Skip to main content

Advertisement

Log in

Use of Lens culinaris Med test as environmental bioindicator to identify the cytogenotoxic effect of paraquat pesticide

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Paraquat is the most widely used herbicide and the third most sold pesticide in the world, applied in more than 120 countries despite being banned in the European Union. It is a risk to ecosystems. The genotoxic effect of paraquat was evaluated using the Lens culinaris test. L. culinaris seeds were subjected to 6 concentrations of paraquat (0.1, 0.5, 1, 1.5, 1.5, 2, and 3 ppm) plus a control (distilled water). During 72 h, root development was measured every 24 h. After 3 days, root apices were analyzed to obtain the inhibition of the mitotic index, as well as the type and rate of chromosomal abnormalities present. A decrease in root growth of more than 50% (72 h of exposure) and an inhibition of the mitotic index of 2.9 times in the treatment with 3 ppm compared to the control were observed. The 2 ppm concentration presented all the anomalies found with a frequency of 84 ± 2.5 of micronuclei, 106 ± 3.5 of nuclear lesions, 14 ± 4.7 of nucleus absence, 8 ± 2.7 of telophase bridges, 7 ± 2.7 of binucleated cells, among others. It is also recommended to establish comparisons of L. culinaris with multiple biomarkers since it is presented as a practical and economic alternative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdelsalam N, Megeed A, Ali HM, Salem MZM, Al-Hayali M, Elshikh MS (2018) Genotoxicity effects of silver nanoparticles on wheat (Triticum aestivum L.) root tip cells. Ecotoxicol. Environ. Safe. 155:76–85

    Article  CAS  Google Scholar 

  • Acar A, Çavuşoğlu K, Türkmen Z, Çavuşoğlu K, Yalçın E (2015) The Investigation of Genotoxic, Physiological and Anatomical Effects of Paraquat Herbicide on Allium cepa L. CYTOLOGIA 80(3):343–351. https://doi.org/10.1508/cytologia.80.343

    Article  CAS  Google Scholar 

  • Amondham W, Parkpian P, Polprasert C, Delaune RD, Jugsujinda A (2006) Paraquat adsorption, degradation, and remobilization in tropical soils of Thailand. J. Environ. Sci. Health B. 41:485–507

    Article  Google Scholar 

  • Asita AO, Mokhobo MM (2013) Clastogenic and cytotoxic effects of four pesticides used to control insect pest of stored products on root meristems of Allium cepa. Canadian Center of Science and Education. 3(2):133–145

    Google Scholar 

  • Berry C, La Vecchia C, Nicotera P (2010) Paraquat and Parkinson’s disease. Cell Death Differ. 17:1115–1125

    Article  CAS  Google Scholar 

  • Boesten J (2016) Proposal for field-based definition of soil bound pesticide residues. Science of The Total Environment. 544:114–117. https://doi.org/10.1016/j.scitotenv.2015.11.122

    Article  CAS  Google Scholar 

  • Bortolotto LF, Barbosa FR, Silva G, Bitencourt TA, Beleboni R.O, Baek SJ, et al (2016). Cytotoxicity of transchalcone and licochalcone A against breast cancer cells is due to apoptosis induction and cell cycle arrest. Biomed. Pharmacother. 85, 425-433. Doi: https://doi.org/10.1016/j.biopha.2016.11.047.

  • Caloni F, Cortinovis C, Rivolta M, Davanzo F (2016) Sospecha de envenenamiento de animales domésticos por pesticidas. Science of The Total Environment. 539:331–336. https://doi.org/10.1016/j.scitotenv.2015.09.005

    Article  CAS  Google Scholar 

  • Causil L, Coronado J, Vega M, Verbel L (2017) Efecto citotoxico del hipoclorito de sodio (NaClO), en células apicales de raíces de cebolla (Allium cepa L.). Rev. Colomb. Ciencias Hortícolas. 11(1), 97-104. Doi: 10.17584/rcch.2017v11i1.5662

  • Cochemé HM, Murphy MP (2008) Complex I is the major site of mitochondrial superoxide production by paraquat. J. Biol. Chem. 283(4):1786–1798. https://doi.org/10.1074/jbc.M708597200

    Article  CAS  Google Scholar 

  • El-Abidin Salam A, Hussein E, El-Itriby A, Anwar W, Mansour S (1993) The mutagenicity of Gramoxone (paraquat) on different eukaryotic systems. Mutation Research/Genetic Toxicology 319(2):89–101. https://doi.org/10.1016/0165-1218(93)90067-n

    Article  CAS  Google Scholar 

  • Faizah AA (2014) Cytotoxic and genotoxic potency screening of WIDE-SPEC pesticide on Allium cepa L. root meristem cells. Journal of Natural Sciences Research 4:24

    Google Scholar 

  • Ferguson BS, Kelsey DE, Fan T, Bushway R (1993) Pesticide testing by enzyme immunoassay at trace levels in environmental and agricultural samples. Science of The Total Environment. 132 (2-3), 415-428. https://doi.org/10.1016/0048-9697(93)90148-Y

  • Fernández M, Ibáñez M, Picó Y, Mañes J (1998) Spatial and temporal trends of paraquat, diquat, and difenzoquat contamination in water from marsh areas of the valencian community (Spain). Arch. Environ. Contam. Toxicol. 35:377–384

    Article  Google Scholar 

  • Fiskesjo G (1988) The Allium test-an alternative in environmental studies: the relative toxicity of metal ions. Mutat. Res. 197:243–260

    Article  CAS  Google Scholar 

  • Flores M, Barbachano M (1992) Effects of herbicides Gramoxone, Diuron and Totacol® on growth and nodulation of three strains of Rhizobium meliloti. Science of The Total Environment. 123-124:249–260. https://doi.org/10.1016/0048-9697(92)90150-Q

    Article  CAS  Google Scholar 

  • Franqueira D, Orosa M, Torres E, Herrero C, Cid A (2000) Potential use of flow cytometry in toxicity studies with microalgae. Science of The Total Environment. 247(2-3):119–126. https://doi.org/10.1016/s0048-9697(99)00483-0

    Article  CAS  Google Scholar 

  • Haijie L, Hao Q, Mingyuan Y, Yujie C, Qiliang D, Shuo W (2021) Carbon tubes from biomass with prominent adsorption performance for paraquat. Chemosphere. 262:127797. https://doi.org/10.1016/j.chemosphere.2020.127797

    Article  CAS  Google Scholar 

  • Hoffman D, Eastin W (1982) Efectos del lindano, paraquat, toxafeno y ácido 2,4,5-triclorofenoxiacético en el desarrollo del embrión de ánade real. Arco. Reinar. Contam. Toxicol. 11, 79-86 (1982). https://doi.org/10.1007/BF01055190

  • Huitao L, Qiqi Z, Songxue W, Tongliang H, Xiaoheng L, Chaobo N, Yinghui F, Linxi L, Qingquan L, Ren-Shan G (2019) Paraquat exposure delays stem/progenitor Leydig cell regeneration in the adult rat testis. Chemosphere. 231:60–71. https://doi.org/10.1016/j.chemosphere.2019.05.104

    Article  CAS  Google Scholar 

  • James OE, Adeleke MT (2016) Cytotoxicity of two common pesticides using Allium cepa (onion). Assay current studies in comparative education, science and technology. 3(2):211–221

    Google Scholar 

  • Jovtchev G, Gateva S, Stergios M, Kulekova S (2010) Cytotoxic and genotoxic effects of paraquat in Hordeum vulgare and human lymphocytes in vitro. Environ Toxicol. 25(3):294–303. https://doi.org/10.1002/tox.20503

    Article  CAS  Google Scholar 

  • Karaismailoglu MC (2017) Assessments on the potential genotoxic effects of fipronil insecticide on Allium cepa somatic cells. Caryologia. https://doi.org/10.1080/00087114.2017.1371992

  • Khannah N, Sonia S (2013) Allium cepa root chromosomal aberration assay: a review. Indian J. Pharm. Biol. Res. 1(3)

  • Lazalde-Ramos BP, Zamora-Pérez AL, Sosa-Macías M, Galaviz-Hernández C, Zúñiga-González GM (2017) Micronuclei and nuclear anomalies in Mexico's indigenous population. Salud Publica Mex. 59(5), 532-539. Doi: 10.21149/8318.

  • Liman R, Acikbas Y, Ciğerci İ (2019) Cytotoxicity and genotoxicity of cerium oxide micro and nanoparticles by Allium and Comet tests. Ecotoxicol. Environ. Safe. 168:408–414. https://doi.org/10.1016/j.ecoenv.2018.10.088

    Article  CAS  Google Scholar 

  • Ma J, Li Y, Li W, Li X (2018) Hepatotoxicity of paraquat on common carp (Cyprinus carpio L.). Science of The Total Environment. 616-617:889–898. https://doi.org/10.1016/j.scitotenv.2017.10.231

    Article  CAS  Google Scholar 

  • Mallo-Castaño J, Castañón-López L, Herrero-Mendoza B, Robles-Garcíaa B, Goded Rambaudb F (2005) Síndrome de Leigh con déficit de los complejos I, III y IV de la cadena respiratoria mitocondrial. Anales de pediatría. 62(2):161–165. https://doi.org/10.1157/13071315

    Article  Google Scholar 

  • Marin-Morales MA, Ventura-Camargo B, Miyuki-Hoshina M (2013) Toxicity of Herbicides: Impact on Aquatic and Soil Biota and Human Health, book chapter. Doi. https://doi.org/10.5772/55851

  • Meng Z, Zhang L (1992) Cytogenetic damage induced by sodium bisulfate. Mutation Research. 298:63–69

    Article  CAS  Google Scholar 

  • Novaes RD, Goncalves RV, Cupertino MC, Santos EC, Bigonha SM, Fernandes G, Maldonado I, Natali AJ (2016) Acute paraquat exposure determines dose dependent oxidative injury of multiple organs and metabolic dysfunction in rats: impact on exercise tolerance. Int. J. Exp. Pathol. 97:114–124

    Article  CAS  Google Scholar 

  • Oikari A, Kukkonen J, Virtanen V (1992) Toxicidad aguda de productos químicos para Daphnia magna en aguas húmicas. Science of The Total Environment. 117-118, 367-377. Doi: 10.1016 / 0048-9697 (92) 90103-a

  • Ping KW, Darah I, Yusuf U, Yeng C, Sasidharan S (2012) Genotoxicity of Euphorbia hirata: An Allium cepa assay. Molecules. 17:7782–7791

    Article  CAS  Google Scholar 

  • Prado R, Rioboo C, Herrero A (2009) The herbicide paraquat induces alterations in the elemental and biochemical composition of non-target microalgal species. Chemosphere.76, 1440-1444. https://doi.org/10.1016/j.chemosphere.2009.06.003

  • Prajitha V, Thoppil J (2016) Genotoxic and antigenotoxic potential of the aqueous leaf extracts of Amaranthus spinosus Linn. using Allium cepa assay. South Afr. J. Bot. 102:18–25. https://doi.org/10.1016/j.sajb.2015.06.018

    Article  Google Scholar 

  • Rizhsky L, Liang H, Mittler R (2003) The water–water cycle is essential for chloroplast protection in the absence of stress. J. Biol. Chem. 278:38921–38925

    Article  CAS  Google Scholar 

  • Sabeeh W (2011) Test of geuotoxicity of herbicid paraquat using chromosome aberration in anaphase- telophase in Alium cepa. Tikrit Journal of Pure Science 16:168–176

    Google Scholar 

  • Salazar S, Maldonado, H (2019) Evaluation of cytotoxic potential of chlorpyrifos using Lens culinaris Med as efficient bioindicator. Ecotoxicol Environ Saf. 183, 109528. https://doi.org/10.1016/j.ecoenv.2019.109528

  • Salazar S, Quintero J (2020a) Cytotoxic evaluation of glyphosate, using Allium cepa L. as bioindicator. Science of the Total Environment. 700, 134452. https://doi.org/10.1016/j.scitotenv.2019.134452.

  • Salazar S, Quintero J (2020b) Determination of malathion’s toxic effect on Lens culinaris Medik cell cycle. Heliyon 6(9):e04846. https://doi.org/10.1016/j.heliyon.2020.e04846

    Article  Google Scholar 

  • Salazar MA, Valderrama R, Quintero Caleño JD (2018) Efecto de la colchicina sobre la morfología foliar y los estomas de Kalanchoe daigremontiana Raym.-Hamet & H.Perrier (Crassulaceae). Revista Colombiana de Ciencias Hortícolas 12(1):212–222. https://doi.org/10.17584/rcch.2018v12i1.7059

    Article  Google Scholar 

  • Salazar S, Quintero J. Rojas J (2020a) Cytogenotoxic effect of propanil using the Lens culinaris Med and Allium cepa L test. Chemosphere. 249, 126193. https://doi.org/10.1016/j.chemosphere.2020.126193

  • Salazar SA, Botello E, Quintero J (2020b) Optimización de la prueba de tetrazolio para evaluar la viabilidad en semillas de Solanum lycopersicum L. Ciencia & Tecnología Agropecuaria. 21(3), 1-12. https://doi.org/10.21930/rcta.vol21_num3_art:1344

  • Salazar-Mercado SA, Torres-León CA, Rojas-Suárez JP (2019) Cytotoxic evaluation of sodium hypochlorite, using Pisum sativum L as effective bioindicator. Ecotoxicol Environ Safe. 173, 71-76. https://doi.org/10.1016/j.ecoenv.2019.02.027.

  • Shao CY, Howe CJ, Porter AJ, Glover LA (2002) Novel cyanobacterial biosensor for detection of herbicides. App Environ Microbiol. 68:5026–5033

    Article  CAS  Google Scholar 

  • Sipari N, Lihavainen J, Shapiguzov A, Kangasjärvi J, Keinänen M (2020) Primary metabolite responses to oxidative stress in early-senescing and paraquat resistant Arabidopsis thaliana RCD1 (radical-induced cell death 1). Frontiers in Plant. 11:194. https://doi.org/10.3389/fpls.2020.00194

    Article  Google Scholar 

  • Spark KM, Swift RS (2002) Effect of soil composition and dissolved organic matter on pesticide sorption. Science of The Total Environment. 298(1-3):147–161. https://doi.org/10.1016/S0048-9697(02)00213-9

    Article  CAS  Google Scholar 

  • Tigre R, Silva N, Santos M, Honda N, Falcao EP, Pereira E (2012) Allelopathic and bioherbicidal potential of Cladonia verticillaris on the germination and growth of Lactuca sativa. Ecotoxicol. Environ. Safe. 84, 125-132. https://doi.org/10.1016/j.ecoenv.2012.06.026.

  • Tütüncü E, Yalçin E, Acar A, Yapar K, Çavuşoğlu K (2019) Investigation of the toxic effects of a carbamate insecticide methiocarb in Allium cepa L. Cytologia. 84(2):113–117. https://doi.org/10.1508/cytologia.84.113

    Article  CAS  Google Scholar 

  • Tyagi N, Singh R (2020) Estrés oxidativo inducido por paraquat e inflamación pulmonar. En: Chakraborti S., Parinandi N., Ghosh R., Ganguly N., Chakraborti T. (eds) Estrés oxidativo en enfermedades pulmonares. Springer Singapur.

  • US EPA (Ed.) (1989) Drinking Water Health Advisory: Pesticides. Lewis, Chelsea, MI. Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S.M., Ahmad, M., Alnemri, E.S., Wang, X.D., 1997. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell. 91, 479-489.

  • Verma S, Srivastava A (2018). Morphotoxicity and cytogenotoxicity of pendimethalin in the test plant Allium cepa L. - A biomarker based study. Chemosphere. 206, 248-254. Doi: https://doi.org/10.1016/j.chemosphere.2018.04.177

  • Xiao H, Wang C, Yuan H, Christopher J (2018) El paraquat afecta la bioenergética mitocondrial, la expresión del sistema de dopamina y la actividad locomotora en el pez cebra ( Danio rerio ). Chemosphere. 191: 106-117. https://doi.org/10.1016/j.chemosphere.2017.10.032

Download references

Availability of data and materials

The data presented in this study are available on request from the corresponding author. The data are not publicly available due to privacy restrictions.

Funding

This study was funded by the University Francisco de Paula Santander

Author information

Authors and Affiliations

Authors

Contributions

Seir Antonio Salazar Mercado: methodology, writing, original draft preparation. Jesús David Quintero Caleño: supervision, conceptualization, investigation and data curation.

Corresponding author

Correspondence to Seir Antonio Salazar Mercado .

Ethics declarations

Ethical approval

This section is “not applicable” for this study as the study does not involve any human participants nor their data or biological material.

Consent to participate

Written informed consent was obtained from individual or guardian participants.

Consent to publish

This section is “not applicable” for this study as the manuscript did not include any data from individuals.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Gangrong Shi

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mercado , S.A.S., Caleño , J.D.Q. Use of Lens culinaris Med test as environmental bioindicator to identify the cytogenotoxic effect of paraquat pesticide. Environ Sci Pollut Res 28, 51321–51328 (2021). https://doi.org/10.1007/s11356-021-14352-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-14352-0

Keywords

Navigation