease: a case-control study in Taiwan. Neurology 48(6):1583–1588

    Article  CAS  Google Scholar 

  • Liu Y, Fallon L, Lashuel HA, Liu Z, Lansbury PT Jr (2002) The UCH-L1 gene encodes two opposing enzymatic activities that affect alpha-synuclein degradation and Parkinson’s disease susceptibility. Cell 111:209–218

    Article  CAS  Google Scholar 

  • Longen S, Bien M, Bihlmaier K, Kloeppel C, Kauff F, Hammermeister M, Westermann B, Herrmann JM, Riemer J (2009) Systematic analysis of the twin cx(9)c protein family. J Mol Biol 393:356–368

    Article  CAS  Google Scholar 

  • Lucas JI, Marín I (2007) A new evolutionary paradigm for the Parkinson disease gene DJ-1. Mol Biol Evol 24(2):551–561. https://doi.org/10.1093/molbev/msl186

    Article  CAS  Google Scholar 

  • Lücking CB, Dürr A, Bonifati V, Vaughan J, de Michele G, Gasser T, Harhangi BS, Meco G, Denèfle P, Wood NW, Agid Y, Nicholl D, Breteler MMB, Oostra BA, de Mari M, Marconi R, Filla A, Bonnet AM, Broussolle E, Pollak P, Rascol O, Rosier M, Arnould A, Brice A (2000) French Parkinson’s Disease Genetics Study Group; European Consortium on Genetic Susceptibility in Parkinson's Disease (2000) Association between early-onset Parkinson’s disease and mutations in the parkin gene. N Engl J Med 342:1560–1567

    Article  Google Scholar 

  • Macdonald R, Barnes K, Hastings C, Mortiboys H (2018) Mitochondrial abnormalities in Parkinson’s disease and Alzheimer’s disease: can mitochondria be targeted therapeutically? Biochemical Society Transactions, BST20170501.

  • Magrinelli F, Picelli A, Tocco P, Federico A, Roncari L, Smania N, Tamburin S (2016) Pathophysiology of motor dysfunction in Parkinson’s disease as the rationale for drug treatment and rehabilitation. Parkinson's Dis 2016:9832839-9832839. https://doi.org/10.1155/2016/9832839

    Article  CAS  Google Scholar 

  • Mamelak M (2018) Parkinson’s disease, the dopaminergic neuron and gammahydroxybutyrate. Neurol Ther 7(1):5–11. https://doi.org/10.1007/s40120-018-0091-2

    Article  Google Scholar 

  • Manning-Bog AB, McCormack AL, Li J, Uversky VN, Fink AL, Di Monte DA (2002) The herbicide paraquat causes up-regulation and aggregation of α-synuclein in mice: paraquat and α-synuclein. J Biol Chem 277(3):1641–1644

    Article  CAS  Google Scholar 

  • Martin I, Kim JW, Dawson VL, Dawson TM (2014) LRRK2 pathobiology in Parkinson’s disease. J Neurochem 131:554–565

    Article  CAS  Google Scholar 

  • Martins LM, Morrison A, Klupsch K, Fedele V, Moisoi N, Teismann P, Abuin A, Grau E, Geppert M, Livi GP, Creasy CL, Martin A, Hargreaves I, Heales SJ, Okada H, Brandner S, Schulz J̈B, Mak T, Downward J (2004) Neuroprotective role of the Reaper-related serine protease HtrA2/Omi revealed by targeted deletion in mice. Mol Cell Biol 24:9848–9862

    Article  CAS  Google Scholar 

  • Mastroberardino PG, Hoffman EK, Horowitz MP, Betarbet R, Taylor G, Cheng D, Na HM, Gutekunst CA, Gearing M, Trojanowski JQ, Anderson M, Chu CT, Peng J, Greenamyre JT (2009) A novel transferrin/TfR2-mediated mitochondrial iron transport system is disrupted in Parkinson’s disease. Neurobiol Dis 34:417–431

    Article  CAS  Google Scholar 

  • McCormack AL, DiMonte DA (2003) Effects of L-dopa and other amino acids against paraquat-induced nigrostriatal degeneration. J Neurochem 85(1):82–86

    Article  CAS  Google Scholar 

  • McInnes J (2013) Insights on altered mitochondrial function and dynamics in the pathogenesis of neurodegeneration. Transl Neurodegener 2:12

    Article  CAS  Google Scholar 

  • McNaught KSTP et al (2003) Proteolytic stress: a unifying concept for the etiopathogenesis of Parkinson’s disease. Ann Neurol 53(3):S73–S86

    Article  CAS  Google Scholar 

  • Meng H, Yamashita C, Shiba-Fukushima K, Inoshita T, Funayama M, Sato S, Hatta T, Natsume T, Umitsu M, Takagi J, Imai Y, Hattori N (2017) Loss of Parkinson’s disease-associated protein CHCHD2 affects mitochondrial crista structure and destabilizes cytochrome c. Nat Commun 8:15500

    Article  CAS  Google Scholar 

  • Mishra P, Chan DC (2014) Mitochondrial dynamics and inheritance during cell division, development and disease. Nat Rev Mol Cell Biol 15(10):634–646

    Article  CAS  Google Scholar 

  • Mizuno Y, Ohta S, Tanaka M, Takamiya S, Suzuki K, Sato T, Oya H, Ozawa T, Kagawa Y (1989) Deficiencies in complex I subunits of the respiratory chain in 1440 Parkinson’s disease. Biochem Biophys Res Commun 163:1450–1455

    Article  CAS  Google Scholar 

  • Mizuno Y, Hattori N, Kubo S, Sato S, Nishioka K, Hatano T, Tomiyama H, Funayama M, Machida Y, Mochizuki H (2008) Progress in the pathogenesis and genetics of Parkinson’s disease. Philos Trans R Soc Lond Ser B Biol Sci 363:2215–2227

    Article  CAS  Google Scholar 

  • Moon HE, Paek SA (2015) Mitochondrial dysfunction in Parkinson’s disease. Exp Neurobiol 24(2):103–116

    Article  Google Scholar 

  • Mortiboys H, Furmston R, Bronstad G, Aasly J, Elliott C, Bandmann O (2015) UDCA exerts beneficial effect on mitochondrial dysfunction in LRRK2(G2019S) carriers and in vivo. Neurology 85:846e852

    Article  Google Scholar 

  • Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    Article  CAS  Google Scholar 

  • Narendra D, Tanaka A, Suen DF, Youle RJ (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183:795–803

    Article  CAS  Google Scholar 

  • Narendra DP, Jin SM, Tanaka A, Suen DF, Gautier CA, Shen J, Cookson MR, Youle RJ (2010) PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol 8:e1000298

    Article  Google Scholar 

  • Ni HM, Williams JA, Ding WX (2015) Mitochondrial dynamics and mitochondrial quality control. Redox Biol 4:6–13

    Article  CAS  Google Scholar 

  • Nicholls DG (2008) Oxidative stress and energy crises in neuronal dysfunction. Ann N Y Acad Sci 1147:53–60

    Article  CAS  Google Scholar 

  • Nicklas WJ, Vyas I, Heikkila RE (1985) Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4- phenyl-pyridine, a metabolite of the neurotoxin, 1-methyl-4- phenyl-1,2,5,6-tetrahydropyridine. Life Sci 36:2503–2508

    Article  CAS  Google Scholar 

  • Oakley AE, Collingwood JF, Dobson J, Love G, Perrott HR, Edwardson JA, Elstner M, Morris CM (2007) Individual dopaminergic neurons show raised iron levels in Parkinson disease. Neurology 68:1820–1825

    Article  CAS  Google Scholar 

  • Olanow CW, Rascol O, Hauser R et al (2009) A double-blind, delayed-start trial of rasagiline in Parkinson’s disease. N Engl J Med 361:1268e1278

    Article  Google Scholar 

  • Olguin HJ, Guzman DC, Garcia EH, Mejia GB (2016) The role of dopamine and its dysfunction as a consequence of oxidative stress. Oxidative Med Cell Longev 2016:9730467–9730413. https://doi.org/10.1155/2016/9730467

    Article  CAS  Google Scholar 

  • Orsucci D, Mancuso M, Ienco EC, LoGerfo A, Siciliano G (2011) Targeting mitochondrial dysfunction and neurodegeneration by means of coenzyme Q10 and its analogues. Curr Med Chem 18:4053e4064

    Article  Google Scholar 

  • Pacelli C, Giguere N, Bourque MJ, Levesque M, Slack RS, Trudeau LE (2015) Elevated mitochondrial bioenergetics and axonal arborization size are key contributors to the vulnerability of dopamine neurons. Curr Biol 25:2349e2360

    Article  Google Scholar 

  • Palacino JJ, Sagi D, Goldberg MS, Krauss S, Motz C, Wacker M, Klose J, Shen J (2004) Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J Biol Chem 279:18614–18622

    Article  CAS  Google Scholar 

  • Palikaras K, Lionaki E, Tavernarakis N (2015) Balancing mitochondrial biogenesis and mitophagy to maintain energy metabolism homeostasis. Cell Death Differ 22(9):1399–1401. https://doi.org/10.1038/cdd.2015.86

    Article  CAS  Google Scholar 

  • Parker WD Jr, Parks JK, Swerdlow RH (2008) Complex I deficiency in Parkinson’s disease frontal cortex. Brain Res 1189:215–218

    Article  CAS  Google Scholar 

  • Parkinson Study G (1993) Effects of tocopherol and deprenyl on the progression of disability in early Parkinson’s disease. N Engl J Med 328:176e183

    Google Scholar 

  • Parkinson Study G (2002) A controlled trial of rasagiline in early Parkinson disease: the TEMPO Study. Arch Neurol 59:1937e1943

    Google Scholar 

  • Parkinson Study Group QEI, Beal MF et al (2014a) A randomized clinical trial of high- dosage coenzyme Q10 in early Parkinson disease: no evidence of benefit. JAMA Neurol 71:543e552

  • Parkinson Study Group SPDI, Schwarzschild MA, Ascherio A et al (2014b) Inosine to increase serum and cerebrospinal fluid urate in Parkinson disease: a randomized clinical trial. JAMA Neurol 71:141e150

  • Peng J, Mao XO, Stevenson FF, Hsu M, Andersen JK (2004) The herbicide paraquat induces dopaminergic nigral apoptosis through sustained activation of the JNK pathway. J Biol Chem 279:32626–32632

    Article  CAS  Google Scholar 

  • Perier C, Tieu K, Guegan C, Caspersen C, Jackson-Lewis V, Carelli V, Martinuzzi A, Hirano M, Przedborski S, Vila M (2005) Complex I defi- ciency primes Bax-dependent neuronal apoptosis through mitochondrial oxidative damage. Proc Natl Acad Sci U S A 102:19126–19131

    Article  CAS  Google Scholar 

  • Perier C, Bove J, Wu DC, Dehay B, Choi DK, Jackson-Lewis V, Rathke-Hartlieb S, Bouillet P, Strasser A, Schulz JB, Przedborski S, Vila M (2007) Two molecular pathways initiate mitochondria-dependent dopaminergic neurodegeneration in experimental Parkinson's disease. Proc Natl Acad Sci U S A 104:8161–8166

    Article  CAS  Google Scholar 

  • Petronilli V, Penzo D, Scorrano L, Bernardi P, Di Lisa F (2001) The mitochondrial permeability transition, release of cytochrome c and cell death. Correlation with the duration of pore openings in situ. J Biol Chem 276:12030e12034

    Article  Google Scholar 

  • Piao Y, Kim HG, Oh MS, Pak YK (2012) Overexpression of TFAM, NRF-1 and myr-AKT protects the MPP(+)-induced mitochondrial dysfunctions in neuronal cells. Biochim Biophys Acta 1820:577–585

    Article  CAS  Google Scholar 

  • Pilsl A, Winklhofer KF (2012) Parkin, PINK1 and mitochondrial integrity: emerging concepts of mitochondrial dysfunction in Parkinson’s disease. Acta Neuropathol 123:173–188

    Article  CAS  Google Scholar 

  • Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, di Iorio G, Golbe LI, Nussbaum RL (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276:2045–2047

    Article  CAS  Google Scholar 

  • Pridgeon JW, Olzmann JA, Chin LS, Li L (2007) PINK1 protects against oxidative stress by phosphorylating mitochondrial chaperone TRAP1. PLoS Biol 5:e172

    Article  Google Scholar 

  • Puspita L, Chung SY, Shim JW (2017) Oxidative stress and cellular pathologies in Parkinson’s disease. Molecular Brain 10(1):53–53. https://doi.org/10.1186/s13041-017-0340-9

    Article  CAS  Google Scholar 

  • Rahimmi A, Khosrobakhsh F, Izadpanah E, Moloudi MR, Hassanzadeh K (2015) N-acetylcysteine prevents rotenone-induced Parkinson’s disease in rat: an investigation into the interaction of parkin and Drp1 proteins. Brain Res Bull 113:34e40

    Article  Google Scholar 

  • Ramirez A, Heimbach A, Gründemann J, Stiller B, Hampshire D, Cid LP, Goebel I, Mubaidin AF, Wriekat AL, Roeper J, al-Din A, Hillmer AM, Karsak M, Liss B, Woods CG, Behrens MI, Kubisch C (2006) Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet 38:1184–1191

    Article  CAS  Google Scholar 

  • Rani L, Mondal AC (2020) Emerging concepts of mitochondrial dysfunction in Parkinson’s disease progression: pathogenic and therapeutic implications. Mitochondrion 50:25–34. https://doi.org/10.1016/j.mito.2019.09.010

    Article  CAS  Google Scholar 

  • Rausch WD, Abdel-Mohsen M, Koutsilieri E, Chan WW, Bringmann G (1995) Studies of the potentially endogenous toxin TaClo (1-trichloromethyl-1,2,3,4-tetrahydro-β-carboline) in neuronal and glial cell cultures. J Neural Transm Suppl 46:255–263

    CAS  Google Scholar 

  • Richardson JR, Quan Y, Sherer TB, Greenamyre JT, Miller GW (2005) Paraquat neurotoxicity is distinct from that of MPTP and rotenone. Toxicological Sciences: an Official Journal of the Society of Toxicology 88:193–201

    Article  CAS  Google Scholar 

  • Richter G, Sonnenschein A, Grünewald T, Reichmann H, Janetzky B (2002) NoveL mitochondrial DNA mutations in Parkinson’s disease. J Neural Transm 109:721–729

    Article  CAS  Google Scholar 

  • Riederer P et al (2002) Biochemical and pharmacological characterization of 1-trichloromethyl-1,2,3,4-tetrahydro-β-carboline: a biologically relevant neurotoxin? Eur J Pharmacol 442(1-2):1–16

    Article  CAS  Google Scholar 

  • Santos D, Cardoso SM (2012) Mitochondrial dynamics and neuronal fate in Parkinson’s disease. Mitochondrion 12:428–437

    Article  CAS  Google Scholar 

  • Schapira AH (2007) Mitochondrial dysfunction in Parkinson’s disease. Cell Death Differ 14:1261–1266

    Article  CAS  Google Scholar 

  • Schapira AH (2012) Targeting mitochondria for neuroprotection in Parkinson’s disease. Antioxid Redox Signal 16:965–973

    Article  CAS  Google Scholar 

  • Sherer TB, Betarbet R, Testa CM, Seo BB, Richardson JR, Kim JH, Miller GW, Yagi T, Matsuno-Yagi A, Greenamyre JT (2003) Mechanism of toxicity in rotenone models of Parkinson’s disease. J Neurosci Off J Soc Neurosci 23:10756–10764

    Article  CAS  Google Scholar 

  • Shi G, Lee JR, Grimes DA, Racacho L, Ye D, Yang H, Ross OA, Farrer M, McQuibban GA, Bulman DE (2011) Functional alteration of PARL contributes to mitochondrial dysregulation in Parkinson’s disease. Hum Mol Genet 20:1966–1974

    Article  CAS  Google Scholar 

  • Shi CH, Mao CY, Zhang SY et al (2016) CHCHD2 gene mutations in familial and sporadic Parkinson’s disease. Neurobiol Aging 38:217.e9–217.e13

    Article  CAS  Google Scholar 

  • Shimizu K, Matsubara K, Ohtaki K, Fujimaru S, Saito O, Shiono H (2003) Paraquat induces long-lasting dopamine overflow through the excitotoxic pathway in the striatum of freely moving rats. Brain Res 976:243–252

    Article  CAS  Google Scholar 

  • Shimura H, Hattori N, Kubo SO et al (2000) Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet 25(3):302–305

    Article  CAS  Google Scholar 

  • Snow BJ, Rolfe FL, Lockhart MM et al (2010) A double-blind, placebo-controlled study to assess the mitochondria-targeted antioxidant MitoQ as a disease-modifying therapy in Parkinson’s disease. Mov Disord 25:1670e1674

    Article  Google Scholar 

  • Song S, Jang S, Park J, Bang S, Choi S, Kwon KY, Zhuang X, Kim E, Chung J (2013) Characterization of PINK1 (PTEN-induced putative kinase 1) mutations associated with Parkinson disease in mammalian cells and drosophila. J Biol Chem 288(8):5660–5672. https://doi.org/10.1074/jbc.M112.430801

    Article  CAS  Google Scholar 

  • Sontag KH, Heim C, Sontag TA, God R, Reichmann H, Wesemann W, Rausch WD, Riederer P, Bringmann G (1995) Longterm behavioural effects of TaClo (1-trichloromethyl-1,2,3,4-tetrahydro-β-carboline) after subchronic treatment in rats. J Neural Transm 46:283–289

    CAS  Google Scholar 

  • Sontag TA, Lange KW, Heim C (2009) Alterations of nocturnal activity in rats following subchronic oral administration of the neurotoxin 1-trichloromethyl-1,2,3,4-tetrahydro-β- carboline. J Neural Transm 116(10):1267–1271

    Article  CAS  Google Scholar 

  • Stefanis L, Larsen KE, Rideout HJ, Sulzer D, Greene LA (2001) Expression of A53T mutant but not wild-type alpha-synuclein in PC12 cells induces alterations of the ubiquitin-dependent degradation system, loss of dopamine release, and autophagic cell death. J Neurosci 21:9549–9560

    Article  CAS  Google Scholar 

  • Sterky FH, Hoffman AF, Milenkovic D, Bao B, Paganelli A, Edgar D, Wibom R, Lupica CR, Olson L, Larsson NG (2012) Altered dopamine metabolism and increased vulnerability to MPTP in mice with partial deficiency of mitochondrial complex I in dopamine neurons. Hum Mol Genet 21:1078–1089

    Article  CAS  Google Scholar 

  • Strauss KM (2005) Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson’s disease. Hum Mol Genet 14:2099–2111

    Article  CAS  Google Scholar 

  • Subramaniam SR, Chesselet MF (2013) Mitochondrial dysfunction and oxidative stress in Parkinson’s disease. Prog Neurobiol 106-107:17–32. https://doi.org/10.1016/j.pneurobio.2013.04.004

    Article  CAS  Google Scholar 

  • Sun S, Zhao Y, Jin G, Kang H (2014) Lack of association between UCHL1 S18Y gene polymorphism and Parkinson’s disease in the Asian population: a meta-analysis. Neurol Sci 35:1867–1876

    Article  Google Scholar 

  • Surmeier DJ, Guzman JN, Sanchez-Padilla J (2010) Calcium, cellular aging, and selective neuronal vulnerability in Parkinson’s disease. Cell Calcium 47:175e182

    Article  Google Scholar 

  • Suski JM, Lebiedzinska M, Bonora M, Pinton P, Duszynski J, Wieckowski MR (2012) Relation between mitochondrial membrane potential and ROS formation. Methods Mol Biol 810:183–205

    Article  CAS  Google Scholar 

  • Swerdlow RH, Parks JK, Cassarino DS, Binder DR, Bennett JP Jr, di Iorio G, Golbe LI, Parker WD Jr (2001) Biochemical analysis of cybrids expressing mitochondrial DNA from Contursi kindred Parkinson’s subjects. Exp Neurol 169:479–485

    Article  CAS  Google Scholar 

  • Tambasco N, Romoli M, Calabresi P (2018) Levodopa in Parkinson’s disease: current status and future developments. Curr Neuropharmacol 16(8):1239–1252. https://doi.org/10.2174/1570159x15666170510143821

    Article  CAS  Google Scholar 

  • Tan EK (2010) Analysis of the UCHL1 genetic variant in Parkinson’s disease among Chinese. Neurobiol Aging 31:2194–2196

    Article  CAS  Google Scholar 

  • Tang FL, Liu W, Hu JX, Erion JR, Ye J, Mei L, Xiong WC (2015) VPS35 deficiency or mutation causes dopaminergic neuronal loss by impairing mitochondrial fusion and function. Cell Rep 12:1631–1643

    Article  CAS  Google Scholar 

  • Thiruchelvam M, Prokopenko O, Cory-Slechta DA, Buckley B, Mirochnitchenko O (2005) Overexpression of superoxide dismutase or glutathione peroxidase protects against the paraquat + maneb-induced Parkinson disease phenotype. J Biol Chem 280:22530–22539

    Article  CAS  Google Scholar 

  • Valente EM (2004) Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 304:1158–1160

    Article  CAS  Google Scholar 

  • Villacé P, Mella RM, Kortazar D (2017) Mitochondria in the context of Parkinson’s disease. Neural Regen Res 12(2):214–215. https://doi.org/10.4103/1673-5374.200802

    Article  CAS  Google Scholar 

  • Voigt DD, Nascimento CM, De Souza RB et al (2018) CHCHD2 mutational screening in Brazilian patients with familial Parkinson’s disease. Neurobiol Aging 74:236.e7–236.e8

    Article  Google Scholar 

  • Weinreb O, Amit T, Mandel S, Kupershmidt L, Youdim MBH (2010) Neuroprotective multifunctional iron chelators: from redox-sensitive process to novel therapeutic opportunities. Antioxid Redox Signal 13:919–949

    Article  CAS  Google Scholar 

  • Whitworth AJ, Lee JR, Ho VMW, Flick R, Chowdhury R, McQuibban GA (2008) Rhomboid-7 and HtrA2/Omi act in a common pathway with the Parkinson’s disease factors Pink1 and Parkin. Dis Model Mech 1:168–174

    Article  CAS  Google Scholar 

  • Winklhofer KF, Haass C (2010) Mitochondrial dysfunction in Parkinson’s disease. Biochim Biophys Acta 1802:29–44

    Article  CAS  Google Scholar 

  • Wu BL, Song B, Tian SZ, Huo SH, Cui CX, Guo YS, Liu HJ (2012) Central nervous system damage due to acute paraquat poisoning: a neuroimaging study with 3.0T MRI. Neurotoxicology

  • Xilouri M, Brekk OR, Stefanis L (2013) α-Synuclein and protein degradation systems: a reciprocal relationship. Mol Neurobiol 47:537–551

    Article  CAS  Google Scholar 

  • Yumino K, Kawakami I, Tamura M, Hayashi T, Nakamura M (2002) Paraquat- and diquat-induced oxygen radical generation and lipid peroxidation in rat brain microsomes. J Biochem 131(4):565–570

    Article  CAS  Google Scholar 

  • Zhang J, Fitsanakis VA, Gu G, Jing D, Ao M, Amarnath V, Montine TJ (2003a) Manganese ethylene-bis-dithiocarbamate and selective dopaminergic neurodegeneration in rat: a link through mitochondrial dysfunction. J Neurochem 84:336–346

    Article  CAS  Google Scholar 

  • Zhang J, Fitsanakis VA, Gu G, Jing D, Ao M, Amarnath V, Montine TJ (2003b) Manganese ethylene-bis-dithiocarbamate and selective dopaminergic neuro- 1856 degeneration in rat: a link through mitochondrial dysfunction. J Neurochem 84:336–346

    Article  CAS  Google Scholar 

  • Zhang X, Zhou JY, Chin MH, Schepmoes AA, Petyuk VA, Weitz KK, Petritis BO, Monroe ME, Camp DG II, Wood SA, Melega WP, Bigelow DJ, Smith DJ, Qian WJ, Smith RD (2010) Region-specific protein abundance changes in the brain of MPTP-induced Parkinson’s disease mouse model. J Proteome Res 9:1496–1509

  • Zhou L, Wang W, Hoppel C, Liu J, Zhu X (2017) Parkinson’s disease-associated pathogenic VPS35 mutation causes complex I deficits. Biochim Biophys Acta Mol basis Dis 1863:2791–2795

    Article  CAS  Google Scholar 

  • Zorov DB, Juhaszova M, Sollott SJ (2014) Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev 94:909e950

    Article  Google Scholar 

Download references

Availability of data and materials

Not applicable

Author information

Authors and Affiliations

Authors

Contributions

IK and TB, conceived the study and wrote the first draft of the paper; AS, SS, and NS, data compilation; LA and SB, proof read

Corresponding author

Correspondence to Tapan Behl.

Ethics declarations

Ethics approval

Not applicable

Consent to participate

Not applicable

Consent for publication

All the authors have approved the manuscript for publication.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, I., Behl, T., Sehgal, A. et al. Connecting the dots between mitochondrial dysfunction and Parkinson’s disorder: focus mitochondria-targeting therapeutic paradigm in mitigating the disease severity. Environ Sci Pollut Res 28, 37060–37081 (2021). https://doi.org/10.1007/s11356-021-14619-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-14619-6

Keywords

Navigation