Skip to main content
Log in

The conversion of the nutrient condition alter the phenol degradation pathway by Rhodococcus biphenylivorans B403: A comparative transcriptomic and proteomic approach

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Highly toxic phenol causes a threat to the ecosystem and human body. The development of bioremediation is a crucial issue in environmental protection. Herein, Rhodococcus biphenylivorans B403, which was isolated from the activated sludge of the sewage treatment plant, exhibited a good tolerance and removal efficiency to phenol. The degradation efficiency of phenol increased up to 62.27% in the oligotrophic inorganic medium (MM) containing 500-mg/L phenol at 18 h. R. biphenylivorans B403 cultured in the MM medium showed a higher phenol degradation efficiency than that in the eutrophic LB medium. On the basis of the transcriptomic and proteomic analysis, a total of 799 genes and 123 proteins showed significantly differential expression between two different culture conditions, especially involved in phenol degradation, carbon metabolism, and nitrogen metabolism. R. biphenylivorans B403 could alter the phenol degradation pathway by facing different culture conditions. During the phenol removal in the oligotrophic inorganic medium, muconate cycloisomerase, acetyl-CoA acyltransferase, and catechol 1,2-dioxygenase in the ortho-pathway for phenol degradation showed upregulation compared with those in the eutrophic organic medium. Our study provides novel insights into the possible pathway underlying the response of bacterium to environmental stress for phenol degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alfakih AA (2014) Overview on the fungal metabolites involved in mycopathy. Open Journal of Medical Microbiology 4:38–63

    Article  Google Scholar 

  • Arif NM, Ahmad SA, Syed MA, Shukor MY (2013) Isolation and characterization of a phenol-degrading Rhodococcus sp. strain AQ5NOL 2 KCTC 11961BP. J. Basic Microbiol. 53:9–19

    Article  CAS  Google Scholar 

  • Basak SP, Sarkar P, Pal P (2014) Isolation and characterization of phenol utilizing bacteria from industrial effluent-contaminated soil and kinetic evaluation of their biodegradation potential. J. Environ. Sci. Heal. A 49:67–77

    Article  CAS  Google Scholar 

  • Braun V (2005) Bacterial iron transport related to virulence. Contrib. Microbiol. 12:210–233

    Article  CAS  Google Scholar 

  • Bringaud F, Riviere L, Coustou V (2006) Energy metabolism of trypanosomatids: adaptation to available carbon sources. Mol. Biochem. Parasitol. 149:1–9

    Article  CAS  Google Scholar 

  • Cason ED, Piater LA, Ev H (2012) Reduction of U(VI) by the deep subsurface bacterium, Thermus scotoductus SA-01, and the involvement of the ABC transporter protein. Chemosphere 86:572–577

    Article  CAS  Google Scholar 

  • Djokic L, Narancic T, Biocanin M, Saljnikov E, Casey E, Vasiljevic B, Nikodinovic-Runic J (2013) Phenol removal from four different natural soil types by Bacillus sp. PS11. Appl. Soil Ecol. 70:1–8

    Article  Google Scholar 

  • Duan W, Meng F, Cui H, Lin Y, Wang G, Wu J (2018) Ecotoxicity of phenol and cresols to aquatic organisms: a review. Ecotoxicol. Environ. Saf. 157:441–456

    Article  CAS  Google Scholar 

  • Gong B, Wu P, Huang Z, Li Y, Dang Z, Ruan B, Kang C, Zhu N (2016) Enhanced degradation of phenol by Sphingomonas sp. GY2B with resistance towards suboptimal environment through adsorption on kaolinite. Chemosphere 148:388–394

    Article  CAS  Google Scholar 

  • González-Guerrero M, Benabdellah K, Valderas A, Azcón-Aguilar C, Ferrol N (2010) GintABC1 encodes a putative ABC transporter of the MRP subfamily induced by Cu, Cd, and oxidative stress in Glomus intraradices. Mycorrhiza 20:137–146

    Article  Google Scholar 

  • Gu QH, Wu QP, Zhang JM, Guo WP, Ding Y, Wang J, Wu HQ, Sun M, Hou LF, Wei XH, Zhang YX (2018) Isolation and transcriptome analysis of phenol-degrading bacterium from carbon-sand filters in a full-scale drinking water treatment plant. Front. Microbiol. 9:16

    Article  Google Scholar 

  • Guillamón JM, van Riel NAW, Giuseppin MLF, Verrips CT (2001) The glutamate synthase (GOGAT) of Saccharomyces cerevisiae plays an important role in central nitrogen metabolism. FEMS Yeast Res. 1:169–175

    Article  Google Scholar 

  • He Z, Niu C, Lu Z (2014) Individual or synchronous biodegradation of di-n-butyl phthalate and phenol by Rhodococcus ruber strain DP-2. J. Hazard. Mater. 273:104–109

    Article  CAS  Google Scholar 

  • Ito T, Hemmi H, Kataoka K, Mukai Y, Yoshimura T (2008) A novel zinc-dependent D-serine dehydratase from Saccharomyces cerevisiae. Biochem. J 409:399–406

    Article  CAS  Google Scholar 

  • Kim D, Choi KY, Yoo M, Zylstra GJ, Kim E (2018) Biotechnological potential of Rhodococcus biodegradative pathways. J. Microbiol. Biotechnol. 28:1037–1051

    Article  CAS  Google Scholar 

  • Lin J (2017) Stress responses of Acinetobacter strain Y during phenol degradation. Arch. Microbiol. 199:365–375

    Article  CAS  Google Scholar 

  • Liu J, Liu F, Ding C, Ma F, Yu H, Shi Y, Zhang X (2020) Response of Trametes hirsuta to hexavalent chromium promotes laccase-mediated decolorization of reactive black 5. Ecotoxicol. Environ. Saf. 205:111134

    Article  CAS  Google Scholar 

  • Margesin R, Fonteyne P, Redl B (2005) Low-temperature biodegradation of high amounts of phenol by Rhodococcus spp. and basidiomycetous yeasts. Res. Microbiol. 156:68–75

    Article  CAS  Google Scholar 

  • McAlister GC, Huttlin EL, Haas W, Ting L, Jedrychowski MP, Rogers JC, Kuhn K, Pike I, Grothe RA, Blethrow JD, Gygi SP (2012) Increasing the multiplexing capacity of TMTs using reporter ion isotopologues with isobaric masses. Anal. Chem. 84:7469–7478

    Article  CAS  Google Scholar 

  • McClure R, Balasubramanian D, Sun Y, Bobrovskyy M, Sumby P, Genco CA, Vanderpool CK, Tjaden B (2013) Computational analysis of bacterial RNA-Seq data. Nucleic Acids Res. 41:e140–e140

    Article  CAS  Google Scholar 

  • Mukherjee R, De S (2014) Adsorptive removal of phenolic compounds using cellulose acetate phthalate–alumina nanoparticle mixed matrix membrane. J. Hazard. Mater. 265:8–19

    Article  CAS  Google Scholar 

  • Ontañon OM, Landi C, Carleo A, Gagliardi A, Bianchi L, González PS, Agostini E, Bini L (2018) What makes A. guillouiae SFC 500-1A able to co-metabolize phenol and Cr(VI)? A proteomic approach. J. Hazard. Mater. 354:215–224

    Article  Google Scholar 

  • Paisio CE, Talano MA, González PS, Busto VD, Talou JR, Agostini E (2012) Isolation and characterization of a Rhodococcus strain with phenol-degrading ability and its potential use for tannery effluent biotreatment. Environ. Sci. Pollut. R. 19:3430–3439

    Article  CAS  Google Scholar 

  • Putrinš M, Ilves H, Lilje L, Kivisaar M, Hõrak R (2010) The impact of ColRS two-component system and TtgABC efflux pump on phenol tolerance of Pseudomonas putida becomes evident only in growing bacteria. BMC Microbiol. 10:110

    Article  Google Scholar 

  • Roell GW, Carr RR, Campbell TP, Shang Z, Henson WR, Czajka JJ, Martin HG, Zhang F, Foston M, Dantas G (2019) A concerted systems biology analysis of phenol metabolism in Rhodococcus opacus PD630. Metab. Eng. 55:120–130

    Article  CAS  Google Scholar 

  • Song H, Liu Y, Xu W, Zeng G, Aibibu N, Xu L, Chen B (2009) Simultaneous Cr(VI) reduction and phenol degradation in pure cultures of Pseudomonas aeruginosa CCTCC AB91095. Bioresour. Technol. 100:5079–5084

    Article  CAS  Google Scholar 

  • Su X, Liu Y, Hashmi MZ, Hu J, Ding L, Wu M, Shen C (2015a) Rhodococcus biphenylivorans sp. nov., a polychlorinated biphenyl-degrading bacterium. Antonie Van Leeuwenhoek 107:55–63

    Article  CAS  Google Scholar 

  • Su X, Sun F, Wang Y, Hashmi MZ, Guo L, Ding L, Shen C (2015b) Identification, characterization and molecular analysis of the viable but nonculturable Rhodococcus biphenylivorans. Sci. Rep. 5:18590

    Article  CAS  Google Scholar 

  • Suhaila YN, Rosfarizan M, Ahmad SA, Abdul Latif I, Ariff AB (2013) Nutrients and culture conditions requirements for the degradation of phenol by Rhodococcus UKMP-5M. J. Environ. Biol. 34:635–643

    CAS  Google Scholar 

  • Szőköl J, Rucká L, Šimčíková M, Halada P, Ne?Vera J, Pátek M (2014): Induction and carbon catabolite repression of phenol degradation genes in Rhodococcus erythropolis and Rhodococcus jostii. Appl. Microbiol. Biotechnol. 98, 8267-8279

  • Talaiekhozani A, Talaei MR, Rezania S (2017) An overview on production and application of Ferrate (VI) for chemical oxidation, coagulation and disinfection of water and wastewater. J. Environ. Chem. Eng. 5:1828–1842

    Article  CAS  Google Scholar 

  • Tyanova S, Temu T, Cox J (2016) The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 11:2301–2319

    Article  CAS  Google Scholar 

  • Villegas LGC, Mashhadi N, Chen M, Mukherjee D, Taylor KE, Biswas N (2016) A short review of techniques for phenol removal from wastewater. Curr. Pollut. Rep. 2:157–167

    Article  CAS  Google Scholar 

  • Wang Q, Li Y, Li J, Wang Y, Wang C, Wang P (2015) Experimental and kinetic study on the cometabolic biodegradation of phenol and 4-chlorophenol by psychrotrophic Pseudomonas putida LY1. Environ. Sci. Pollut. R. 22:565–573

    Article  CAS  Google Scholar 

  • Xia T, Xie M, Chen D, Xiao Z (2019) Impact of phenol on the performance, kinetics, microbial communities and functional genes of an autotrophic denitrification system. Bioprocess Biosystems Eng. 42:1105–1114

    Article  CAS  Google Scholar 

  • Yao C, Chou J, Wang T, Zhao H, Zhang B (2018) Pantothenic acid, vitamin c, and biotin play important roles in the growth of Lactobacillus helveticus. Front. Microbiol. 9

  • Ye Z, Li H, Jia Y, Fan J, Wan J, Guo L, Su X, Zhang Y, Wu W-M, Shen C (2020) Supplementing resuscitation-promoting factor (Rpf) enhanced biodegradation of polychlorinated biphenyls (PCBs) by Rhodococcus biphenylivorans strain TG9(T). Environ. Pollut. 263:114488

    Article  CAS  Google Scholar 

  • Yergeau E, Tremblay J, Joly S, Labrecque M, Maynard C, Pitre FE, Starnaud M, Greer CW (2018) Soil contamination alters the willow root and rhizosphere metatranscriptome and the root–rhizosphere interactome. ISME J. 12:869–884

    Article  Google Scholar 

  • Zhou W, Guo W, Zhou H, Chen X (2016) Phenol degradation by Sulfobacillus acidophilus TPY via the meta-pathway. Microbiol. Res. 190:37–45

    Article  CAS  Google Scholar 

  • Zidkova L, Otevrel M, Wimmerova L, Patek M (2010) Continuous phenol degradation in wastewater by Rhodococcus jostii rha1; model batch test and continuous verification in a biofilter. J. Biotechnol. 150:215

    Article  Google Scholar 

  • Zídková L, Szőköl J, Rucká L, Pátek M, Nešvera J (2013) Biodegradation of phenol using recombinant plasmid-carrying Rhodococcus erythropolis strains. Int. Biodeterior. Biodegrad. 84:179–184

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by China National Key R&D Program (2020YFA0908400; 2019YFA090500), the Science and Technology Innovation Program of Hubei Province (2020BBA056; 2019ABA117), the Central Committee Guides Local Science and Technology Development Projects (2018ZYYD034), and the Wuhan Science and Technology Plan (2019020701011496).

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Funding

China National Key R&D Program (2020YFA0908400)

China National Key R&D Program (2019YFA090500)

Science and Technology Innovation Program of Hubei Province (2020BBA056)

Science and Technology Innovation Program of Hubei Province (2019ABA117)

Central Committee Guides Local Science and Technology Development Projects (2018ZYYD034)

Wuhan Science and Technology Plan (2019020701011496)

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Zhengbing Jiang and Huiting Song; data curation, Xiaohang Xie and Jiashu Liu; formal analysis, Xiaohang Xie; funding acquisition, Zhengbing Jiang; investigation, Xiaohang Xie and Hong Pan; methodology, Xiaohang Xie, Huanan Li, and Meng Ye; project administration, Zhengbing Jiang and Huiting Song; resources, Huiting Song; software, Jiashu Liu and Jingwei Zhu; supervision, Huiting Song; validation, Huanan Li; writing—original draft, Jiashu Liu; writing—review and editing, Jiashu Liu.

Corresponding author

Correspondence to Huiting Song.

Ethics declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Diane Purchase

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 513 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, X., Liu, J., Jiang, Z. et al. The conversion of the nutrient condition alter the phenol degradation pathway by Rhodococcus biphenylivorans B403: A comparative transcriptomic and proteomic approach. Environ Sci Pollut Res 28, 56152–56163 (2021). https://doi.org/10.1007/s11356-021-14374-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-14374-8

Keywords

Navigation