Skip to main content
Log in

Natural radioactivity and total K content in wild-growing or cultivated edible mushrooms and soils from Galicia (NW, Spain)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The radioactive isotope, 40K, of naturally occurring potassium (0.012%) is present in the Earth’s crust in a low percentage of all potassium, leading to its presence in almost all foodstuffs. The impact of 40K activity concentrations was assessed in wild and cultivated edible mushrooms and in growing substrates. Samples were analysed by gamma spectroscopy. In the wild mushroom species, the average activity concentration of 40K was 1291 Bq kg−1 dry weight (dw), approximately 140 Bq kg−1 fresh weight (fw), with a range of average values per species from 748 in Lactarius deliciosus to 1848 Bq kg−1 dw in Tricholoma portentosum. The cultivated species presented an average value of 1086 Bq kg-1 dw; and the soils, compost of cultivation and wood of substrate are 876, 510 and 59.4 Bq kg−1 dw, respectively. The total K content reached a maximum of 59,935 mg kg−1 dw in T. portentosum. The transfer factors (TF > 1) suggested that mushrooms preferentially bioconcentrated 40K. Cantharellus cibarius, Craterellus tubaeformis, Hydnum repandum and T. portentosum by most TF could be considered as bioindicators of 40K. Taking into account that the annual radiation dose of 40K due to the average consumption of mushrooms analysed (0.15 μSv/year) is very low, it can be concluded that the consumption of these mushrooms does not represent a toxicological risk for human health. Finally, according to the total K content, from the nutritional point of view, these mushrooms could be considered as a potential source of potassium for the human diet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • AESAN (Agencia Española de Seguridad Alimentaria y Nutrición) (2011) Encuesta Española de Ingesta Dietética Española (ENIDE)

  • AESAN (Agencia Española de Seguridad Alimentaria y Nutrición) (2019) Revista del Comité Científico de la AESAN n° 29, 67

  • Alonso J, García MA, Corral M, Melgar MJ (2013) Presencia de 137Cs en hongos comestibles comerciales recogidos en Galicia. Repercusiones alimentarias. Rev Toxicol 30:161–164

    Google Scholar 

  • Aloraini DA, Alharshan GA, Almuqrin AH, Al-Ghamdi H, El-Azony KM (2018) Evaluation of the activity of gamma-emitting natural radionuclides in seafood and estimation of the annual effective dose for different age groups in KSA. Radiat Prot Dosim 178:193–200. https://doi.org/10.1093/rpd/ncx087

    Article  CAS  Google Scholar 

  • Ayaz FA, Torun H, Colak A, Sesli E, Millson M, Glew RH (2011) Macro- and microelement contents of fruiting bodies of wild-edible mushrooms growing in the East Black Sea Region of Turkey. Food Nutr Sci 2:53–59. https://doi.org/10.4236/fns.2011.22007

    Article  CAS  Google Scholar 

  • Baeza A, del Río M, Miró C, Paniagua J (1994) Natural radionuclide distribution in soils of Cáceres (Spain): dosimetry implications. J Environ Radioact 23:19–37

    Article  CAS  Google Scholar 

  • Baeza A, Alonso A, Heras MC (2003) Procedimiento para la conservación y preparación de muestras de suelos para la determinación de la radiactividad. Colección Informes Técnicos 11.2003. Serie Vigilancia Radiológica Ambiental. Procedimiento 1.2. CSN (Consejo de Seguridad Nuclear)

  • Baeza A, Hernández S, Guillén FJ, Moreno G, Manjón JL, Pascual R (2004a) Radiocaesium and natural gamma emitters in mushrooms collected in Spain. Sci Total Environ 408:84–91. https://doi.org/10.1016/S0048-9697(03)00363-2

    Article  CAS  Google Scholar 

  • Baeza A, Guillén J, Mietelski JW (2004b) Uptake of alpha and beta emitters by mushrooms collected and cultured in Spain. J Radioanal Nucl Chem 261:375–380

    Article  CAS  Google Scholar 

  • Baeza A, Guillén J, Bernedo JM (2005) Soil-fungi transfer coefficients: importance of the location of the mycelium in soil and of the differential availability of radionuclides in soil fractions. J Environ Radioact 81:89–106. https://doi.org/10.1016/j.jenvrad.2004.12.00

    Article  CAS  Google Scholar 

  • Baeza A, Guillén FJ, Salas A, Manjón JL (2006) Distribution of radionuclides in different parts of a mushroom: influence of the degree of maturity. Sci Total Environ 359:255–266. https://doi.org/10.1016/j.scitotenv.2005.05.015

    Article  CAS  Google Scholar 

  • Barua T, Bhuian SI, Hossain S, Deb N, Ahmed M, Hossain S, Rashid A, Khandaker MU (2019) The presence of radioactive and metal contaminants in wild mushrooms grown in Chattogram hill tracts, Bangladesh. J Radioanal Nucl Chem 322:173–182

    Article  CAS  Google Scholar 

  • Brandhoff PN, van Bourgondiën MJ, Onstenk CGM, Avezathe AVV, Peters RJB (2016) Operation and performance of a National Monitoring Network for Radioactivity in Food. Food Control 64:87–97. https://doi.org/10.1016/j.foodcont.2015.12.008

    Article  CAS  Google Scholar 

  • Caridi F, Belmusto G (2017) Radioactivity in wild-growing mushrooms of the Calabria region, south of Italy. Cogent Physics 4:1354957. https://doi.org/10.1080/23311940.2017.1354957

    Article  CAS  Google Scholar 

  • Commission Implementing Regulation (EU) 2020/1158 of 5 August 2020 on the conditions governing imports of food and feed originating in third countries following the accident at the Chernobyl nuclear power station. The Official Journal of the European Union L 257 (6.8.2020)

  • CSN (2010) (Consejo de Seguridad Nuclear) Dosis de rad iación. Ed. Consejo de Seguridad Nuclear. Madrid

  • de Castro LP, Maihara VA, Silva PSC, Figueira RCL (2012) Artificial and natural radioactivity in edible mushrooms from São Paulo, Brazil. J Environ Radioact 113:150–154. https://doi.org/10.1016/j.jenvrad.2012.05.028

    Article  CAS  Google Scholar 

  • Eckl P, Hofmann W, Türk R (1986) Uptake of natural and man-made radionuclides by lichens and mushrooms. Radiat Environ Bioph 25:43–54

    Article  CAS  Google Scholar 

  • Escareño E (2012) Medición de K-40 para determinar el contenido de potasio total. Editorial Académica Española, México

    Google Scholar 

  • Escareño-Juárez E, Pardo R, Gascó-Leonarte C, Vega M, Sánchez-Báscones MI, Barrado-Olmedo AI (2019) Determination of natural uranium by various analytical techniques in soils of Zacatecas State (Mexico). J Radioanal Nuclear Chem 319:1135–1144. https://doi.org/10.1007/s10967-019-06428-6

    Article  CAS  Google Scholar 

  • Falandysz J, Frankowska A, Jarzyńska G, Dryżałowska A, Kojta AK, Zhang D (2011) Survey on composition and bioconcentration potential of 12 metallic elements in King Bolete (Boletus edulis) mushroom that emerged at 11 spatially distant sites. J Environ Sci Health B 46:231–246

    Article  CAS  Google Scholar 

  • Falandysz J, Borovička J (2013) Macro and trace mineral constituents and radionuclides in mushrooms: health benefits and risks. Appl Microbiol Biotechnol 97:477–501. https://doi.org/10.1007/s00253-012-4552-8

    Article  CAS  Google Scholar 

  • Falandysz J, Zalewska T, Apanel A, Drewnowska M, Kluza K (2016) Evaluation of the activity concentrations of 137Cs and 40K in some Chanterelle mushrooms from Poland and China. Environ Sci Pollut Res 23:20039–20048. https://doi.org/10.1007/s11356-016-7205-0

    Article  CAS  Google Scholar 

  • Falandysz J, Zhang J, Zalewska T (2017) Radioactive artificial 137Cs and natural 40K activity in 21 edible mushrooms of the genus Boletus species from SW China. Environ Sci Pollut Res 24:8189–8199. https://doi.org/10.1007/s11356-017-8494-7

    Article  CAS  Google Scholar 

  • Falandysz J, Saniewski M, Zhang J, Zalewska T, Liu HG, Kluza K (2018) Artificial 137Cs and natural 40K in mushrooms from the subalpine region of the Minya Konka summit and Yunnan Province in China. Environ Sci Pollut Res 25:615–627. https://doi.org/10.1007/s11356-017-0454-8

    Article  CAS  Google Scholar 

  • Falandysz J, Zhang J, Saniewski M (2020) 137Cs, 40K, and K in raw and stir-fried mushrooms from the Boletaceae family from the Midu region in Yunnan, Southwest China. Environ Sci Pollut Res 27:32509–32517. https://doi.org/10.1007/s11356-020-09393-w

    Article  CAS  Google Scholar 

  • Falandysz J, Saba M, Strumińska-Parulska D (2021a) 137Caesium, 40K and total K in Boletus edulis at different maturity stages: effect of braising and estimated radiation dose intake. Chemosphere 268:129336. https://doi.org/10.1016/j.chemosphere.2020.129336

    Article  CAS  Google Scholar 

  • Falandysz J, Zalewska T, Saniewski M, Fernandes AR (2021b) An evaluation of the occurrence and trends in 137Cs and 40K radioactivity in King Bolete Boletus edulis mushrooms in Poland during 1995–2019. Environ Sci Pollut Res https://doi.org/10.1007/s11356-021-12433-8

  • Garcêz RWD, Lopes JM, Filgueiras RA, da Silva AX (2018) Study of K-40, Ra-226, Ra-228 and Ra-224 activity concentrations in some seasoning and nuts obtained in Rio de Janeiro city, Brazil. Food Sci Technol 39:120–126. https://doi.org/10.1590/fst.27717

    Article  Google Scholar 

  • García MA, Alonso J, Melgar MJ (2015) Radiocaesium activity concentrations in macrofungi from Galicia (NW Spain): influence of Environmental and genetic factors. Ecotoxicol Environ Saf 115:152–158. https://doi.org/10.1016/j.ecoenv.2015.02.005

    Article  CAS  Google Scholar 

  • González ER, Bonzi EV (2012) Determinación de K-40 en alimentos por espectrometría gamma con un detector de NaI (Tl) y simulación Monte Carlo. Anales AFA 23:185–188

    Article  Google Scholar 

  • Govorushko S, Rezaee R, Dumanov J, Tsatsakis A (2019) Poisoning associated with the use of mushrooms: A review of the global pattern and main characteristics. Food Chem Toxicol 128:267–279

    Article  CAS  Google Scholar 

  • Grodzinskaya AA, Wasser S, Berreck M, Haselwandter K, Bugaenko T (2003) Radiocaesium contamination of wild-growing medicinal mushrooms in Ukraine. Int J Med Mushrooms 5:61–86

    Article  CAS  Google Scholar 

  • Grodzinskaya AA, Syrchin SA, Kuchma ND, Bilay VT (2011) Radioactive contamination of Ukrainian wildgrowing mushrooms. Proceedings of the 7th International Conference on Mushroom Biology and Mushroom Products (ICMBMP7)

  • Guillén J, Baeza A (2014) Radioactivity in mushrooms: a health hazard? Food Chem 154:14–25. https://doi.org/10.1016/j.foodchem.2013.12.083

    Article  CAS  Google Scholar 

  • Guillén J, Baeza A, Beresford NA, Wood MD (2017) Do fungi need to be included within environmental radiation protection assessment models? 175-176:70-77

  • Herranz M, Jiménez R, Navarro E, Payeras J, Pinilla JL (2003) Procedimiento de toma de muestras para la determinación de la radiactividad en suelos: capa superficial. Colección InformesTécnicos11.2003. Serie Vigilancia Radiológica Ambiental. Procedimiento 1.1. CSN (Consejo de Seguridad Nuclear)

  • Index Fungorum (2020) http://www.indexfungorum.org/Names/Names.asp

  • Ivanić M, Fiket Z, Medunic G, Furdek Turk M, Marović G, Senčar J, Kniewald G (2019) Multi-element composition of soil, mosses and mushrooms and assessment of natural and artificial radioactivity of a pristine temperate rainforest system (Slavonia, Croatia). Chemosphere 215:668–677. https://doi.org/10.1016/j.chemosphere.2018.10.108

    Article  CAS  Google Scholar 

  • Kalač P (2001) A review of edible mushroom radioactivity. Food Chem 75:29–35. https://doi.org/10.1016/S0308-8146(01)00171-6

    Article  Google Scholar 

  • Kalač P (2012) Radioactivity of European wild growing edible mushrooms. In: Mushrooms: Types, Properties and Nutrition”. Chapter 10. Nova Science publishers, Inc

  • Kalač P (2019) Radioactivity. In: Mineral composition and radioactivity of edible mushrooms. Chapter 5. Academic Press. Elsevier. United Kingdon

  • Karadeniz Ö, Yaprak G (2011) Soil-to-mushroom transfer of 137Cs, 40K, alkali–alkaline earth element and heavy metal in forest sites of Izmir, Turkey. J. Radioanal Nucl Chem 288:261–270. https://doi.org/10.1007/s10967-010-0908-7

    Article  CAS  Google Scholar 

  • Kioupi V, Florou H, Kapsanaki-Gotsi E, Gonou-Zagou Z (2016) Bioaccumulation of the artificial Cs-137 and the natural radionuclides Th-234, Ra-226, and K-40 in the fruit bodies of Basidiomycetes in Greece. Environ Sci Pollut Res 23:613–624. https://doi.org/10.1007/s11356-015-5298-5

    Article  CAS  Google Scholar 

  • Lee SH, Oh JS, Lee KB, Lee JM, Hwang SH, Lee MK, Kwon EH, Kim CS, Choi IH, Yeo IY, Yoon JY, Im JM (2018) Evaluation of abundance of artificial radionuclides in food products in South Korea and sources. J Environ Radioact 184-185:46–52. https://doi.org/10.1016/j.jenvrad.2018.01.008

    Article  CAS  Google Scholar 

  • López-Vázquez E, Prieto-García F (2016) Minerals and toxic elements in wild mushrooms species from regions of Hidalgo State in Mexico. Asian J Chem 28:2725–2730. https://doi.org/10.14233/ajchem.2016.20098

    Article  CAS  Google Scholar 

  • López Vázquez E, Prieto García F, Gayosso Canales M (2016) Major and trace minerals present in wild mushrooms. American-Eurasian J Agric Environ Sci 16(6):1145–1158. https://doi.org/10.5829/idosi.aejaes.2016.16.6.12962

    Article  CAS  Google Scholar 

  • Malinowska E, Szefer P, Bojanowski R (2006) Radionuclides content in Xerocomus badius and other commercial mushrooms from several regions of Poland. Food Chem 97:19–24. https://doi.org/10.1016/j.foodchem.2005.02.048

    Article  CAS  Google Scholar 

  • Melgar MJ, Alonso J, García MA (2014) Total contents of arsenic and associated health risks in edible mushrooms, mushroom supplements and growth substrates from Galicia (NW Spain). Food Chem Toxicol 73:44–50. https://doi.org/10.1016/j.fct.2014.08.003

    Article  CAS  Google Scholar 

  • Melgar MJ, Alonso J, García MA (2016) Cadmium in edible mushrooms from NW Spain: bioconcentration factors and consumer health implications. Food Chem Toxicol 88:13–20. https://doi.org/10.1016/j.fct.2015.12.002

    Article  CAS  Google Scholar 

  • Mietelski JW, Dubchak S, Błażeg S, Anielska T, Turnau K (2010) 137Cs and 40K in fruiting bodies of different fungal species collected in a single forest in southern Poland. J Environ Radioact 101:706–711. https://doi.org/10.1016/j.jenvrad.2010.04.010

    Article  CAS  Google Scholar 

  • NIH (2020) National Institute of Health. https://ods.od.nih.gov/ factsheets/Potassium-HealthProfessional/, retrieved on April 12, 2021

  • Nnorom IC, Eze SO, Ukaogo PO (2020) Mineral contents of three wild-grown edible mushrooms collected from forests of south eastern Nigeria: an evaluation of bioaccumulation potentials and dietary intake risks. S Afr 8:e00163. https://doi.org/10.1016/j.sciaf.2019.e00163

    Article  Google Scholar 

  • Quintero E, Alfaro MM, Valentín G, Rojas P (2007) Determinación de 40K en suelos y en cuerpo entero. ININ-SUTIN Technical and Scientific Congress; Salazar, Estado de Mexico 4-6 Dic 2007: 5 pp

  • Rakić M, Karaman M, Forkapić S, Hansman J, Kebert M, Bikit K, Mrdja D (2014) Radionuclides in some edible and medicinal macrofungal species from Tara Mountain, Serbia. Environ Sci Pollut Res 21:11283–11292. https://doi.org/10.1007/s11356-014-2967-8

    Article  CAS  Google Scholar 

  • Real Decreto (2009) de 16 de enero, por el que se establecen las condiciones sanitarias para la comercialización de setas para uso alimentario. BOE, n° 20 de 23 de enero de 2009

  • Ribeiro FCA, Silva JIR, Lima ESA, NMB d AS, Pérez DV, Lauria DC (2018) Natural radioactivity in soils of the state of Rio de Janeiro (Brazil): radiological characterization and relationships to geological formation, soil types and soil properties. J Environ Radioact 182:34–43. https://doi.org/10.1016/j.jenvrad.2017.11.017

    Article  CAS  Google Scholar 

  • Saba M, Falandysz J (2021) The effects of different cooking modes on the 137Cs, 40K, and total K content in Boletus edulis (King Bolete) mushrooms. Environ Sci Pollt Res Int 28(10):12441–12446. https://doi.org/10.1007/s11356-020-11147-7

    Article  CAS  Google Scholar 

  • Strumińska-Parulska D, Falandysz J, Wang Y (2020) Radiotoxic 210Po and 210Pb in uncooked and cooked Boletaceae mushrooms from Yunnan (China) including intake rates and effective exposure doses. J Environ Radioact 217:106236

    Article  Google Scholar 

  • Strumińska-Parulska D, Falandysz J (2020) A review of the occurrence of alpha-emitting radionuclides in wild mushrooms. Int J Environ Res Public Health 17(21):8220. https://doi.org/10.3390/ijerph17218220

    Article  CAS  Google Scholar 

  • Świsłowski P, Dołhańczuk-Śródka A, Rajfur A (2020) Bibliometric analysis of European publications between 2001 and 2016 on concentrations of selected elements in mushrooms. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-020-08693-5

  • Szymańska K, Strumińska-Parulska D, Falandysz J (2020) Uranium (234U, 238U) and thorium (230Th, 232Th) in mushrooms of genus Leccinum and Leccinellum and the potential effective ionizing radiation dose assessment for human. Chemosphere 250:126242

    Article  Google Scholar 

  • Szántó S, Hult M, Wätjen U, Altzitzoglou T (2007) Current radioactivity content of edible mushrooms: a candidate for an environmental reference material. J Radioanal Nucl Chem 273:167–170. https://doi.org/10.1007/s10967-007-0730-z

    Article  CAS  Google Scholar 

  • Tuo F, Zhang J, Li W, Yao S, Zhou Q, Li Z (2017) Radionuclides in mushrooms and soil-to-mushroom transfer factors in certain areas of China. J Environ Radioact 180:59–64. https://doi.org/10.1016/j.jenvrad.2017.09.023

    Article  CAS  Google Scholar 

  • Turkekul I, Yesilkanat CM, Ciriş A, Kölemen U, Çevik U (2018) Interpolated mapping and investigation of environmental radioactivity levels in soils and mushrooms in the Middle Black Sea Region of Turkey. Isot Environ Healt S 54:262–273. https://doi.org/10.1080/10256016.2017.1402768

    Article  CAS  Google Scholar 

  • UNSCEAR (2010) Sources and effects of ionizing radiation. UNSCEAR 2008 Report to General Assembly with scientific Annexes. Vol. I. New York: United Nations

  • Wang JJ, Wang CJ, Lai SY, Lin YM (1998) Radioactivity concentrations of 137Cs and 40K in basidiomycetes collected in Taiwan. Appl Radiat Isot 49:29–34

    Article  CAS  Google Scholar 

  • Wang XM, Zhang J, Li T, Wang YZ, Liu HG (2015) Content and Bioaccumulation of nine mineral elements in ten mushroom species of the genus Boletus. J Anal Methods Chem. Article ID 165412. https://doi.org/10.1155/2015/165412

  • Yamada T (2013) Mushrooms: radioactive contamination of widespread mushrooms in Japan (Chapter 15). In: Nakanishi TM, Keitaro T (eds) Agricultural Implications of the Fukushima Nuclear Accident. Springer, Tokyo, pp 163–176

    Chapter  Google Scholar 

  • Zhang D, Frankowska A, Jarzyńska G, Kojta AK, Drewnowska M, Wydmańska D, Bielawski L, Wang J, Falandysz J (2010) Metals of King Bolete (Boletus edulis) collected at the same site over two years. Afr J Agric Res 5:3050–3055

    Google Scholar 

  • Zocher AL, Kraemer D, Merschel G, Bau M (2018) Distribution of major and trace elements in the bolete mushroom Suillus luteus and the bioavailability of rare earth elements. Chem Geol 483:491–500. https://doi.org/10.1016/j.chemgeo.2018.03.019

    Article  CAS  Google Scholar 

Download references

Availability of data and materials

We include, in supplementary material, 2 excel files with the data of the materials worked: mushrooms and soils (Natural-Radionuclides-Mushrooms.xlsx and Natural-Radionuclides-Soils.xlsx) and a Technical-analytical report.

Funding

This work was supported by CETAL (Centro Tecnológico Agroalimentario de Lugo). The study was conducted in collaboration with “Federación Galega de Micoloxía”.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by María Julia Melgar and María Ángeles García. The first draft of the manuscript was written by María Ángeles García, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to María Julia Melgar.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Georg Steinhauser

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(XLSX 13 kb)

ESM 2

(XLSX 11 kb)

ESM 3

(PDF 464 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melgar, M.J., García, M.Á. Natural radioactivity and total K content in wild-growing or cultivated edible mushrooms and soils from Galicia (NW, Spain). Environ Sci Pollut Res 28, 52925–52935 (2021). https://doi.org/10.1007/s11356-021-14423-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-14423-2

Keywords

Navigation