Skip to main content
Log in

Characterization and health risk assessment of particulate bound polycyclic aromatic hydrocarbons (PAHs) in indoor and outdoor atmosphere of Central East India

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The selected 16 high-priority polycyclic aromatic hydrocarbons (PAHs) were characterized in PM2.5 in the indoor and outdoor air samples collected at the urban slum and rural sites in the Central East India. At the urban slum site, the indoor and outdoor concentrations of PAHs were 466.03± 11.94 ng/m3 and 321.71± 34.87 ng/m3, respectively. At the rural location, the indoor and outdoor concentrations were 294.85± 20.53 ng/m3 and 241.74± 29.04 ng/m3, respectively. Three-four and five-ring PAHs were found to be dominant in both urban slum and rural sites. Diagnostic ratio (DR) analysis and principal component analysis (PCA) conclude that diesel exhaust, gasoline, biomass, and coal combustion were the significant sources of 16 PAHs in indoor and outdoor environments, the urban slum and rural sites. Lifetime average daily dose (LADD) and incremental lifetime cancer risk (ILCR) values were calculated for health risk assessment for 6-year-old children and 24-year-old adults. The ELCR values in the urban slum site and the rural location were calculated 43.24 × 10−6 and 28.3 × 10−6. The ELCR values were observed between the acceptable limit 10−6–10−4 given by regulatory agency USEPA United States Environmental Protection Agency (1989).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Balasubramanian R, Lee SS (2007) Characteristics of indoor aerosols in residential homes in urban locations: a case study in Singapore. J Air Waste Manag Assoc 57:981–990

    Article  CAS  Google Scholar 

  • Benner JBA, Wise SA, Currie LA (1995) Distinguishing the contribution of residential wood combustion and mobile source emissions using relative concentrations of dimethyl phenanthrene isomers. Environ Sci Technol 29:2382–2389

    Article  CAS  Google Scholar 

  • Bhargava A, Khanna RN, Bhargava SK, Kumar S (2004) Exposure risk to carcinogenic PAHs in indoor-air during biomass combustion whilst cooking in rural India. Atmos Environ 38:4761–4767

    Article  CAS  Google Scholar 

  • Chang KF, Fang GC, Chen JC, Wu YS (2006) Atmospheric polycyclic aromatic hydrocarbons (PAHs) in Asia: a review from 1999 to 2004. Environ Pollut 142:388–396

    Article  CAS  Google Scholar 

  • Chen SC, Liao CM (2006) Health risk assessment on human exposed to environmental polycyclic aromatic hydrocarbons pollution sources. Sci Total Environ 366:112–123

    Article  CAS  Google Scholar 

  • Chiu JC, Shen YH, Li HW, Chang SS, Wang LC, Chang-Chien GP (2011) Effect of biomass open burning on particulate matter and polycyclic aromatic hydrocarbon concentration levels and PAH dry deposition in ambient air. J Environ Sci Health A Toxic/Hazard Subst Environ Eng 46:188–197

    CAS  Google Scholar 

  • De La Torre-Roche RJ, Lee WY, Campos-Díaz SI (2009) Soil–borne polycyclic aromatic hydrocarbons in El Paso, Texas: analysis of a potential problem in the United States/ Mexico border region. J Hazard Mater 163:946–958

    Article  CAS  Google Scholar 

  • Dubowsky SD, Wallace LA, Buckley TJ (1999) The contribution of traffic to indoor concentrations of polyaromatic hydrocarbons. Expos Analyt Environ Epiderm 9:312–321

    CAS  Google Scholar 

  • Durlak SK, Biswas P, Shi J, Bernhard MJ (1998) Characterization of polycyclic aromatic hydrocarbon particulate and gaseous emissions from polystyrene combustion. Environ Sci Technol 32:2301–2307

    Article  CAS  Google Scholar 

  • Ferreira-Baptista L, De-Miguel E (2005) Geochemistry and risk assessment of street dust in Luanda: Angola. A tropical urban environment Atmos Environ 39:4501–4512

    CAS  Google Scholar 

  • Fischer PH, Hoek G, Reeuwijk HV (2000) D.J. Briggs, Traffic-related differences in outdoor and indoor concentrations of particles and volatile organic compounds in Amsterdam. Atmos Environ 34:3713–3722

    Article  CAS  Google Scholar 

  • Han B, Bai Z, Liu Y, You Y, Xu J, Zhou J, Zhang J, Niu C, Zhang N, He F, Ding X (2014) Characterizations, relationship, and potential sources of outdoor and indoor particulate matter bound polycyclic aromatic hydrocarbons (PAHs) in a community of Tianjin, Northern China. Indoor Air 25:40

    Google Scholar 

  • Harrison RM, Smith DJT, Luhana L (1996) Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham, U.K. Environ Sci Technol 30:825–832

    Article  CAS  Google Scholar 

  • He JB, Fan SX, Meng QZ, Sun Y, Zhang J, Zu F (2014) Polycyclic aromatic hydrocarbons (PAHs) associated with fine particulate matters in Nanjing, China: distributions, sources and meteorological influences. Atmos Environ 89:207–215

    Article  CAS  Google Scholar 

  • Huang XF, He LY, Hu M, Zhang YH (2006) Annual variation of particulate organic compounds in PM2.5, in the urban atmosphere of Beijing. Atmos Environ 40:2449–2458

    Article  CAS  Google Scholar 

  • IARC (2010) Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. IARC Monogr Eval Carcinog Risks Hum 92:773

    Google Scholar 

  • ICMR (2009) Nutrient requirements and recommended dietary allowances for Indians. A report of the expert group of the Indian Council of Medical Research Hyderabad India: National Institute of Nutrition

  • Khalili NR, Scheff PA, Holsen TM (1995) PAH source fingerprints for coke ovens, diesel and, gasoline engines, highway tunnels, and wood combustion emissions. Atmos Environ 29:533–542

    Article  CAS  Google Scholar 

  • Kong S, Ding X, Bai Z, Han B, Chen L, Shi J, Li Z (2010) A seasonal study of polycyclic aromatic hydrocarbons in PM2.5 and PM2.5-10 in five typical cities of Liaoning Province. China Hazard Mater 183:70–80

    Article  CAS  Google Scholar 

  • Kumar M, Furumai H, Kurisu F, Kasuga I (2013) Tracing source and distribution of heavy metals in road dust: soil and soak away sediment through speciation and isotopic fingerprinting. Geoderma 211-212:8–17

    Article  CAS  Google Scholar 

  • Kumar A, Ambade B, Sankar TK, Sethi SS, Kurwadkar S (2020) Source identification and health risk assessment of atmospheric PM2.5-bound polycyclic aromatic hydrocarbons in Jamshedpur, India. Sustain Cities Soc 52:101801

    Article  Google Scholar 

  • Larsen RK, Baker JE (2003) Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere: a comparison of three methods. Environ Sci Technol 37(9):1873–1881

    Article  CAS  Google Scholar 

  • Lau C, Fiedler H, Hutzinger OS (1997) Levels of selected organic compounds in materials for candle productions and humans exposures to candle emissions. Chemosphere. 34:1623–1630

    Article  CAS  Google Scholar 

  • Li CS, Ro YS (2000) Indoor characteristics of polycyclic aromatic hydrocarbons in the urban atmosphere of Taipei. Atmos Environ 34:611–620

    Article  CAS  Google Scholar 

  • Li X, Wang Y, Guo X, Wang Y (2013) Seasonal variation and source apportionment of organic and inorganic compounds in PM2.5 and PM10 particulates in Beijing. China J Environ Sci 25:741–750

    Article  CAS  Google Scholar 

  • Lin CT, Chang HF, Hsien HJ, Chao RH, Chao RM (2002) Characteristics of polycyclic aromatic hydrocarbons and total suspended particulate in indoor and outdoor atmosphere of a Taiwanese temple. Hazard Mater 95:1–12

    Article  CAS  Google Scholar 

  • Liu J, Man R, Ma S, Li J, Wu Q, Peng J (2015) Atmospheric levels and health risk of polycyclic aromatic hydrocarbons (PAHs) bound to PM2.5 in Guangzhou. China Mar Pollut Bull 100:134–143

    Article  CAS  Google Scholar 

  • Luo X-J, Chen S-J, Mai B-X, Yang Q-S, Sheng G-Y, Fu J-M (2006) Polycyclic aromatic hydrocarbons in suspended particulate matter and sediments from the Pearl River Estuary and adjacent coastal areas, China. Environ Pollut 139(1):9–20

    Article  CAS  Google Scholar 

  • LV Jungang X, Guoping RW, Qinghua Z, Li Y, Pu W, Chunyang L, Jiyan L, Guibin J, Fusheng W (2009) Indoor and outdoor air pollution of polycyclic aromatic hydrocarbons (PAHs) in Xuanwei and Fuyuan, China. J Environ Monit 11:1368–1374

    Article  CAS  Google Scholar 

  • Marr LCW, Harley RA, Miguel AH (1999) Characterization of polycyclic aromatic hydrocarbons in motor vehicle fuels and exhaust emission. Environ Sci Technol 33:3091–3099

    Article  CAS  Google Scholar 

  • Masih J, Masih A, Kulshrestha A, Singhvi R, Taneja A (2010) Characteristics of polycyclic aromatic hydrocarbons in indoor and outdoor atmosphere in the North central part of India. J Hazard Mater 177:190–198

    Article  CAS  Google Scholar 

  • Mitra S, Ray B (1995) Patterns and sources of polycyclic aromatic hydrocarbons and there derivatives in indoor air. Atmos Environ 92:3345–3356

    Article  Google Scholar 

  • NAAQS (National Ambient Air Quality Standards) (2009) Ministry of Forest and Environment. Government of India New Delhi

  • Naumova YY, Eisenreich SJ, Turpin BJ (2002) Polycyclic aromatic hydrocarbons in the indoor and outdoor air of three cities in the US. Environ Sci Technol 36:2552–2559

    Article  CAS  Google Scholar 

  • Nisbet ICT, Lagoy PK (1992) Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul Toxicol Pharmacol 16(3):290–300

    Article  CAS  Google Scholar 

  • Oanh NTK, Dung NT (1999) Emission of polyaromatic hydrocarbons and particulate matter from domestic combustion of selected fuels. Environ Sci Technol 33:2703–2709

    Article  CAS  Google Scholar 

  • Oliveira M, Slezakova K, Delerue-Matos C, Pereira MC, Morais S (2015) Polycyclic aromatic hydrocarbons: levels and phase distributions in preschool microenvironment. Indoor Air 25:557–568

    Article  CAS  Google Scholar 

  • Peng C, Chen WP, Liao XL, Wang ME, Ouyang ZY, Jiao WT (2011) Polycyclic aromatic hydrocarbons in urban soils of Beijing: Status, sources, distribution and potential risk. Environ Pollut 159:802–808

    Article  CAS  Google Scholar 

  • Pies C, Hoffmann B, Petrowsky J, Yang Y, Ternes TA, Hofmann T (2008) Characterization and source identification of polycyclic aromatic hydrocarbons (PAHs) in river bank soils. Chemosphere 72:1594–1601

    Article  CAS  Google Scholar 

  • Rogge WF, Hildemann LM, Mazurek MA, Cass GR, Simoneit BRT (1993) Sources of fine organic aerosol. 5. Natural gas home appliances. Environ Sci Technol 27:2736–2744

    Article  CAS  Google Scholar 

  • Rogge WF, Hildermann LM, Mazurek MA, Simoneit BRT (1997) Source of organic aerosols. 8. Boilers burning no. 2 distillate fuel oil. Environ Sci Technol 31:2731–2737

    Article  CAS  Google Scholar 

  • Rogge WF, Hildemann LM, Mazurek MA, Cass GR (1998) Sources of fine organic aerosol. 9. Pine, oak, and residential fireplaces. Environ Sci Technol 32:13–22

    Article  CAS  Google Scholar 

  • Shen H, Huang Y, Wang R, Zhu D, Li W, Shen G, Wang B, Zhang Y, Chen Y, Lu Y, Chen H, Li T, Sun K, Li B, Liu W, Liu J, Tao S (2013) Global atmospheric emissions of polycyclic aromatic hydrocarbons from 1960 to 2008 and future predictions. Environ Sci Technol 47:6415–6424

    Article  CAS  Google Scholar 

  • Shi B, Wu Q, Ouyang H, Liu X, Zhang J, Zuo W (2015) Distribution and source apportionment of polycyclic aromatic hydrocarbons in the surface soil of Baise, China. Environ Monit Assess 187(5):232

    Article  CAS  Google Scholar 

  • Simcik MF, Eisenreich SJ, Lioy PJ (1999) Source apportionment and source/sink relationships of PAHs in the coastal environment of Chicago and Lake Michigan. Atmos Environ 33:5071–5079

    Article  CAS  Google Scholar 

  • Smith KR, Mehta S (2003) The burden of disease from indoor air pollution in developing countries: comparison of estimates. Int J Hyg Environ Health 206:279–289

    Article  CAS  Google Scholar 

  • Soltani N, Keshavarzi B, Moore F, Tavakol T, Lahijanzadeh AR, Jaafarzadeh N, Kermani M (2015) Ecological and human health hazards of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in street dust of Isfahan metropolis. Iran Sci Total Environ 505:712–723

    Article  CAS  Google Scholar 

  • Tobiszewski M, Namiesnik J (2012) PAH diagnostic ratios for the identification of pollution emission sources. Environ Pollut 162:110–119

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency (1989) Risk assessment guidance for superfund. vol. I. USEPA, Washington (Human health evaluation manual (part A). EPA 540-1-89-002, Office of Emergency and Remedial Response)

  • U.S. EPA (1991) Risk assessment guidance for superfund, Volume 1, Human Health Evaluation Manual (Part B, Development of Risk-Based Preliminary Remediation Goals). OSWER; 1991 [9285.7-01B. EPA/540/R-92/003].

  • USEPA (2011) Exposure factors handbook edition. EPA/600/R-09/052F. Washington, D.C: National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency. 20460

  • Wang GH, Kimitaka K, Lee SC, Ho KF, Cao JJ (2006) Molecular, seasonal, and spatial distributions of organic aerosols from fourteen Chinese cities. Environ Sci Technol 40:4619–4625

    Article  CAS  Google Scholar 

  • Wang Z, Li K, Lambert P, Yang C (2007) Identification, characterization and quantitation of pyrogenic polycyclic aromatic hydrocarbons and other organic compounds in tire fire products. J Chromatogr A 1139(1):14–26

    Article  CAS  Google Scholar 

  • Wang HB, Tian M, Li XH, Chang Q, Cao JJ, Yang FM, Ma YL, He KB (2015) Chemical composition and light extinction contribution of PM2.5 in urban Beijing for a 1- year period. Aerosol Air Qual. Res. 15:2200–2211

    CAS  Google Scholar 

  • WHO (World Health Organization) (1997) Assessment of exposure to indoor air pollutants. Jantunen, M., Jaakkola, J.J.K., Krzyzanowski M. (Eds.), WHO Regional Publications, European Series, No. 78. WHO Regional Office for Europe, Copenhagen

  • Wu Y, Yang L, Zheng X, Zhang SJ, Song SJ, Li JQ, Hao JM (2014a) Characterization and source apportionment of particulate PAHs in the roadside environment in Beijing. Sci Total Environ 470-471:76–83

    Article  CAS  Google Scholar 

  • Wu Y, Yang L, Zheng X, Zhang SJ, Song SJ, Li JQ, Hao JM (2014b) Characterization and source apportionment of particulate PAHs in the roadside environment in Beijing. Sci Total Environ 470-471:76–83

    Article  CAS  Google Scholar 

  • Yang X, Okada Y, Tang N, Matsunaga S, Tamura K, Lin J, Kameda T, Toriba A, Hayakawa K (2007) Long-range transport of polycyclic aromatic hydrocarbons from China to Japan. Atmos Environ 41:2710–2718

    Article  CAS  Google Scholar 

  • Yu Y, Guo H, Liu Y, Huang K, Wang Z, Zhan X (2008) Mixed uncertainty analysis of polycyclic aromatic hydrocarbon inhalation and risk assessment in ambient air of Beijing. J Environ Sci 20:505–512

    Article  CAS  Google Scholar 

  • Yunker MB, Macdonald RW, Vingarzan R, Mitchelld RH, Goyettee D, Sylvestrec S (2002) PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org Geochem 33:489–515

    Article  CAS  Google Scholar 

  • Zhang JJ, Smith KR (2007) Household air pollution from coal and biomass fuels in China: measurements, health impacts, and interventions. Environ Health Perspect 115:848–855

    Article  Google Scholar 

  • Zhang F, Cheng HR, Wang ZW, Lv XP, Zhu ZM, Zhang G, Wang XM (2014) Fine particles (PM2.5) at a CAWNET background site in Central China: chemical compositions, seasonal variations and regional pollution events. Atmos Environ 86:193–202

    Article  CAS  Google Scholar 

  • Zhu Y, Yang L, Meng CP, Yuan Q, Yan C, Dong C, Sui X, Yao L, Yang F, Lu YL, Wang WX (2015) Indoor/outdoor relationships and diurnal/nocturnal variations in water-soluble ion and PAH concentrations in the atmospheric PM2.5 of a business office area in Jinan, a heavily polluted city in China. Atmos Res 153:276–285

    Article  CAS  Google Scholar 

  • Živković M, Jovašević-Stojanović M, Cvetković I, Lazović I, Tasić V, Stevanović Ž et al (2015) PAHs levels in gas and particle-bound phase in schools at different locations in Serbia. Chem Ind Chem Eng 21(1):159–167

    Article  CAS  Google Scholar 

  • Zuo Q, Duan YH, Yang Y, Wang XJ, Tao S (2007) Source apportionment of polycyclic aromatic hydrocarbons in surface soil in Tianjin, China. Environ Pollut 147(2):303–310

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the SERB-DST, Government of India, Sanction Order No EEQ/2016/000504

Availability of data and materials

Not applicable.

Funding

Science and Engineering Research Board financially supported this study, Department of Science and Technology, (SERB-DST), Government of India, Sanction Order No EEQ/2016/000504. The authors are thankful to Ali Jaan Hussain for providing a facility for air sampling in the indoor atmosphere.

Author information

Authors and Affiliations

Authors

Contributions

Balram Ambade: writing (original draft), methodology, and supervisor.

Amit Kumar: experiment, sampling, correction, and writing—review and editing.

Lokesh Kumar Sahu: grammar checking, review, and a collaborator on the project.

Corresponding author

Correspondence to Balram Ambade.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Constantini Samara

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambade, B., Kumar, A. & Sahu, L.K. Characterization and health risk assessment of particulate bound polycyclic aromatic hydrocarbons (PAHs) in indoor and outdoor atmosphere of Central East India. Environ Sci Pollut Res 28, 56269–56280 (2021). https://doi.org/10.1007/s11356-021-14606-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-14606-x

Keywords

Navigation