Skip to main content

MicroRNAs’ role in the environment-related non-communicable diseases and link to multidrug resistance, regulation, or alteration

Abstract

The discovery of microRNAs (miRNAs) 20 years ago has advocated a new era of “small molecular genetics.” About 2000 miRNAs are present that regulate one third of the genome. MiRNA dysregulated expression arising as a response to our environment insult or stress or changes may contribute to several diseases, namely non-communicable diseases, including tumor growth. Their presence in body fluids, reflecting level alteration in various cancers, merit circulating miRNAs as the “next-generation biomarkers” for early-stage tumor diagnosis and/or prognosis. Herein, we performed a comprehensive literature search focusing on the origin, biosynthesis, and role of miRNAs and summarized the foremost studies centering on miR value as non-invasive biomarkers in different environment-related non-communicable diseases, including various cancer types. Moreover, during chemotherapy, many miRNAs were linked to multidrug resistance, via modulating numerous, environment triggered or not, biological processes and/or pathways that will be highlighted as well.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Availability of data and materials

Not applicable.

Abbreviations

ABCB1 :

ATP Binding Cassette Subfamily B Member 1

ABCC1 :

ATP Binding Cassette Subfamily C Member 1

ABCG :

ATP binding cassette super-family G member

AGO :

Argonaute

AMI :

Acute myocardial infarction

AMPK :

Adenosine-5-monophosphate-activated protein kinase

ATG5 :

Autophagy related 5

BCL-XL :

B-cell lymphoma-extra large

BCL2 :

B-cell lymphoma 2

BCRP :

Breast cancer resistant protein

CDK6 :

Cyclin-dependent kinase 6

CeRNA :

Competative endogenous RNA

CRC :

Colorectal cancer

CYP :

Cytochrome P450

CVD :

Cardiovascular diseases

DCP :

De-capping protein

DGCR8 :

Drosha-DiGeorge syndrome-critical region gene 8

DPD :

Dihydropyrimidine dehydrogenase

dsRNA :

Double stranded RNAs

EDC4 :

Enhancer of de-capping 4

eIF4G :

Eukaryotic initiation factor 4

ERK :

Extracellular signal-regulated kinase

GSH :

Glutathione

GST :

Glutathione S-transferases

HCC :

Hepatocellular carcinoma

LncRNA :

Long non-coding RNA

MAPK :

Mitogen-activated protein kinase

MDR :

Multidrug resistance

miRNA :

MicroRNA

MRE :

MiRNA response elements

MRP1 :

Multidrug resistance-associated protein 1

mTOR :

Mechanistic target of rapamycin

NCDs :

Non communicable diseases

ncRNAs :

Noncoding RNAs

NSCLC :

Non small-cell lung carcinoma

ORF :

Open reading frame

OncoomiR :

Oncogenic miRNA

PD :

Parkinson’s Disease

PDCD4 :

Proapoptotic factors programmed cell death 4

PI3K :

Phosphoinositide 3- kinase

piRNA :

Piwi-interacting RNAs

PPARγ :

Peroxisome Proliferator-activated Receptor γ

Pre-miRNAs :

Precursor-miRNAs

Pri-miRNAs :

Primary miRNAs

PTEN :

Phosphatase and tensin homolog

Rictor :

Rapamycin-insensitive companion of mTOR

RISCs :

RNA-induced silencing complex

S6K1 :

Ribosomal protein S6 kinase beta 1

shRNAs :

Short heterogenous RNAs

siRNA :

Small interfering RNA

snoRNAs :

Small nucleolar RNAs

snRNAs :

Small nuclear RNAs

TS :

Thymidylate synthase

UTR :

Untranslated Region

References

  1. Ahmed Youness R, Amr Assal R, Mohamed Ezzat S, Zakaria Gad M, Abdel Motaal A (2020) A methoxylated quercetin glycoside harnesses HCC tumor progression in a TP53/miR-15/miR-16 dependent manner. Nat Prod Res 34:1475–1480. https://doi.org/10.1080/14786419.2018.1509326

    CAS  Article  Google Scholar 

  2. Alarcón CR, Lee H, Goodarzi H, Halberg N, Tavazoie SF (2015) N 6-methyladenosine marks primary microRNAs for processing. Nature 519:482–485

    Article  Google Scholar 

  3. An X, Sarmiento C, Tan T, Zhu H (2017) Regulation of multidrug resistance by microRNAs in anti-cancer therapy. Acta Pharm Sin B 7:38–51. https://doi.org/10.1016/j.apsb.2016.09.002

    Article  Google Scholar 

  4. Anuradha R, Saraswati M, Kumar KG, Rani SH (2014) Apoptosis of Beta cells in diabetes mellitus. DNA Cell Biol 33:743–748. https://doi.org/10.1089/dna.2014.2352

    CAS  Article  Google Scholar 

  5. Armada A, Gomes BC, Viveiros M, Rueff J, Rodrigues AS (2019) Regulation of ABCB1 activity by microRNA-200c and microRNA-203a in breast cancer cells: the quest for microRNAs’ involvement in cancer drug resistance. Cancer Drug Resist 2:897–911. https://doi.org/10.20517/cdr.2019.24

    Article  Google Scholar 

  6. Armand-Labit V, Pradines A (2017) Circulating cell-free microRNAs as clinical cancer biomarkers. Biomol Concepts 8:61–81

    CAS  Article  Google Scholar 

  7. Arner P, Kulyté A (2015) MicroRNA regulatory networks in human adipose tissue and obesity. Nat Rev Endocrinol 11:276–288. https://doi.org/10.1038/nrendo.2015.25

    CAS  Article  Google Scholar 

  8. Bach D-H, Hong J-Y, Park HJ, Lee SK (2017) The role of exosomes and miRNAs in drug-resistance of cancer cells. Int J Cancer 141:220–230. https://doi.org/10.1002/ijc.30669

    CAS  Article  Google Scholar 

  9. Bai C, Gao Y, Li X, Wang K, Xiong H, Shan Z, Zhang P, Wang W, Guan W, Ma Y (2017) MicroRNAs can effectively induce formation of insulin-producing cells from mesenchymal stem cells. J Tissue Eng Regen Med 11:3457–3468. https://doi.org/10.1002/term.2259

    CAS  Article  Google Scholar 

  10. Barutta F, Bellini S, Mastrocola R, Bruno G, Gruden G (2018) MicroRNA and microvascular complications of diabetes. Int J Endocrinol 2018:1–20. https://doi.org/10.1155/2018/6890501

    CAS  Article  Google Scholar 

  11. Belarbi Y, Mejhert N, Lorente-Cebrián S, Dahlman I, Arner P, Rydén M, Kulyté A (2015) MicroRNA-193b controls adiponectin production in human white adipose tissue. J Clin Endocrinol Metab 100:E1084–E1088. https://doi.org/10.1210/jc.2015-1530

    CAS  Article  Google Scholar 

  12. Blenkiron C, Miska EA (2007) miRNAs in cancer: approaches, aetiology, diagnostics and therapy. Hum Mol Genet. 16 Spec No 1:R106-R113. doi: https://doi.org/10.1093/hmg/ddm056

  13. Bracken CP, Scott HS, Goodall GJ (2016) A network-biology perspective of microRNA function and dysfunction in cancer. Nat Rev Genet 17:719–732. https://doi.org/10.1038/nrg.2016.134

    CAS  Article  Google Scholar 

  14. Cai Q, Zeng S, Dai X, Wu J, Ma W (2017) miR-504 promotes tumour growth and metastasis in human osteosarcoma by targeting TP53INP1. Oncol Rep 38:2993–3000. https://doi.org/10.3892/or.2017.5983

    CAS  Article  Google Scholar 

  15. Callegari E, D’Abundo L, Guerriero P, Simioni C, Elamin BK, Russo M, Cani A, Bassi C, Zagatti B, Giacomelli L, Blandamura S, Moshiri F, Ultimo S, Frassoldati A, Altavilla G, Gramantieri L, Neri LM, Sabbioni S, Negrini M (2018) miR-199a-3p modulates MTOR and PAK4 pathways and inhibits tumor growth in a hepatocellular carcinoma transgenic mouse model. Mol Ther Acids 11:485–493. https://doi.org/10.1016/j.omtn.2018.04.002

    CAS  Article  Google Scholar 

  16. Cao M-Q, You A-B, Zhu X-D, Zhang W, Zhang YY, Zhang SZ, Zhang KW, Cai H, Shi WK, Li XL, Li KS, Gao DM, Ma DN, Ye BG, Wang CH, Qin CD, Sun HC, Zhang T, Tang ZY (2018) miR-182-5p promotes hepatocellular carcinoma progression by repressing FOXO3a. J Hematol Oncol 11:1–12. https://doi.org/10.1186/s13045-018-0555-y

    CAS  Article  Google Scholar 

  17. Catalanotto C, Cogoni C, Zardo G (2016) MicroRNA in control of gene expression: an overview of nuclear functions. Int J Mol Sci 17:1712. https://doi.org/10.3390/ijms17101712

    CAS  Article  Google Scholar 

  18. Chatterjee A, Chattopadhyay D, Chakrabarti G (2015) miR-16 targets Bcl-2 in paclitaxel-resistant lung cancer cells and overexpression of miR-16 along with miR-17 causes unprecedented sensitivity by simultaneously modulating autophagy and apoptosis. Cell Signal 27:189–203. https://doi.org/10.1016/j.cellsig.2014.11.023

    CAS  Article  Google Scholar 

  19. Chava S, Reynolds CP, Pathania AS, Gorantla S, Poluektova LY, Coulter DW, Gupta SC, Pandey MK, Challagundla KB (2020) miR-15a-5p, miR-15b-5p, and miR-16-5p inhibit tumor progression by directly targeting MYCN in neuroblastoma. Mol Oncol 14:180–196. https://doi.org/10.1002/1878-0261.12588

    CAS  Article  Google Scholar 

  20. Chen J, Xu T, Chen C (2015a) The critical roles of miR-21 in anti-cancer effects of curcumin. Ann Transl Med 3

  21. Chen Q, Qin R, Fang Y, Li H (2015b) Berberine sensitizes human ovarian cancer cells to cisplatin through miR-93/PTEN/Akt signaling pathway. Cell Physiol Biochem 36:956–965. https://doi.org/10.1159/000430270

    CAS  Article  Google Scholar 

  22. Chen S, Jiao J-W, Sun K et al (2015c) MicroRNA-133b targets glutathione S-transferase π expression to increase ovarian cancer cell sensitivity to chemotherapy drugs. Drug Des Devel Ther 9:5225–5235. https://doi.org/10.2147/DDDT.S87526

    CAS  Article  Google Scholar 

  23. Chen D, Huang X, Lu S, Deng H, Gan H, Huang R, Zhang B (2019) miRNA-125a modulates autophagy of thyroiditis through PI3K/Akt/mTOR signaling pathway. Exp Ther Med 17:2465–2472. https://doi.org/10.3892/etm.2019.7256

    CAS  Article  Google Scholar 

  24. Cheng áL, Doecke JD, Sharples RA et al (2015) Prognostic serum miRNA biomarkers associated with Alzheimer’s disease shows concordance with neuropsychological and neuroimaging assessment. Mol Psychiatry 20:1188–1196. https://doi.org/10.1038/mp.2014.127

    CAS  Article  Google Scholar 

  25. Cheng X, Xu Q, Zhang Y, Shen M, Zhang S, Mao F, Li B, Yan X, Shi Z, Wang L, Sheng G, Zhang Q (2019) miR-34a inhibits progression of neuroblastoma by targeting autophagy-related gene 5. Eur J Pharmacol 850:53–63. https://doi.org/10.1016/j.ejphar.2019.01.071

    CAS  Article  Google Scholar 

  26. Chong ZZ (2016) Targeting PRAS40 for multiple diseases. Drug Discov Today 21:1222–1231. https://doi.org/10.1016/j.drudis.2016.04.005

    CAS  Article  Google Scholar 

  27. Cioffi M, Vallespinos-Serrano M, Trabulo SM, Fernandez-Marcos PJ, Firment AN, Vazquez BN, Vieira CR, Mulero F, Camara JA, Cronin UP, Perez M, Soriano J, G. Galvez B, Castells-Garcia A, Haage V, Raj D, Megias D, Hahn S, Serrano L, Moon A, Aicher A, Heeschen C (2015) MiR-93 controls adiposity via inhibition of Sirt7 and Tbx3. Cell Rep 12:1594–1605. https://doi.org/10.1016/j.celrep.2015.08.006

    CAS  Article  Google Scholar 

  28. Cirilo PDR, de Sousa Andrade LN, Corrêa BRS, Qiao M, Furuya TK, Chammas R, Penalva LOF (2017) MicroRNA-195 acts as an anti-proliferative miRNA in human melanoma cells by targeting prohibitin 1. BMC Cancer 17:750. https://doi.org/10.1186/s12885-017-3721-7

    CAS  Article  Google Scholar 

  29. Condrat CE, Thompson DC, Barbu MG, Bugnar OL, Boboc A, Cretoiu D, Suciu N, Cretoiu SM, Voinea SC (2020) miRNAs as biomarkers in disease: latest findings regarding their role in diagnosis and prognosis. Cells 9:276. https://doi.org/10.3390/cells9020276

    CAS  Article  Google Scholar 

  30. Cong J, Liu R, Wang X, Jiang H, Zhang Y (2016) miR-634 decreases cell proliferation and induces apoptosis by targeting mTOR signaling pathway in cervical cancer cells. Artif Cells, Nanomedicine, Biotechnol 44:1694–1701. https://doi.org/10.3109/21691401.2015.1080171

    CAS  Article  Google Scholar 

  31. Coskun E, Ercin M, Gezginci-Oktayoglu S (2018) The role of epigenetic regulation and pluripotency-related microRNAs in differentiation of pancreatic stem cells to beta cells. J Cell Biochem 119:455–467. https://doi.org/10.1002/jcb.26203

    CAS  Article  Google Scholar 

  32. da Silva AMG, de Araújo JNG, de Oliveira KMM et al (2018) Circulating miRNAs in acute new-onset atrial fibrillation and their target mRNA network. J Cardiovasc Electrophysiol 29:1159–1166. https://doi.org/10.1111/jce.13612

    Article  Google Scholar 

  33. Das F, Dey N, Bera A, Kasinath BS, Ghosh-Choudhury N, Choudhury GG (2016) MicroRNA-214 reduces insulin-like growth factor-1 (IGF-1) receptor expression and downstream mTORC1 signaling in renal carcinoma cells. J Biol Chem 291:14662–14676. https://doi.org/10.1074/jbc.M115.694331

    CAS  Article  Google Scholar 

  34. Das S, Mohamed IN, Teoh SL, Thevaraj T, Ku Ahmad Nasir KN, Zawawi A, Salim HH, Zhou DK (2020) Micro-RNA and the features of metabolic syndrome: a narrative review. Mini-Reviews Med Chem 20:626–635. https://doi.org/10.2174/1389557520666200122124445

    CAS  Article  Google Scholar 

  35. de Rie D, Abugessaisa I, Alam T et al (2017) An integrated expression atlas of miRNAs and their promoters in human and mouse. Nat Biotechnol 35:872–878. https://doi.org/10.1038/nbt.3947

    CAS  Article  Google Scholar 

  36. Dewdney B, Trollope A, Moxon J, Thomas Manapurathe D, Biros E, Golledge J (2018) Circulating microRNAs as biomarkers for acute ischemic stroke: a systematic review. J Stroke Cerebrovasc Dis 27:522–530. https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.09.058

    Article  Google Scholar 

  37. Ding H, Huang Z, Chen M, Wang C, Chen X, Chen J, Zhang J (2016) Identification of a panel of five serum miRNAs as a biomarker for Parkinson’s disease. Parkinsonism Relat Disord 22:68–73. https://doi.org/10.1016/j.parkreldis.2015.11.014

    Article  Google Scholar 

  38. Ding X, Zhong T, Jiang L, Huang J, Xia Y, Hu R (2018) miR-25 enhances cell migration and invasion in non-small-cell lung cancer cells via ERK signaling pathway by inhibiting KLF4. Mol Med Rep 17:7005–7016. https://doi.org/10.3892/mmr.2018.8772

    CAS  Article  Google Scholar 

  39. Dong H, Li J, Huang L, Chen X, Li D, Wang T, Hu C, Xu J, Zhang C, Zen K, Xiao S, Yan Q, Wang C, Zhang CY (2015) Serum microRNA profiles serve as novel biomarkers for the diagnosis of Alzheimer’s disease. Dis Markers 2015:1–11. https://doi.org/10.1155/2015/625659

    CAS  Article  Google Scholar 

  40. Du J, Liu S, He J et al (2015) MicroRNA-451 regulates stemness of side population cells via PI3K/Akt/mTOR signaling pathway in multiple myeloma. Oncotarget 6:14993–15007. https://doi.org/10.18632/oncotarget.3802

    Article  Google Scholar 

  41. Dykes IM, Emanueli C (2017) Transcriptional and post-transcriptional gene regulation by long non-coding RNA. Genomics Proteomics Bioinformatics 15:177–186

    Article  Google Scholar 

  42. ElKhouly AM, Youness RAA, Gad MZZ (2020) MicroRNA-486-5p and microRNA-486-3p: multifaceted pleiotropic mediators in oncological and non-oncological conditions. Non-coding RNA Res 5:11–21. https://doi.org/10.1016/j.ncrna.2020.01.001

    CAS  Article  Google Scholar 

  43. Engelmann I, Alidjinou EK, Bertin A, Bossu J, Villenet C, Figeac M, Sane F, Hober D (2017) Persistent coxsackievirus B4 infection induces microRNA dysregulation in human pancreatic cells. Cell Mol Life Sci 74:3851–3861. https://doi.org/10.1007/s00018-017-2567-0

    CAS  Article  Google Scholar 

  44. Falzone L, Scola L, Zanghì A, Biondi A, di Cataldo A, Libra M, Candido S (2018) Integrated analysis of colorectal cancer microRNA datasets: identification of microRNAs associated with tumor development. Aging (Albany NY) 10:1000–1014. https://doi.org/10.18632/aging.101444

    Article  Google Scholar 

  45. Fan Y, Shi Y, Lin Z, Huang X, Li J, Huang W, Shen D, Zhuang G, Liu W (2019) miR-9-5p suppresses malignant biological behaviors of human gastric cancer cells by negative regulation of TNFAIP8L3. Dig Dis Sci 64:2823–2829. https://doi.org/10.1007/s10620-019-05626-2

    CAS  Article  Google Scholar 

  46. Feinberg MW, Moore KJ (2016) MicroRNA regulation of atherosclerosis. Circ Res 118:703–720. https://doi.org/10.1161/CIRCRESAHA.115.306300

    CAS  Article  Google Scholar 

  47. Fragni M, Bonini SA, Bettinsoli P, Bodei S, Generali D, Bottini A, Spano PF, Memo M, Sigala S (2016) The miR-21/PTEN/Akt signaling pathway is involved in the anti-tumoral effects of zoledronic acid in human breast cancer cell lines. Naunyn Schmiedeberg's Arch Pharmacol 389:529–538. https://doi.org/10.1007/s00210-016-1224-8

    CAS  Article  Google Scholar 

  48. Frixa T, Donzelli S, Blandino G (2015) Oncogenic microRNAs: key players in malignant transformation. Cancers (Basel) 7:2466–2485. https://doi.org/10.3390/cancers7040904

    CAS  Article  Google Scholar 

  49. Ge S, Wang D, Kong Q, Gao W, Sun J (2017) Function of miR-152 as a tumor suppressor in human breast cancer by targeting PIK3CA. Oncol Res Featur Preclin Clin Cancer Ther 25:1363–1371. https://doi.org/10.3727/096504017X14878536973557

    Article  Google Scholar 

  50. Geng D, Song X, Ning F, Song Q, Yin H (2015) miR-34a inhibits viability and invasion of human papillomavirus–positive cervical cancer cells by targeting E2F3 and regulating survivin. Int J Gynecol Cancer 25:707–713. https://doi.org/10.1097/IGC.0000000000000399

    Article  Google Scholar 

  51. Geretto M, Pulliero A, Rosano C, Zhabayeva D, Bersimbaev R, Izzotti A (2017) Resistance to cancer chemotherapeutic drugs is determined by pivotal microRNA regulators. Am J Cancer Res 7:1350–1371

    CAS  Google Scholar 

  52. Ghanbarian M, Afgar A, Yadegarazari R, Najafi R, Teimoori-Toolabi L (2018) Through oxaliplatin resistance induction in colorectal cancer cells, increasing ABCB1 level accompanies decreasing level of miR-302c-5p, miR-3664-5p and miR-129-5p. Biomed Pharmacother 108:1070–1080. https://doi.org/10.1016/j.biopha.2018.09.112

    CAS  Article  Google Scholar 

  53. Glover AR, Zhao JT, Gill AJ, Weiss J, Mugridge N, Kim E, Feeney AL, Ip JC, Reid G, Clarke S, Soon PSH, Robinson BG, Brahmbhatt H, MacDiarmid JA, Sidhu SB (2015) microRNA-7 as a tumor suppressor and novel therapeutic for adrenocortical carcinoma. Oncotarget 6:36675–36688. https://doi.org/10.18632/oncotarget.5383

    Article  Google Scholar 

  54. Grieco FA, Sebastiani G, Juan-Mateu J, Villate O, Marroqui L, Ladrière L, Tugay K, Regazzi R, Bugliani M, Marchetti P, Dotta F, Eizirik DL (2017) MicroRNAs miR-23a-3p, miR-23b-3p, and miR-149-5p regulate the expression of proapoptotic BH3-only proteins DP5 and PUMA in human pancreatic β-cells. Diabetes 66:100–112. https://doi.org/10.2337/db16-0592

    CAS  Article  Google Scholar 

  55. Gu TT-T, Song L, Chen T-YT, Wang X, Zhao XJ, Ding XQ, Yang YZ, Pan Y, Zhang DM, Kong LD (2017) Fructose downregulates miR-330 to induce renal inflammatory response and insulin signaling impairment: attenuation by morin. Mol Nutr Food Res 61:1600760. https://doi.org/10.1002/mnfr.201600760

    CAS  Article  Google Scholar 

  56. Guo T, Yu W, Lv S et al (2015) miR-302a inhibits the tumorigenicity of ovarian cancer cells by suppression of SDC1. Int J. Clin Exp Pathol 8:4869

    Google Scholar 

  57. Hamam D, Ali D, Kassem M, Aldahmash A, Alajez NM (2015) MicroRNAs as regulators of adipogenic differentiation of mesenchymal stem cells. Stem Cells Dev 24:417–425. https://doi.org/10.1089/scd.2014.0331

    CAS  Article  Google Scholar 

  58. Hammond SM (2015) An overview of microRNAs. Adv Drug Deliv Rev 87:3–14. https://doi.org/10.1016/j.addr.2015.05.001

    CAS  Article  Google Scholar 

  59. Hansen TB, Venø MT, Jensen TI, Schaefer A, Damgaard CK, Kjems J (2016) Argonaute-associated short introns are a novel class of gene regulators. Nat Commun 7:11538. https://doi.org/10.1038/ncomms11538

    CAS  Article  Google Scholar 

  60. Hao C, Yang S, Xu W, Shen JK, Ye S, Liu X, Dong Z, Xiao B, Feng Y (2016) MiR-708 promotes steroid-induced osteonecrosis of femoral head, suppresses osteogenic differentiation by targeting SMAD3. Sci Rep 6:22599. https://doi.org/10.1038/srep22599

    CAS  Article  Google Scholar 

  61. He X, Xiao X, Dong L, Wan N, Zhou Z, Deng H, Zhang X (2015) miR-218 regulates cisplatin chemosensitivity in breast cancer by targeting BRCA1. Tumor Biol 36:2065–2075. https://doi.org/10.1007/s13277-014-2814-z

    CAS  Article  Google Scholar 

  62. He H, Tian W, Chen H, Deng Y (2016) MicroRNA-101 sensitizes hepatocellular carcinoma cells to doxorubicin-induced apoptosis via targeting Mcl-1. Mol Med Rep 13:1923–1929. https://doi.org/10.3892/mmr.2015.4727

    CAS  Article  Google Scholar 

  63. He Y, Ding Y, Liang B, Lin J, Kim TK, Yu H, Hang H, Wang K (2017) A systematic study of dysregulated microRNA in type 2 diabetes mellitus. Int J Mol Sci 18:456. https://doi.org/10.3390/ijms18030456

    CAS  Article  Google Scholar 

  64. He L, Zhu W, Chen Q, Yuan Y, Wang Y, Wang J, Wu X (2019) Ovarian cancer cell-secreted exosomal miR-205 promotes metastasis by inducing angiogenesis. Theranostics 9:8206–8220

    CAS  Article  Google Scholar 

  65. Hijmans JG, Diehl KJ, Bammert TD, Kavlich PJ, Lincenberg GM, Greiner JJ, Stauffer BL, DeSouza CA (2018) Association between hypertension and circulating vascular-related microRNAs. J Hum Hypertens 32:440–447. https://doi.org/10.1038/s41371-018-0061-2

    CAS  Article  Google Scholar 

  66. Hironaka-Mitsuhashi A, Otsuka K, Gailhouste L, Sanchez Calle A, Kumazaki M, Yamamoto Y, Fujiwara Y, Ochiya T (2020) miR-1285-5p/ TMEM194A axis affects cell proliferation in breast cancer. Cancer Sci 111:395–405. https://doi.org/10.1111/cas.14287

    CAS  Article  Google Scholar 

  67. Hombach S, Kretz M (2016) Non-coding RNAs: classification, biology and functioning. Non-coding RNAs in colorectal cancer. Springer, In, pp 3–17

    Google Scholar 

  68. Hong BS, Ryu HS, Kim N, Kim J, Lee E, Moon H, Kim KH, Jin MS, Kwon NH, Kim S, Kim D, Chung DH, Jeong K, Kim K, Kim KY, Lee HB, Han W, Yun J, Kim JI, Noh DY, Moon HG (2019) Tumor suppressor microRNA-204-5p regulates growth, metastasis, and immune microenvironment remodeling in breast cancer. Cancer Res 79:canres.0891.2018:canres.0891.2018. https://doi.org/10.1158/0008-5472.CAN-18-0891

  69. Horvitz HR, Sulston JE (1980) Isolation and genetic characterization of cell-lineage mutants of the nematode Caenorhabditis elegans. Genetics. 96(2):435–454

    CAS  Article  Google Scholar 

  70. Hou X, Zhang M, Qiao H (2015) Diagnostic significance of miR-106a in gastric cancer. Int J Clin Exp Pathol 8:13096

    CAS  Google Scholar 

  71. Hu X, Wang Y, Liang H, Fan Q, Zhu R, Cui J, Zhang W, Zen K, Zhang CY, Hou D, Zhou Z, Chen X (2017) miR-23a/b promote tumor growth and suppress apoptosis by targeting PDCD4 in gastric cancer. Cell Death Dis 8:e3059–e3059. https://doi.org/10.1038/cddis.2017.447

    Article  Google Scholar 

  72. Huang N, Wu J, Qiu W, Lyu Q, He J, Xie W, Xu N, Zhang Y (2015) miR-15a and miR-16 induce autophagy and enhance chemosensitivity of camptothecin. Cancer Biol Ther 16:941–948. https://doi.org/10.1080/15384047.2015.1040963

    CAS  Article  Google Scholar 

  73. Hubal MJ, Nadler EP, Ferrante SC, Barberio MD, Suh JH, Wang J, Dohm GL, Pories WJ, Mietus-Snyder M, Freishtat RJ (2017) Circulating adipocyte-derived exosomal MicroRNAs associated with decreased insulin resistance after gastric bypass. Obesity 25:102–110. https://doi.org/10.1002/oby.21709

    CAS  Article  Google Scholar 

  74. Hui Z, Yiling C, Wenting Y, XuQun H, ChuanYi Z, Hui L (2015) miR-491-5p functions as a tumor suppressor by targeting JMJD2B in ERα-positive breast cancer. FEBS Lett 589:812–821. https://doi.org/10.1016/j.febslet.2015.02.014

    CAS  Article  Google Scholar 

  75. Iacomino G, Siani A (2017) Role of microRNAs in obesity and obesity-related diseases. Genes Nutr 12:23. https://doi.org/10.1186/s12263-017-0577-z

    Article  Google Scholar 

  76. Issler O, Chen A (2015) Determining the role of microRNAs in psychiatric disorders. Nat Rev Neurosci 16:201–212. https://doi.org/10.1038/nrn3879

    CAS  Article  Google Scholar 

  77. Iwakawa H, Tomari Y (2015) The functions of microRNAs: mRNA decay and translational repressioN. Trends Cell Biol 25:651–665. https://doi.org/10.1016/j.tcb.2015.07.011

    CAS  Article  Google Scholar 

  78. Jafari N, Abediankenari S (2017) MicroRNA-34 dysregulation in gastric cancer and gastric cancer stem cell. Tumor Biol 39:101042831770165. https://doi.org/10.1177/1010428317701652

    CAS  Article  Google Scholar 

  79. Jian B, Li Z, Xiao D, He G, Bai L, Yang Q (2016) Downregulation of microRNA-193-3p inhibits tumor proliferation migration and chemoresistance in human gastric cancer by regulating PTEN gene. Tumor Biol 37:8941–8949

    CAS  Article  Google Scholar 

  80. Jiang L, Wang C, Lei F, Zhang L, Zhang X, Liu A, Wu G, Zhu J, Song L (2015) miR-93 promotes cell proliferation in gliomas through activation of PI3K/Akt signaling pathway. Oncotarget 6:8286–8299. https://doi.org/10.18632/oncotarget.3221

    Article  Google Scholar 

  81. Jin F, Wang Y, Li M, Zhu Y, Liang H, Wang C, Wang F, Zhang CY, Zen K, Li L (2018) MiR-26 enhances chemosensitivity and promotes apoptosis of hepatocellular carcinoma cells through inhibiting autophagy. Cell Death Dis 8:e2540–e2540. https://doi.org/10.1038/cddis.2016.461

    CAS  Article  Google Scholar 

  82. Kai K, Dittmar RL, Sen S (2018) Secretory microRNAs as biomarkers of cancer. Semin Cell Dev Biol 78:22–36. https://doi.org/10.1016/j.semcdb.2017.12.011

    CAS  Article  Google Scholar 

  83. Kalogirou C, Schäfer D, Krebs M, Kurz F, Schneider A, Riedmiller H, Kneitz B, Vergho D (2016) Metformin-derived growth inhibition in renal cell carcinoma depends on miR-21-mediated PTEN expression. Urol Int 96:106–115. https://doi.org/10.1159/000441011

    CAS  Article  Google Scholar 

  84. Katayama K, Yoshioka S, Tsukahara S, Mitsuhashi J, Sugimoto Y (2007) Inhibition of the mitogen-activated protein kinase pathway results in the down-regulation of P-glycoprotein. Mol Cancer Ther 6(7):2092–2102

    CAS  Article  Google Scholar 

  85. Kawano M, Tanaka K, Itonaga I, Ikeda S, Iwasaki T, Tsumura H (2015) microRNA-93 promotes cell proliferation via targeting of PTEN in osteosarcoma cells. J Exp Clin Cancer Res 34:76. https://doi.org/10.1186/s13046-015-0192-z

    CAS  Article  Google Scholar 

  86. Khan S, Ayub H, Khan T, Wahid F (2019) MicroRNA biogenesis, gene silencing mechanisms and role in breast, ovarian and prostate cancer. Biochimie 167:12–24. https://doi.org/10.1016/j.biochi.2019.09.001

    CAS  Article  Google Scholar 

  87. Kim J-M, Jung K-H, Chu K, Lee ST, Ban J, Moon J, Kim M, Lee SK, Roh JK (2015) Atherosclerosis-related circulating microRNAs as a Predictor of stroke recurrence. Transl Stroke Res 6:191–197. https://doi.org/10.1007/s12975-015-0390-1

    CAS  Article  Google Scholar 

  88. Kim Y-K, Kim B, Kim VN (2016) Re-evaluation of the roles of DROSHA, Exportin 5, and Dicer in microRNA biogenesis. Proc Natl Acad Sci 113:E1881–E1889. https://doi.org/10.1073/pnas.1602532113

    CAS  Article  Google Scholar 

  89. Kim YYYJ, Kim YYYJ, Shin JH, Kim H, Ku SY, Suh C (2018) Variation in microRNA expression profile of uterine leiomyoma with endometrial cavity distortion and endometrial cavity non-distortion. Int J Mol Sci 19:2524. https://doi.org/10.3390/ijms19092524

    CAS  Article  Google Scholar 

  90. Kong X, Duan Y, Sang Y, Li Y, Zhang H, Liang Y, Liu Y, Zhang N, Yang Q (2019) LncRNA-CDC6 promotes breast cancer progression and function as ceRNA to target CDC6 by sponging microRNA-215. J Cell Physiol 234(6):9105–9117. https://doi.org/10.1002/jcp.27587

  91. Kovalchuk O, Filkowski J, Meservy J et al (2008) Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin. Mol Cancer Ther 7:2152–2159. https://doi.org/10.1158/1535-7163.MCT-08-0021

    CAS  Article  Google Scholar 

  92. LaPierre MP, Stoffel M (2017) MicroRNAs as stress regulators in pancreatic beta cells and diabetes. Mol Metab 6:1010–1023. https://doi.org/10.1016/j.molmet.2017.06.020

    CAS  Article  Google Scholar 

  93. Lei C, Du F, Sun L et al (2017) miR-143 and miR-145 inhibit gastric cancer cell migration and metastasis by suppressing MYO6. Cell Death Dis 8:e3101–e3101. https://doi.org/10.1038/cddis.2017.493

    CAS  Article  Google Scholar 

  94. Leung WKCC, He M, Chan AWHH et al (2015) Wnt/β-catenin activates MiR-183/96/182 expression in hepatocellular carcinoma that promotes cell invasion. Cancer Lett 362:97–105. https://doi.org/10.1016/j.canlet.2015.03.023

    CAS  Article  Google Scholar 

  95. Li M, Liu Z, Zhang Z, Liu G, Sun S, Sun C (2015a) miR-103 promotes 3T3-L1 cell adipogenesis through AKT/mTOR signal pathway with its target being MEF2D. Biol Chem 396:235–244. https://doi.org/10.1515/hsz-2014-0241

    CAS  Article  Google Scholar 

  96. Li P, Teng F, Gao F, Zhang M, Wu J, Zhang C (2015b) Identification of circulating microRNAs as potential biomarkers for detecting acute ischemic stroke. Cell Mol Neurobiol 35:433–447. https://doi.org/10.1007/s10571-014-0139-5

    CAS  Article  Google Scholar 

  97. Li W, Chang J, Wang S, Liu X, Peng J, Huang D, Sun M, Chen Z, Zhang W, Guo W, Li J (2015c) miRNA-99b-5p suppresses liver metastasis of colorectal cancer by down-regulating mTOR. Oncotarget 6:24448–24462. https://doi.org/10.18632/oncotarget.4423

    Article  Google Scholar 

  98. Li X, Zang A, Jia Y et al (2016) Triptolide reduces proliferation and enhances apoptosis of human non-small cell lung cancer cells through PTEN by targeting miR-21. Mol Med Rep 13:2763–2768. https://doi.org/10.3892/mmr.2016.4844

    CAS  Article  Google Scholar 

  99. Li Q, Liang X, Wang Y, Meng X, Xu Y, Cai S, Wang Z, Liu J, Cai G (2016a) miR-139-5p inhibits the epithelial-mesenchymal transition and enhances the chemotherapeutic sensitivity of colorectal cancer cells by downregulating BCL2. Sci Rep 6:27157. https://doi.org/10.1038/srep27157

    CAS  Article  Google Scholar 

  100. Li Y, Zhang Z, Zhang X et al (2016b) A dual PI3K/AKT/mTOR signaling inhibitor miR-99a suppresses endometrial carcinoma. Am J Transl Res 8:719

    CAS  Google Scholar 

  101. Li Z, Xu Z, Xie Q, Gao W, Xie J, Zhou L (2016c) miR-1303 promotes the proliferation of neuroblastoma cell SH-SY5Y by targeting GSK3β and SFRP1. Biomed Pharmacother 83:508–513. https://doi.org/10.1016/j.biopha.2016.07.010

    CAS  Article  Google Scholar 

  102. Li G, Ning C, Ma Y, Jin L, Tang Q, Li X, Li M, Liu H (2017a) miR-26b promotes 3T3-L1 adipocyte differentiation through targeting PTEN. DNA Cell Biol 36:672–681. https://doi.org/10.1089/dna.2017.3712

    CAS  Article  Google Scholar 

  103. Li N, Pan X, Zhang J, Ma A, Yang S, Ma J, Xie A (2017b) Plasma levels of miR-137 and miR-124 are associated with Parkinson’s disease but not with Parkinson’s disease with depression. Neurol Sci 38:761–767. https://doi.org/10.1007/s10072-017-2841-9

    Article  Google Scholar 

  104. Li Z, Tao Y, Wang X, Jiang P, Li J, Peng M, Zhang X, Chen K, Liu H, Zhen P, Zhu J, Liu X, Liu X (2018) Tumor-secreted exosomal miR-222 promotes tumor progression via regulating P27 expression and re-localization in pancreatic cancer. Cell Physiol Biochem 51:610–629. https://doi.org/10.1159/000495281

    CAS  Article  Google Scholar 

  105. Li N, Cui T, Guo W, Wang D, Mao L (2019) MiR-155-5p accelerates the metastasis of cervical cancer cell via targeting TP53INP1. Onco Targets Ther Volume 12:3181–3196. https://doi.org/10.2147/OTT.S193097

    Article  Google Scholar 

  106. Liang S, Gong X, Zhang G, Huang G, Lu Y, Li Y (2016) MicroRNA-140 regulates cell growth and invasion in pancreatic duct adenocarcinoma by targeting iASPP. Acta Biochim Biophys Sin Shanghai 48:174–181. https://doi.org/10.1093/abbs/gmv127

    CAS  Article  Google Scholar 

  107. Lima TI, Araujo HN, Menezes ES, Sponton CH, Araújo MB, Bomfim LHM, Queiroz AL, Passos MA, e Sousa TA, Hirabara SM, Martins AR, Sampaio HCLB, Rodrigues A, Curi R, Carneiro EM, Boschero AC, Silveira LR (2017) Role of microRNAs on the regulation of mitochondrial biogenesis and insulin signaling in skeletal muscle. J Cell Physiol 232:958–966. https://doi.org/10.1002/jcp.25645

    CAS  Article  Google Scholar 

  108. Liu X, Fan Z, Zhao T, Cao W, Zhang L, Li H, Xie Q, Tian Y, Wang B (2015) Plasma miR-1, miR-208, miR-499 as potential predictive biomarkers for acute myocardial infarction: an independent study of Han population. Exp Gerontol 72:230–238. https://doi.org/10.1016/j.exger.2015.10.011

    CAS  Article  Google Scholar 

  109. Liu X, Peng H, Liao W, Luo A, Cai M, He J, Zhang X, Luo Z, Jiang H, Xu L (2018) miR-181a/b induce the growth, invasion, and metastasis of neuroblastoma cells through targeting ABI1. Mol Carcinog 57:1237–1250. https://doi.org/10.1002/mc.22839

    CAS  Article  Google Scholar 

  110. Liu B, Shyr Y, Cai J, Liu Q (2019a) Interplay between miRNAs and host genes and their role in cancer. Brief Funct Genomics 18:255–266

    CAS  Article  Google Scholar 

  111. Liu Y, Li H, Li LH, Tang JB, Sheng YL (2019b) mir-451 inhibits proliferation and migration of non-small cell lung cancer cells via targeting LKB1/AMPK. Eur Rev Med Pharmacol Sci 23:274–280

    CAS  Google Scholar 

  112. Lou Z, Gong Y, Zhou X, Hu G (2018) Low expression of miR-199 in hepatocellular carcinoma contributes to tumor cell hyper-proliferation by negatively suppressing XBP1. Oncol Lett 16:6531–6539. https://doi.org/10.3892/ol.2018.9476

    CAS  Article  Google Scholar 

  113. Lu Y, Zhang L, Waye MMY, Fu WM, Zhang JF (2015) MiR-218 Mediates tumorigenesis and metastasis: perspectives and implications. Exp Cell Res 334:173–182. https://doi.org/10.1016/j.yexcr.2015.03.027

    CAS  Article  Google Scholar 

  114. Ma L, Li L-L (2019) miR-145 contributes to the progression of cervical carcinoma by directly regulating FSCN1. Cell Transplant 28:1299–1305. https://doi.org/10.1177/0963689719861063

    Article  Google Scholar 

  115. Ma W, Ma C, Zhou N et al (2016) Up-regulation of miR-328-3p sensitizes non-small cell lung cancer to radiotherapy. Sci Rep 6:1–9

    CAS  Article  Google Scholar 

  116. Ma Z, Luo Y, Qiu M (2017) miR-143 induces the apoptosis of prostate cancer LNCap cells by suppressing Bcl-2 expression. Med Sci Monit 23:359–365. https://doi.org/10.12659/MSM.899719

    CAS  Article  Google Scholar 

  117. Mansoori B, Mohammadi A, Ghasabi M, Shirjang S, Dehghan R, Montazeri V, Holmskov U, Kazemi T, Duijf P, Gjerstorff M, Baradaran B (2019) miR-142-3p as tumor suppressor miRNA in the regulation of tumorigenicity, invasion and migration of human breast cancer by targeting Bach-1 expression. J Cell Physiol 234:9816–9825. https://doi.org/10.1002/jcp.27670

    CAS  Article  Google Scholar 

  118. Martinez-Sanchez A, Nguyen-Tu M-S, Rutter GA (2015) Dicer inactivation identifies pancreatic β-cell “disallowed” genes targeted by microRNAs. Mol Endocrinol 29:1067–1079. https://doi.org/10.1210/me.2015-1059

    CAS  Article  Google Scholar 

  119. Meng X, Joosse SA, Müller V, Trillsch F, Milde-Langosch K, Mahner S, Geffken M, Pantel K, Schwarzenbach H (2015) Diagnostic and prognostic potential of serum miR-7, miR-16, miR-25, miR-93, miR-182, miR-376a and miR-429 in ovarian cancer patients. Br J Cancer 113:1358–1366. https://doi.org/10.1038/bjc.2015.340

    CAS  Article  Google Scholar 

  120. Meng C, Zhao Z, Bai R et al (2020) MicroRNA-22 mediates the cisplatin resistance of osteosarcoma cells by inhibiting autophagy via the PI3K/Akt/mTOR pathway. Oncol Rep 43:1169–1186. https://doi.org/10.3892/or.2020.7492

    CAS  Article  Google Scholar 

  121. Mohamed MS, El-Nahrery EMA, Shalaby N et al (2019) Micro-RNA 18b and interleukin 17A profiles in relapsing remitting multiple sclerosis. Mult Scler Relat Disord 28:226–229

    Article  Google Scholar 

  122. Mohammadi A, Mansoori B, Baradaran B (2016) The role of microRNAs in colorectal cancer. Biomed Pharmacother 84:705–713. https://doi.org/10.1016/j.biopha.2016.09.099

    CAS  Article  Google Scholar 

  123. Morlando M, Ballarino M, Gromak N, Pagano F, Bozzoni I, Proudfoot NJ (2008) Primary microRNA transcripts are processed co-transcriptionally. Nat Struct Mol Biol 15(9):902–909. https://doi.org/10.1038/nsmb.1475

    CAS  Article  Google Scholar 

  124. Moshiri F, Salvi A, Gramantieri L, Sangiovanni A, Guerriero P, de Petro G, Bassi C, Lupini L, Sattari A, Cheung D, Veneziano D, Nigita G, Shankaraiah RC, Portolani N, Carcoforo P, Fornari F, Bolondi L, Frassoldati A, Sabbioni S, Colombo M, Croce CM, Negrini M (2018) Circulating miR-106b-3p, miR-101-3p and miR-1246 as diagnostic biomarkers of hepatocellular carcinoma. Oncotarget 9:15350–15364. https://doi.org/10.18632/oncotarget.24601

    Article  Google Scholar 

  125. Mu W, Hu C, Zhang H, Qu Z, Cen J, Qiu Z, Li C, Ren H, Li Y, He X, Shi X, Hui L (2015) miR-27b synergizes with anticancer drugs via p53 activation and CYP1B1 suppression. Cell Res 25:477–495. https://doi.org/10.1038/cr.2015.23

    CAS  Article  Google Scholar 

  126. Mushtaq G, H Greig N, Anwar F, et al. (2016) miRNAs as circulating biomarkers for Alzheimer’s disease and Parkinson’s disease. Med Chem (Los Angeles) 12:217–225

    CAS  Google Scholar 

  127. O’Brien J, Hayder H, Zayed Y, Peng C (2018) Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne) 9:402. https://doi.org/10.3389/fendo.2018.00402

    Article  Google Scholar 

  128. Ohta K, Hoshino H, Wang J, Ono S, Iida Y, Hata K, Huang SK, Colquhoun S, Hoon DSB (2015) MicroRNA-93 activates c-Met/PI3K/Akt pathway activity in hepatocellular carcinoma by directly inhibiting PTEN and CDKN1A. Oncotarget 6:3211–3224. https://doi.org/10.18632/oncotarget.3085

    Article  Google Scholar 

  129. Oliveto S, Mancino M, Manfrini N, Biffo S (2017) Role of microRNAs in translation regulation and cancer. World J Biol Chem 8:45–56. https://doi.org/10.4331/wjbc.v8.i1.45

    Article  Google Scholar 

  130. Pei K, Zhu JJ, Wang CE et al (2016) MicroRNA-185-5p modulates chemosensitivity of human non-small cell lung cancer to cisplatin via targeting ABCC1. Eur Rev Med Pharmacol Sci 20:4697–4704

    CAS  Google Scholar 

  131. Pekarsky Y, Croce CM (2015) Role of miR-15/16 in CLL. Cell Death Differ 22:6–11. https://doi.org/10.1038/cdd.2014.87

    CAS  Article  Google Scholar 

  132. Pisarello MJL, Loarca L, Ivanics T, Morton L, LaRusso N (2015) MicroRNAs in the cholangiopathies: pathogenesis, diagnosis, and treatment. J Clin Med 4:1688–1712. https://doi.org/10.3390/jcm4091688

    CAS  Article  Google Scholar 

  133. Pop-Bica C, Pintea S, Cojocneanu-Petric R et al (2018) miR-181 family-specific behavior in different cancers: a meta-analysis view. Cancer Metastasis Rev 37:17–32 https://doi.org/10.1007/s10555-017-9714-9

  134. Potus F, Ruffenach G, Dahou A, Thebault C, Breuils-Bonnet S, Tremblay È, Nadeau V, Paradis R, Graydon C, Wong R, Johnson I, Paulin R, Lajoie AC, Perron J, Charbonneau E, Joubert P, Pibarot P, Michelakis ED, Provencher S, Bonnet S (2015) Downregulation of microRNA-126 contributes to the failing right ventricle in pulmonary arterial hypertension. Circulation 132:932–943. https://doi.org/10.1161/CIRCULATIONAHA.115.016382

    CAS  Article  Google Scholar 

  135. Qu J, Zhao L, Zhang P, Wang J, Xu N, Mi W, Jiang X, Zhang C, Qu J (2015) MicroRNA-195 chemosensitizes colon cancer cells to the chemotherapeutic drug doxorubicin by targeting the first binding site of BCL2L2 mRNA. J Cell Physiol 230:535–545. https://doi.org/10.1002/jcp.24366

    CAS  Article  Google Scholar 

  136. Rahmoon MA, Youness RA, Gomaa AI, Hamza MT, Waked I, el Tayebi HM, Abdelaziz AI (2017) miR-615-5p depresses natural killer cells cytotoxicity through repressing IGF-1R in hepatocellular carcinoma patients. Growth Factors 35:76–87. https://doi.org/10.1080/08977194.2017.1354859

    CAS  Article  Google Scholar 

  137. Ramirez-Moya J, Wert-Lamas L, Santisteban P (2018) MicroRNA-146b promotes PI3K/AKT pathway hyperactivation and thyroid cancer progression by targeting PTEN. Oncogene 37:3369–3383

    CAS  Article  Google Scholar 

  138. Rieger JK, Reutter S, Hofmann U, Schwab M, Zanger UM (2015) Inflammation-associated microRNA-130b down-regulates cytochrome P450 activities and directly targets CYP2C9. Drug Metab Dispos 43:884–888. https://doi.org/10.1124/dmd.114.062844

    CAS  Article  Google Scholar 

  139. Samandari N, Mirza AH, Nielsen LB, Kaur S, Hougaard P, Fredheim S, Mortensen HB, Pociot F (2017) Circulating microRNA levels predict residual beta cell function and glycaemic control in children with type 1 diabetes mellitus. Diabetologia 60:354–363. https://doi.org/10.1007/s00125-016-4156-4

    CAS  Article  Google Scholar 

  140. Schulte C, Karakas M, Zeller T (2017) MicroRNAs in cardiovascular disease - clinical application. Clin Chem Lab Med 55:687–704. https://doi.org/10.1515/cclm-2016-0576

    CAS  Article  Google Scholar 

  141. Schwienbacher C, Foco L, Picard A, Corradi E, Serafin A, Panzer J, Zanigni S, Blankenburg H, Facheris MF, Giannini G, Falla M, Cortelli P, Pramstaller PP, Hicks AA (2017) Plasma and white blood cells show different miRNA expression profiles in Parkinson’s disease. J Mol Neurosci 62:244–254. https://doi.org/10.1007/s12031-017-0926-9

    CAS  Article  Google Scholar 

  142. Sebastiani G, Valentini M, Grieco GE, Ventriglia G, Nigi L, Mancarella F, Pellegrini S, Martino G, Sordi V, Piemonti L, Dotta F (2017) MicroRNA expression profiles of human iPSCs differentiation into insulin-producing cells. Acta Diabetol 54:265–281. https://doi.org/10.1007/s00592-016-0955-9

    CAS  Article  Google Scholar 

  143. Seok H, Ham J, Jang E-S, Chi SW (2016) MicroRNA target recognition: insights from transcriptome-wide non-canonical interactions. Mol Cell 39:375–381. https://doi.org/10.14348/molcells.2016.0013

    CAS  Article  Google Scholar 

  144. Shaalan YM, Handoussa H, Youness RA, Assal RA, el-Khatib AH, Linscheid MW, el Tayebi HM, Abdelaziz AI (2018) Destabilizing the interplay between miR-1275 and IGF2BPs by Tamarix articulata and quercetin in hepatocellular carcinoma. Nat Prod Res 32:2217–2220. https://doi.org/10.1080/14786419.2017.1366478

    CAS  Article  Google Scholar 

  145. Shang Y, Feng B, Zhou L, Ren G, Zhang Z, Fan X, Sun Y, Luo G, Liang J, Wu K, Nie Y, Fan D (2016) The miR27b-CCNG1-P53-miR-508-5p axis regulates multidrug resistance of gastric cancer. Oncotarget 7:538–549. https://doi.org/10.18632/oncotarget.6374

    Article  Google Scholar 

  146. Sharma N, Baruah MM (2019) The microRNA signatures: aberrantly expressed miRNAs in prostate cancer. Clin Transl Oncol 21:126–144. https://doi.org/10.1007/s12094-018-1910-8

    CAS  Article  Google Scholar 

  147. Sheikholeslami S, Shabani N, Shivaee S et al (2020) Overexpression of mir-129-1, miR-146b, mir-183, and mir-197 in follicular thyroid carcinoma and adenoma tissues. Mol Cell Probes 51:101536 https://doi.org/10.1016/j.mcp.2020.101536

  148. Shen L, Sun C, Li Y, Li X, Sun T, Liu C, Zhou Y, du Z (2015) MicroRNA-199a-3p suppresses glioma cell proliferation by regulating the AKT/mTOR signaling pathway. Tumor Biol 36:6929–6938. https://doi.org/10.1007/s13277-015-3409-z

    CAS  Article  Google Scholar 

  149. Shen N-N, Zhang C, Li Z, Kong LC, Wang XH, Gu ZC, Wang JL (2020) MicroRNA expression signatures of atrial fibrillation: the critical systematic review and bioinformatics analysis. Exp Biol Med 245:42–53. https://doi.org/10.1177/1535370219890303

    CAS  Article  Google Scholar 

  150. Shi J (2016) Considering exosomal miR-21 as a biomarker for cancer. J Clin Med 5:42

    Article  Google Scholar 

  151. Shi C, Zhang M, Tong M, Yang L, Pang L, Chen L, Xu G, Chi X, Hong Q, Ni Y, Ji C, Guo X (2015) miR-148a is associated with obesity and modulates adipocyte differentiation of mesenchymal stem cells through Wnt signaling. Sci Rep 5:9930. https://doi.org/10.1038/srep09930

    Article  Google Scholar 

  152. Si W, Shen J, Zheng H, Fan W (2019) The role and mechanisms of action of microRNAs in cancer drug resistance. Clin Epigenetics 11:25. https://doi.org/10.1186/s13148-018-0587-8

    Article  Google Scholar 

  153. Sims EK, Lakhter AJ, Anderson-Baucum E, Kono T, Tong X, Evans-Molina C (2017) MicroRNA 21 targets BCL2 mRNA to increase apoptosis in rat and human beta cells. Diabetologia 60:1057–1065. https://doi.org/10.1007/s00125-017-4237-z

    CAS  Article  Google Scholar 

  154. Soriano A, Masanas M, Boloix A, Masiá N, París-Coderch L, Piskareva O, Jiménez C, Henrich KO, Roma J, Westermann F, Stallings RL, Sábado C, de Toledo JS, Santamaria A, Gallego S, Segura MF (2019) Functional high-throughput screening reveals miR-323a-5p and miR-342-5p as new tumor-suppressive microRNA for neuroblastoma. Cell Mol Life Sci 76:2231–2243. https://doi.org/10.1007/s00018-019-03041-4

    CAS  Article  Google Scholar 

  155. Spadafora C (2015) A LINE-1-encoded reverse transcriptase-dependent regulatory mechanism is active in embryogenesis and tumorigenesis. Ann N Y Acad Sci 1341:164–171

    CAS  Article  Google Scholar 

  156. Špaková I, Graier WF, Rabajdová M et al (2020) Hypoxia factors suppression effect on the energy metabolism of a malignant melanoma cell SK-MEL-30. Eur Rev Med Pharmacol Sci 24:4909–4920. https://doi.org/10.26355/eurrev_202005_21180

    Article  Google Scholar 

  157. Stary CM, Xu L, Sun X, Ouyang YB, White RE, Leong J, Li J, Xiong X, Giffard RG (2015) MicroRNA-200c contributes to injury from transient focal cerebral ischemia by targeting reelin. Stroke 46:551–556. https://doi.org/10.1161/STROKEAHA.114.007041

    CAS  Article  Google Scholar 

  158. Strumidło A, Skiba S, Scott RJ, Lubiński J (2017) The potential role of miRNAs in therapy of breast and ovarian cancers associated with BRCA1 mutation. Hered Cancer Clin Pract 15:15. https://doi.org/10.1186/s13053-017-0076-7

    CAS  Article  Google Scholar 

  159. Sui G-Q, Fei D, Guo F et al (2017) MicroRNA-338-3p inhibits thyroid cancer progression through targeting AKT3. Am J Cancer Res 7:1177

    CAS  Google Scholar 

  160. Tattikota SG, Rathjen T, Hausser J, Khedkar A, Kabra UD, Pandey V, Sury M, Wessels HH, Mollet IG, Eliasson L, Selbach M, Zinzen RP, Zavolan M, Kadener S, Tschöp MH, Jastroch M, Friedländer MR, Poy MN (2015) miR-184 regulates pancreatic β-cell function according to glucose metabolism. J Biol Chem 290:20284–20294. https://doi.org/10.1074/jbc.M115.658625

    CAS  Article  Google Scholar 

  161. Tian H, Hou L, Xiong Y-M et al (2015) miR-218 suppresses tumor growth and enhances the chemosensitivity of esophageal squamous cell carcinoma to cisplatin. Oncol Rep 33:981–989. https://doi.org/10.3892/or.2014.3657

    CAS  Article  Google Scholar 

  162. To KKW, Leung WW, Ng SSM (2015) Exploiting a novel miR-519c–HuR–ABCG2 regulatory pathway to overcome chemoresistance in colorectal cancer. Exp Cell Res 338:222–231

    CAS  Article  Google Scholar 

  163. Tsai T-F, Lin J-F, Chou K-Y, Lin YC, Chen HE, Hwang TIS (2018) miR-99a-5p acts as tumor suppressor via targeting to mTOR and enhances RAD001-induced apoptosis in human urinary bladder urothelial carcinoma cells. Onco Targets Ther Volume 11:239–252. https://doi.org/10.2147/OTT.S114276

    Article  Google Scholar 

  164. Usuba W, Urabe F, Yamamoto Y, Matsuzaki J, Sasaki H, Ichikawa M, Takizawa S, Aoki Y, Niida S, Kato K, Egawa S, Chikaraishi T, Fujimoto H, Ochiya T (2019) Circulating miRNA panels for specific and early detection in bladder cancer. Cancer Sci 110:408–419. https://doi.org/10.1111/cas.13856

    CAS  Article  Google Scholar 

  165. Vasudeva K, Munshi A (2020) miRNA dysregulation in ischaemic stroke: focus on diagnosis, prognosis, therapeutic and protective biomarkers. Eur J Neurosci 52:3610–3627. https://doi.org/10.1111/ejn.14695

    Article  Google Scholar 

  166. Vienberg S, Geiger J, Madsen S, Dalgaard LT (2017 Micro RNAs in metabolism. Acta Physiol 219:346–361

  167. Vilquin P, Donini CF, Villedieu M, Grisard E, Corbo L, Bachelot T, Vendrell JA, Cohen PA (2015) MicroRNA-125b upregulation confers aromatase inhibitor resistance and is a novel marker of poor prognosis in breast cancer. Breast Cancer Res 17:13. https://doi.org/10.1186/s13058-015-0515-1

    CAS  Article  Google Scholar 

  168. Vishnoi A, Rani S (2017) miRNA biogenesis and regulation of diseases: an overview. In: MicroRNA Profiling. Springer:1–10

  169. Vivacqua A, De Marco P, Belfiore A et al (2017) Recent advances on the role of microRNAs in both insulin resistance and cancer. Curr Pharm Des 23:3658–3666. https://doi.org/10.2174/1381612823666170622105123

    CAS  Article  Google Scholar 

  170. Volný O, Kašičková L, Coufalová D et al (2015) MicroRNAs in cerebrovascular disease. Advances in experimental medicine and biology. United States, In, pp 155–195

    Google Scholar 

  171. Wallaert A, Van Loocke W, Hernandez L et al (2017) Comprehensive miRNA expression profiling in human T-cell acute lymphoblastic leukemia by small RNA-sequencing. Sci Rep 7:7901. https://doi.org/10.1038/s41598-017-08148-x

    CAS  Article  Google Scholar 

  172. Wang J, Chen J, Sen S (2016a) MicroRNA as biomarkers and diagnostics. J Cell Physiol 231:25–30. https://doi.org/10.1002/jcp.25056

    CAS  Article  Google Scholar 

  173. Wang S, Ma G, Zhu H, Lv C, Chu H, Tong N, Wu D, Qiang F, Gong W, Zhao Q, Tao G, Zhou J, Zhang Z, Wang M (2016b) miR-107 regulates tumor progression by targeting NF1 in gastric cancer. Sci Rep 6:36531. https://doi.org/10.1038/srep36531

    CAS  Article  Google Scholar 

  174. Wang Y, Chen L, Wu Z, Wang M, Jin F, Wang N, Hu X, Liu Z, Zhang CY, Zen K, Chen J, Liang H, Zhang Y, Chen X (2016c) miR-124-3p functions as a tumor suppressor in breast cancer by targeting CBL. BMC Cancer 16:826. https://doi.org/10.1186/s12885-016-2862-4

    CAS  Article  Google Scholar 

  175. Wang J, Samuels DC, Zhao S, Xiang Y, Zhao YY, Guo Y (2017a) Current research on non-coding ribonucleic acid (RNA). Genes (Basel) 8:366. https://doi.org/10.3390/genes8120366

    CAS  Article  Google Scholar 

  176. Wang P, Meng X, Huang Y, Lv Z, Liu J, Wang G, Meng W, Xue S, Zhang Q, Zhang P, Chen G (2017b) MicroRNA-497 inhibits thyroid cancer tumor growth and invasion by suppressing BDNF. Oncotarget 8:2825–2834. https://doi.org/10.18632/oncotarget.13747

    Article  Google Scholar 

  177. Wang YP, Liu J, Liu D, Wang XD, Bian AM, Fang DZ, Hui XB (2019a) MiR-532-5p acts as a tumor suppressor and inhibits glioma cell proliferation by targeting CSF1. Eur Rev Med Pharmacol Sci 23:8964–8970

    Google Scholar 

  178. Wang YU, Chang W, Zhang Y, Zhang L, Ding H, Qi H, Xue S, Yu H, Hu L, Liu D, Zhu W, Wang Y, Li P (2019b) Circulating miR-22-5p and miR-122-5p are promising novel biomarkers for diagnosis of acute myocardial infarction. J Cell Physiol 234:4778–4786

    CAS  Article  Google Scholar 

  179. Wang J, Lv W, Lin Z, Wang X, Bu J, Su Y (2020) Hsa_circ_0003159 inhibits gastric cancer progression by regulating miR-223-3p/NDRG1 axis. Cancer Cell Int 20:57. https://doi.org/10.1186/s12935-020-1119-0

    CAS  Article  Google Scholar 

  180. Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 75(5):855–862

    CAS  Article  Google Scholar 

  181. Wu D, Li X, Meng X-N, Yan J, Zong ZH (2016) MicroRNA-873 mediates multidrug resistance in ovarian cancer cells by targeting ABCB1. Tumor Biol 37:10499–10506. https://doi.org/10.1007/s13277-016-4944-y

    CAS  Article  Google Scholar 

  182. Wu H, Zhang T, Pan F, Steer CJ, Li Z, Chen X, Song G (2017a) MicroRNA-206 prevents hepatosteatosis and hyperglycemia by facilitating insulin signaling and impairing lipogenesis. J Hepatol 66:816–824. https://doi.org/10.1016/j.jhep.2016.12.016

    CAS  Article  Google Scholar 

  183. Wu S, Gu Y, Huang Y, Wong TC, Ding H, Liu T, Zhang Y, Zhang X (2017b) Novel biomarkers for non-functioning invasive pituitary adenomas were identified by using analysis of microRNAs expression profile. Biochem Genet 55:253–267. https://doi.org/10.1007/s10528-017-9794-9

    CAS  Article  Google Scholar 

  184. Wu F, Mo Q, Wan X, Dan J, Hu H (2019) NEAT1/hsa-mir-98-5p/MAPK6 axis is involved in non-small-cell lung cancer development. J Cell Biochem 120:2836–2846. https://doi.org/10.1002/jcb.26442

    CAS  Article  Google Scholar 

  185. Xia B, Yang S, Liu T, Lou G (2015a) miR-211 suppresses epithelial ovarian cancer proliferation and cell-cycle progression by targeting cyclin D1 and CDK6. Mol Cancer 14:57. https://doi.org/10.1186/s12943-015-0322-4

    CAS  Article  Google Scholar 

  186. Xia Z, Liu F, Zhang J, Liu L (2015b) Decreased Expression of MiRNA-204-5p Contributes to Glioma Progression and Promotes Glioma Cell Growth, Migration and Invasion. PLoS One 10:e0132399. https://doi.org/10.1371/journal.pone.0132399

    CAS  Article  Google Scholar 

  187. Xiang P, Liu Y, Liu L, Lin Q, Liu X, Zhang H, Xu J, Fang B (2019) The biological function and clinical significance of miR-886-5p in multiple myeloma. Acta Haematol 142:208–216. https://doi.org/10.1159/000499620

    CAS  Article  Google Scholar 

  188. Xie F, Huang Q, Liu CH, Lin XS, Liu Z, Liu LL, Huang DW, Zhou HC (2018a) miR-1271 negatively regulates Akt/mTOR signaling and promotes apoptosis via targeting PDK1 in pancreatic cancer. Eur Rev Med Pharmacol Sci 22:678–686

    CAS  Google Scholar 

  189. Xie Z, Xu J, Peng L, Gao Y, Zhao H, Qu Y (2018b) miR-149 promotes human osteocarcinoma progression via targeting bone morphogenetic protein 9 (BMP9). Biotechnol Lett 40:47–55. https://doi.org/10.1007/s10529-017-2445-8

    CAS  Article  Google Scholar 

  190. Xuan Bi, Xing Hua Guo, Bi Yao Mo, Man Li Wang, Xi Qing Luo, Yi Xiong Chen, Fang Liu, Nancy Olsen, Yun Feng Pan, Song Guo Zheng (2019) LncRNA PICSAR promotes cell proliferation, migration and invasion of fibroblast-like synoviocytes by sponging miRNA-4701-5p in rheumatoid arthritis, EBioMedicine 50:408–420. https://doi.org/10.1016/j.ebiom.2019.11.024

  191. Xue M, Qin X, Wan Y, Wang S (2015) MicroRNA-125a-5p modulates human cervical carcinoma proliferation and migration by targeting ABL2. Drug Des Devel Ther 10:71. https://doi.org/10.2147/DDDT.S93104

    Article  Google Scholar 

  192. Yang YM, Lee CG, Koo JH, Kim TH, Lee JM, An J, Kim KM, Kim SG (2015) Gα12 overexpressed in hepatocellular carcinoma reduces microRNA-122 expression via HNF4α inactivation, which causes c-Met induction. Oncotarget 6:19055–19069. https://doi.org/10.18632/oncotarget.3957

    Article  Google Scholar 

  193. Yang X, Niu X, Xiao Y, Lin K, Chen X (2018a) MiRNA expression profiles in healthy OSAHS and OSAHS with arterial hypertension: potential diagnostic and early warning markers. Respir Res 19:194. https://doi.org/10.1186/s12931-018-0894-9

    CAS  Article  Google Scholar 

  194. Yang Z, Zhang T, Wang Q, Gao H (2018b) Overexpression of microRNA-34a attenuates proliferation and induces apoptosis in pituitary adenoma cells via SOX7. Mol Ther - Oncolytics 10:40–47. https://doi.org/10.1016/j.omto.2018.07.001

    CAS  Article  Google Scholar 

  195. Ye P, Liu YY, Chen C, Tang F, Wu Q, Wang X, Liu CG, Liu X, Liu R, Liu Y, Zheng P (2015) An mTORC1-Mdm2-Drosha axis for miRNA biogenesis in response to glucose- and amino acid-deprivation. Mol Cell 57:708–720. https://doi.org/10.1016/j.molcel.2014.12.034

    CAS  Article  Google Scholar 

  196. Yin H, Sun Y, Wang X, Park J, Zhang Y, Li M, Yin J, Liu Q, Wei M (2015) Progress on the relationship between miR-125 family and tumorigenesis. Exp Cell Res 339:252–260. https://doi.org/10.1016/j.yexcr.2015.09.015

    CAS  Article  Google Scholar 

  197. Yin K, Yin W, Wang Y, Zhou L, Liu Y, Yang G, Wang J, Lu J (2016) miR-206 suppresses epithelial mesenchymal transition by targeting TGF-β signaling in estrogen receptor positive breast cancer cells. Oncotarget 7:24537–24548. https://doi.org/10.18632/oncotarget.8233

    Article  Google Scholar 

  198. Ying X, Li-ya Q, Feng Z, Yin W, Ji-hong L (2015) MiR-939 promotes the proliferation of human ovarian cancer cells by repressing APC2 expression. Biomed Pharmacother 71:64–69. https://doi.org/10.1016/j.biopha.2015.02.020

    CAS  Article  Google Scholar 

  199. Youness RA, Gad MZ (2019) Long non-coding RNAs: functional regulatory players in breast cancer. Non-coding RNA Res 4:36–44. https://doi.org/10.1016/j.ncrna.2019.01.003

    CAS  Article  Google Scholar 

  200. Yu SS, Zhang CC, Dong FF, Zhang YY (2015a) miR-99a suppresses the metastasis of human non-small cell lung cancer cells by targeting AKT1 signaling pathway. J Cell Biochem 116:268–276. https://doi.org/10.1002/jcb.24965

    CAS  Article  Google Scholar 

  201. Yu T, Li J, Yan M, Liu L, Lin H, Zhao F, Sun L, Zhang Y, Cui Y, Zhang F, Li J, He X, Yao M (2015b) MicroRNA-193a-3p and -5p suppress the metastasis of human non-small-cell lung cancer by downregulating the ERBB4/PIK3R3/mTOR/S6K2 signaling pathway. Oncogene 34:413–423. https://doi.org/10.1038/onc.2013.574

    CAS  Article  Google Scholar 

  202. Yu X, Luo A, Liu Y, Wang S, Li Y, Shi W, Liu Z, Qu X (2015c) miR-214 increases the sensitivity of breast cancer cells to tamoxifen and fulvestrant through inhibition of autophagy. Mol Cancer 14:208. https://doi.org/10.1186/s12943-015-0480-4

    CAS  Article  Google Scholar 

  203. Yu X, Li R, Shi W, Jiang T, Wang Y, Li C, Qu X (2016) Silencing of MicroRNA-21 confers the sensitivity to tamoxifen and fulvestrant by enhancing autophagic cell death through inhibition of the PI3K-AKT-mTOR pathway in breast cancer cells. Biomed Pharmacother 77:37–44. https://doi.org/10.1016/j.biopha.2015.11.005

    CAS  Article  Google Scholar 

  204. Zare A, Ahadi A, Larki P, Omrani MD, Zali MR, Alamdari NM, Ghaedi H (2018) The clinical significance of miR-335, miR-124, miR-218 and miR-484 downregulation in gastric cancer. Mol Biol Rep 45:1587–1595. https://doi.org/10.1007/s11033-018-4278-5

    CAS  Article  Google Scholar 

  205. Zeng L-P, Hu Z-M, Li K, Xia K (2016) miR-222 attenuates cisplatin-induced cell death by targeting the PPP2R2A/Akt/mTOR axis in bladder cancer cells. J Cell Mol Med 20:559–567. https://doi.org/10.1111/jcmm.12760

    CAS  Article  Google Scholar 

  206. Zhang W, Qian P, Zhang X, Zhang M, Wang H, Wu M, Kong X, Tan S, Ding K, Perry JK, Wu Z, Cao Y, Lobie PE, Zhu T (2015a) Autocrine/paracrine human growth hormone-stimulated microRNA 96-182-183 cluster promotes epithelial-mesenchymal transition and invasion in breast cancer. J Biol Chem 290:13812–13829. https://doi.org/10.1074/jbc.M115.653261

    CAS  Article  Google Scholar 

  207. Zhang X, Shi H, Tang H et al (2015b) miR-218 inhibits the invasion and migration of colon cancer cells by targeting the PI3K/Akt/mTOR signaling pathway. Int J Mol Med 35:1301–1308. https://doi.org/10.3892/ijmm.2015.2126

    CAS  Article  Google Scholar 

  208. Zhang Y, Huang B, Wang H-YY, Chang A, Zheng XFS (2017) Emerging role of microRNAs in mTOR signaling. Cell Mol Life Sci 74:2613–2625. https://doi.org/10.1007/s00018-017-2485-1

    CAS  Article  Google Scholar 

  209. Zhao J, Chen F, Zhou Q, Pan W, Wang X, Xu J, Ni L, Yang H (2016a) Aberrant expression of microRNA-99a and its target gene mTOR associated with malignant progression and poor prognosis in patients with osteosarcoma. Onco Targets Ther 9:1589. https://doi.org/10.2147/OTT.S102421

    CAS  Article  Google Scholar 

  210. Zhao J, Nie Y, Wang H, Lin Y (2016b) miR-181a suppresses autophagy and sensitizes gastric cancer cells to cisplatin. Gene 576:828–833. https://doi.org/10.1016/j.gene.2015.11.013

    CAS  Article  Google Scholar 

  211. Zheng W, Liu Z, Zhang W, Hu X (2015) miR-31 functions as an oncogene in cervical cancer. Arch Gynecol Obstet 292:1083–1089. https://doi.org/10.1007/s00404-015-3713-2

    CAS  Article  Google Scholar 

  212. Zhou J, Xu D, Xie H, Tang J, Liu R, Li J, Wang S, Chen X, Su J, Zhou X, Xia K, He Q, Chen J, Xiong W, Cao P, Cao K (2015) miR-33a functions as a tumor suppressor in melanoma by targeting HIF-1α. Cancer Biol Ther 16:846–855. https://doi.org/10.1080/15384047.2015.1030545

    CAS  Article  Google Scholar 

  213. Zhou L, Liang X, Zhang L, Yang L, Nagao N, Wu H, Liu C, Lin S, Cai G, Liu J (2016) MiR-27a-3p functions as an oncogene in gastric cancer by targeting BTG2. Oncotarget 7:51943–51954. https://doi.org/10.18632/oncotarget.10460

    Article  Google Scholar 

  214. Zhou X, Lu Z, Wang T, Huang Z, Zhu W, Miao Y (2018) Plasma miRNAs in diagnosis and prognosis of pancreatic cancer: a miRNA expression analysis. Gene 673:181–193. https://doi.org/10.1016/j.gene.2018.06.037

    CAS  Article  Google Scholar 

  215. Zhuang M, Shi Q, Zhang X, Ding Y, Shan L, Shan X, Qian J, Zhou X, Huang Z, Zhu W, Ding Y, Cheng W, Liu P, Shu Y (2015) Involvement of miR-143 in cisplatin resistance of gastric cancer cells via targeting IGF1R and BCL2. Tumor Biol 36:2737–2745. https://doi.org/10.1007/s13277-014-2898-5

    CAS  Article  Google Scholar 

  216. Zhuo Z, Yu H (2017) miR-205 inhibits cell growth by targeting AKT-mTOR signaling in progesterone-resistant endometrial cancer Ishikawa cells. Oncotarget 8:28042–28051. https://doi.org/10.18632/oncotarget.15886

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

Mahmoud MM: data curation, original draft preparation, and rewriting; Sanad EF: editing, rewriting, and reviewing; Hamdy NM: conceptualization, supervision, editing, rewriting, and reviewing from submission till acceptance.

Corresponding author

Correspondence to Nadia M. Hamdy.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Lotfi Aleya

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mahmoud, M.M., Sanad, E.F. & Hamdy, N.M. MicroRNAs’ role in the environment-related non-communicable diseases and link to multidrug resistance, regulation, or alteration. Environ Sci Pollut Res 28, 36984–37000 (2021). https://doi.org/10.1007/s11356-021-14550-w

Download citation

Keywords

  • ncRNA
  • miR
  • NCDs
  • lncRNA
  • Cancer
  • mTOR
  • ceRNA