Skip to main content

Influence of environmental drivers on allergy to pollen grains in a case study in Spain (Madrid): meteorological factors, pollutants, and airborne concentration of aeroallergens

Abstract

The aim of this study was to compare airborne levels of Phl p 1 and Phl p 5, with Poaceae pollen concentrations inside and outside of the pollen season, and to evaluate their association with symptoms in grass allergic patients and the influence of climate and pollution. The Hirst and the Burkard Cyclone samplers were used for pollen and allergen quantification, respectively. The sampling period ran from 23 March 2009 to 27 July 2010. Twenty-three patients with seasonal allergic asthma and rhinitis used an electronic symptom card. The aerosol was extracted and quantified for Phl p 1 and Phl p 5 content. Descriptive statistics, non-parametric paired contrast of Wilcoxon, Spearman’s correlations, and a categorical principal component analysis (CatPCA) were carried out. Significant variations in pollen, aeroallergen levels, pollen allergen potency, and symptoms score were observed in this study. Phl p 5 pollen allergen potency was higher at the beginning of the 2010 grass pollen season. Presence of Phl p 1 outside the pollen season with positive O3 correlation was clinically relevant. 45.5% of the variance was explained by two dimensions in the CatPCA analysis, showing the symptom relationships dissociated in two dimensions. In the first one, the more important relationship was with grass pollen grains concentration and Phl p 5 and to a lesser extent with Phl p 1 and levels of NO2 and O3, and in the second dimension, symptoms were associated with humidity and SO2. Clinically relevant out-season Phl p 1 was found with a positive O3 correlation. The effect of climate and pollution may have contributed to the higher seasonal allergic rhinitis symptom score recorded in 2009.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2.
Fig. 3

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

Abbreviations

CatPCA:

Categorical principal component analysis

MPS:

Main pollen season

PAP:

Pollen allergen potency

References

  1. Agencia estatal de meteorología en España (2019) Informe del estado del clima en España. http://www.aemet.es/documentos/es/conocermas/recursos_en_linea/publicaciones_y_estudios/estudios/Informes%20estado%20clima/Informe_estado_clima_2019.pdf (visited 14/12/2020)

  2. Andersen TB (1991) A model to predict the beginning of the pollen season. Grana 30(1):269–275. https://doi.org/10.1080/00173139109427810

    Article  Google Scholar 

  3. Anderson HR, Ponce de Leon A, Bland JM, Bower JS, Emberlin J, Strachan DP (1998) Air pollution, pollens, and daily admissions for asthma in London 1987-92. Thorax. 53(10):842–8. https://doi.org/10.1136/thx.53.10.842

  4. Arilla MC, Eraso E, Ibarrola I, Algorta J, Martínez A, Asturias JA (2002) Monoclonal antibody-based method for measuring olive pollen major allergen Ole e 1. Ann Allergy Asthma Immunol 89:83–89. https://doi.org/10.1016/S1081-1206(10)61916-3

  5. Bacsi A, Choudhury BK, Dharajiya N, Sur S, Boldogh I (2006) Subpollen particles: carriers of allergenic proteins and oxidases. J Allergy Clin Immunol 118:844–850. https://doi.org/10.1016/j.jaci.2006.07.006

    CAS  Article  Google Scholar 

  6. Bartková-Scevková J (2003) The influence of temperature, relative humidity and rainfall on the occurrence of pollen allergens (Betula, Poaceae, Ambrosia artemisiifolia) in the atmosphere of Bratislava (Slovakia). Int J Biometeorol 48(1):1–5. https://doi.org/10.1007/s00484-003-0166-2

    Article  Google Scholar 

  7. Beggs PJ (1998) Pollen and pollen antigen as triggers of asthma. What to measure? Atmos Environ 32(10):1777–1783. https://doi.org/10.1016/S1352-2310(97)00466-4

    CAS  Article  Google Scholar 

  8. Beggs PJ (2016) Impacts of climate change on allergens and allergic diseases. In: In: Beggs PJ, editor. Cambridge University Press, Cambridge

    Google Scholar 

  9. Behrendt H, Becker WM, Friedrichs KH, Darsow U, Tomingas R (1992) Interaction between aeroallergens and airborne particulate matter. Int Arch Allergy Immunol 99:425–428. https://doi.org/10.1159/000236303

    CAS  Article  Google Scholar 

  10. Borge R, de Miguel I, de la Paz D, Lumbreras J, Pérez J, Rodríguez E (2012) Comparison of road traffic emission models in Madrid (Spain). Atmos Environ 62:461–471. https://doi.org/10.1016/j.atmosenv.2012.08.073

    CAS  Article  Google Scholar 

  11. Borge R, Lumbreras J, Pérez J, de la Paz D, Vedrenne M, de Andrés JM, Rodríguez ME (2014) Emission inventories and modeling requirements for the development of air quality plans Application to Madrid (Spain). Sci Total Environ 466(467):809–819. https://doi.org/10.1016/j.scitotenv.2013.07.093

    CAS  Article  Google Scholar 

  12. Burr ML, Emberlin JC, Treuw R, Chengz S, Pearce NE, ISAAC Phase One Study Group (2003) Pollen counts in relation to the prevalence of allergic rhinoconjunctivitis, asthma and atopic eczema in the International Study of Asthma and Allergies in Childhood (ISAAC). Clin Exp Allergy 33:1675–1680. https://doi.org/10.1111/j.1365-2222.2003.01816.x

    CAS  Article  Google Scholar 

  13. Burte E, Leynaert B, Bono R, Brunekreef B, Bousquet J, Carsin A-E, De Hoogh K, Forsberg B, Gormand F, Heinrich J, Just J, Marcon A, Künzli N, Nieuwenhuijsen M, Pin I, Stempfelet M, Sunyer J, Villani S, Siroux V, Jarvis D, Nadif R, Jacquemin B (2018) Association between air pollution and rhinitis incidence in two European cohorts. Environ Int 115:257–266. https://doi.org/10.1016/j.envint.2018.03.021

    CAS  Article  Google Scholar 

  14. Buters J, Prank M, Sofiev M, Pusch G, Albertini R, Annesi-Maesano I, Antunes C, Behrendt H, Berger U, Brandao R, Celenk S, Galan C, Grewling Ł, Jackowiak B, Kennedy R, Rantio-Lehtimäki A, Reese G, Sauliene I, Smith M, Thibaudon M, Weber B, Cecchi L (2015) Variation of the group 5 grass pollen allergen content of airborne pollen in relation to geographic location and time in season. J Allergy Clin Immunol 136:87–95. https://doi.org/10.1016/j.jaci.2015.01.049

    CAS  Article  Google Scholar 

  15. Cabrera M, Martinez-Cocera C, Fernandez-Caldas E, Carnés Sánchez J, Boluda L, Tejada J, Subiza JL, Subiza J, Jerez M (2002) Trisetum paniceum (wild oats) pollen counts and aeroallergens in the ambient air of Madrid, Spain. Int Arch Allergy Immunol 128(2):123–129. https://doi.org/10.1159/000059402

    CAS  Article  Google Scholar 

  16. Cabrera M, Garzón BG, Moreno SG, Subiza J (2018). Relationship between air pollution, meteorological factors and grass pollen counts, with seasonal allergic rhinitis in Madrid (1996 and 2009). J Investig Allergol Clin Immunol 29 (5):371-377. DOI: 10.18176/jiaci.0368

  17. Cabrera M, Garzón B, Moreno-Grau S, Subiza J (2019) Grass pollen potency in ambient aerosol; grass pollen counts; seasonal allergic rhinitis; meteorological factors and pollutants in Madrid, Spain, during 2009 and 2010. Allergy 74(Suppl 106):619. https://doi.org/10.1111/all.13957

    Article  Google Scholar 

  18. Caillaud DM, Martin S, Segala C, Besancenot JP, Clot B, Thibaudon M (2012) Nonlinear short-term effects of airborne Poaceae levels on hay fever symptoms. J Allergy Clin Immunol 130(3):812–814.e1. https://doi.org/10.1016/j.jaci.2012.04.034

    Article  Google Scholar 

  19. Cecchi L (2013) From pollen count to pollen potency: the molecular era of aerobiology. Eur Respir J 42(4):898–900. https://doi.org/10.1183/09031936.00096413

    Article  Google Scholar 

  20. Chen Y, Han L, Zhou Y, Yang L, Guo Y-S (2020) Artemisia pollen extracts exposed to diesel exhaust en hance airway inflammationand immunological imbalance in asthmatic mice model. Int Arch Allergy Immunol 181:342–352. https://doi.org/10.1159/000505747

    CAS  Article  Google Scholar 

  21. D’Amato G (2000) Urban air pollution and plant-derived respiratory allergy. Clin Exp Allergy 30(5):628–636. https://doi.org/10.1046/j.1365-2222.2000.00798.x

    Article  Google Scholar 

  22. D’Amato G, Cecchi L, D’Amato M, Liccardi G (2010) Urban air pollution and climate change as environmental risk factors of respiratory allergy: an update. J Investig Allergol Clin Immunol 20:95–102

    Google Scholar 

  23. D’Amato G, Holgate ST, Pawankar R, Ledford DK, Cecchi L, Al-Ahmad M, Al-Enezi F, Al-Muhsen S, Ansotegui I, Baena-Cagnani CE (2015) Meteorological conditions, climate change, new emerging factors, and asthma and related allergic disorders A statement of the World Allergy Organization. World Allergy Organization Journal 8(1):25. https://doi.org/10.1186/s40413-015-0073-0

    CAS  Article  Google Scholar 

  24. D’Amato M, Cecchi L, Annesi-Maesano I, D’Amato G (2018) News on climate change, air pollution, and allergic triggers of asthma. J Invest Allergol. Clin Immunol 28(2):91–97. https://doi.org/10.18176/jiaci.0228

    CAS  Article  Google Scholar 

  25. D’Amato G, Chong-Neto HJ, Monge Ortega OP, Vitale C, Ansotegui I, Rosario N, Haahtela T, Galan C, Pawankar R, Murrieta-Aguttes M, Cecchi L, Bergmann C, Ridolo E, Ramon G, Gonzalez Diaz S, D’Amato M, Annesi-Maesano I (2020) The effects of climate change on respiratory allergy and asthma induced by pollen and mold allergens. Allergy 75:2219–2228. https://doi.org/10.1111/all.14476

    CAS  Article  Google Scholar 

  26. D’Amato G, Cecchi L, Bonini S, Nunes C, Annesi-Maesano I, Behrendt H, Liccardi G, Popov T, van Cauwenberge P (2007) Allergenic pollen and pollen allergy in Europe. Allergy 62:976–990. https://doi.org/10.1111/j.1398-9995.2007.01393.x

    CAS  Article  Google Scholar 

  27. D’Amato G, Vitale C, De Martino A, Viegi G, Lanza M, Molino A, Sanduzzi A, Vatrella A, Annesi-Maesano I, D’Amato M (2015) Effects on asthma and respiratory allergy of Climate change and air pollution. Multidiscip Respir Med 10:39. https://doi.org/10.1186/s40248-015-0036-x

    Article  Google Scholar 

  28. De Linares C, Nieto Lugilde D, Alba-Sánchez F, Guardia C, Galán C, Trigo MM (2007) Detection of airborne allergen (Ole e 1) in relation to Olea europaea pollen in Spain. Clin Exp Allergy 37:125–132. https://doi.org/10.1111/j.1365-2222.2006.02620.x

    Article  Google Scholar 

  29. De Weger LA, Dahl A, Bergmann K, Belmonte J, Rantio-Lehtimaaki A (2012) Thibaudon M. Impact of pollen, Springer, Dordrecht

    Google Scholar 

  30. Feo Brito F, Mur Gimeno P, Carnes J, Fernández-Caldas E, Lara P, Alonso AM, García R, Guerra F (2010) Grass pollen, aeroallergens, and clinical symptoms in Ciudad Real, Spain. J Investig Allergol Clin Immunol 20(4):295–302

    CAS  Google Scholar 

  31. Feo Brito F, Mur Gimeno P, Carnes J, Martin R, Fernández-Caldas E, Lara P, López-Fidalgo J, Guerra F (2011) Olea europaea pollen counts and aeroallergen levels predict clinical symptoms in patients allergic to olive pollen. Ann Allergy Asthma Immunol 106(2):146–152. https://doi.org/10.1016/j.anai.2010.11.003

    Article  Google Scholar 

  32. Fernández Rodríguez S, Adams-Groom B, Silva Palacios I, Caeiro E, Brandao R, Ferro R, Gonzalez Garijo Á, Smith M, Tormo Molina R (2015) Comparison of Poaceae pollen counts recorded at sites in Portugal, Spain, and the UK. Aerobiologia 31:1–10. https://doi.org/10.1007/s10453-014-9338-2

    Article  Google Scholar 

  33. Fernández-González D, Rodríguez Rajo FJ, González Parrado Z, Valencia Barrera R, Jato V, Moreno-Grau S (2011) Differences in atmospheric emissions of Poaceae pollen and Lol p 1 allergen. Aerobiologia 27:301–309. https://doi.org/10.1007/s10453-011-9199-x

    Article  Google Scholar 

  34. Fernandez-Gonzalez D, González-Parrado Z, Vega-Maray AM, Valencia-Barrera RM, Camazón-Izquierdo B, De Nuntiis P, Mandrioli P (2020) Platanus pollen allergen, Pla a 1: quantification in the atmosphere and influence on a sensitizing population. Clin Exp Allergy 40(11):1701–1708. https://doi.org/10.1111/j.1365-2222.2010.03595.x

    Article  Google Scholar 

  35. Galán C, Ariatti A, Bonini M, Clot B, Crouzy B, Dahl A, Fernandez-González D, Frenguelli G, Gehrig R, Isard S, Levetin E, Li DW, Mandrioli P, Rogers CA, Thibaudon M, Sauliene I, Skjoth C, Smith M, Sofiev M (2017) Recommended terminology for aerobiological studies. Aerobiologia 33:293–295. https://doi.org/10.1007/s10453-017-9496-0

    Article  Google Scholar 

  36. Galveias A, Arriegas R, Mendes S, Ribeiro H, Abreu I, Costa AR, Antunes CM (2020) Air pollutants NO2- and O3-induced Dactylis glomerata L. pollen oxidative defences and enhanced its allergenic potential. Aerobiologia 37(2):1–11. https://doi.org/10.1007/s10453-020-09676-2

    Article  Google Scholar 

  37. Gonzalez-Parrado Z, Fernandez-Gonzalez D, Camazon-Izquierdo B, Valencia-Barrera RM, Vega-Maray AM, Asturias JA, Monsalve RI, Mandrioli P (2014) Molecular aerobiology – Plantago allergen Pla l 1 in the atmosphere. Ann Agric Environ Med 21:282–289. https://doi.org/10.5604/1232-1966.1108592

    CAS  Article  Google Scholar 

  38. Hernández-Ramírez G, Pazos-Castro D, Gómez Torrijos E, Yuste Montalvo A, Romero-Sahagun A, González-Klein Z, Jimeno-Nogales L, Escribese MM, Extremera Ortega A, Nuñez-Borque E, Bustamante Orvay L, Esteban V, Feo Brito F, Barber D, Tome-Amat J, Garrido-Arandia M, Díaz-Perales A (2020) Group 1 allergens, transported by mold spores, induce asthma exacerbation in a mouse model. Allergy 75(9):2388–2391. https://doi.org/10.1111/all.14347

    CAS  Article  Google Scholar 

  39. Hirst J (1952) An automatic volumetric spore trap. Ann Appl Biol 39:257–265. https://doi.org/10.1111/j.1744-7348.1952.tb00904.x

    Article  Google Scholar 

  40. Hughes DD, Mampage CBA, Jones LM, Liu Z, Stone EA (2020) Characterization of atmospheric pollen fragments during springtime thunderstorms. Environ Sci Technol Lett 7(6):409–414. https://doi.org/10.1021/acs.estlett.0c00213

    CAS  Article  Google Scholar 

  41. Hyde HA, Adams KF (1958) An atlas of airborne pollen grains. MacMillan, London

    Google Scholar 

  42. Jäger S, Mandroli P, Spieksma F, Emberlin J, Hjelmroos M, Rantio-Lehtimaki A et al (1995) News. News Aerobiologia 11:69–70. https://doi.org/10.1007/BF02136148

    Article  Google Scholar 

  43. Jato V, Rodriguez-Rajo FJ, Gonzalez-Parrado Z, Elvira-Rendueles B, Moreno-Grau S, Vega-Maray A, Fernández-González D, Asturias JA, Suárez-Cervera M (2010) Detection of airborne Par j 1 and Par j 2 allergens in relation to Urticaceae pollen counts in different bioclimatic areas. Ann Allergy Asthma Immunol 105(1):50–56. https://doi.org/10.1016/j.anai.2010.04.019

    Article  Google Scholar 

  44. Jolliffe IT (2002) Principal component analysis, Series: Springer Seriesin Statistics, 2nd ed. Springer NY XXIX 487 28 illus. ISBN 978-0-387-95442-4

  45. Katelaris CH, Beggs PJ (2018) Climate change: allergens and allergic diseases. Intern Med J 48:129–134. https://doi.org/10.1111/imj.13699

    Article  Google Scholar 

  46. Katifori E, Alben A, Cerda E, Nelson DR, Dumais J (2010) Foldable structures and the natural design of pollen grains. PMAS 107(17):7635–7639. https://doi.org/10.1073/pnas.0911223107

    Article  Google Scholar 

  47. Kim H, Park Y, Park K, Yoo B (2016) Association between pollen risk indexes, air pollutants, and allergic diseases in Korea. Osong Public Health and Research Perspectives 7:172–179. https://doi.org/10.1016/j.phrp.2016.04.003

  48. Kinney PL (2018) Interactions of climate change, air pollution, and human health. Current Environmental Health Reports 5:179–186

    CAS  Article  Google Scholar 

  49. Marks G, Colquhoun J, Girgis S, Koski MH, Treloar AB, Hansen P, Downs SH, Car NG (2001) Thunderstorm outflows preceding epidemics of asthma during spring and summer. Thorax 56(6):468–471. https://doi.org/10.1136/thorax.56.6.468

    CAS  Article  Google Scholar 

  50. Montero MT, Lopez C, Jimenez JA, Subiza J (1997) Characterization of allergens from Trisetum paniceum pollen: an important aeroallergen in Mediterranean continental climatic areas. Clin Exp Allergy 27(12):1442–1448

    CAS  Article  Google Scholar 

  51. Moreno-Grau S, Angosto JM, Elvira-Rendueles B, Bayo J, Moreno J, Moreno-Clavel J (2000) Effects of meteorological parameters and plant distribution on Chenopodiaceae-Amaranthaceae, Quercus and Olea airborne pollen concentrations in the atmosphere of Cartagena (Spain). Aerobiologia. 16(1):17–20. https://doi.org/10.1023/A:1007645307076

    Article  Google Scholar 

  52. Moreno-Grau S, Elvira-Rendueles B, Moreno J, García-Sánchez A, Vergara N, Asturias JA, Arilla MC, Ibarrola I, Seoane-Camba JA, Suarez-Cervera M (2006) Correlation between Olea europaea and Parietaria judaica pollen counts and quantification of their major allergens Ole e 1 and Par j 1-Par j 2. Ann Allergy Asthma Immunol Jun 96(6):858–864. https://doi.org/10.1016/S1081-1206(10)61350-6

    Article  Google Scholar 

  53. Moreno-Grau S, Aira MJ, Elvira-Rendueles B, Fernández-González M, Fernández-González D, García Sánchez A, Martínez-García MJ, Moreno JM, Negral L, Vara A (2016) Assessment of the Olea pollen and itsmajor allergen Ole e 1 concentrations in the bioearosol of two biogeographical areas. Atmos Environ 145:264–271. https://doi.org/10.1016/j.atmosenv.2016.09.040

    CAS  Article  Google Scholar 

  54. Motta AC, Marliere M, Peltre G, Sterenberg PA, Lacroix G (2006) Traffic-related air pollutants induce the release of allergen-containing cytoplasmic granules from grass pollen. Int Arch Allergy Immunol 139(4):294–298. https://doi.org/10.1159/000091600

    CAS  Article  Google Scholar 

  55. Namork E, Johansen BV, Løvik M (2006) Detection of allergens adsorbed to ambient air particles collected in four European cities. Toxicol Lett 165:71–78. https://doi.org/10.1016/j.toxlet.2006.01.016

    CAS  Article  Google Scholar 

  56. Oduber F, Calvo AI, Blanco-Alegre C, Castro A, Vega-Maray AM, Valencia-Barrera RM, Fernández-González D, Fraile R (2019) Links between recent trends in airborne pollen concentration, meteorological parameters and air pollutants. Agric For Meteorol 264:16–26. https://doi.org/10.1016/j.agrformet.2018.09.023

    Article  Google Scholar 

  57. Ojeda P, Sastre J, Olaguibel JM, Chivato T, Investigators participating in the 100 National Survey of the Spanish Society of Allergology and Clinical Immunology (2018) Alergólogica 2015: a national survey on allergic diseases in the adult Spanish population. Investig Allergol Clin Immunol 103 28(3):151–164

    CAS  Article  Google Scholar 

  58. Picornell M, Ruiz T, Borge R, García-Albertos P, de la Paz D, Lumbreras J (2019) Population dynamics based on mobile phone data to improve air pollution exposure assessments. J Expo Sci Environ Epidemiol 29:278–291. https://doi.org/10.1038/s41370-018-0058-5

    CAS  Article  Google Scholar 

  59. Plaza MP, Alcázar P, Velasco-Jiménez MJ, Galán C (2017) Aeroallergens: a comparative study of two monitoring methods. Aerobiologia 33:363–373. https://doi.org/10.1007/s10453-017-9475-5

    Article  Google Scholar 

  60. Plaza MP, Alcázar P, Oteros J, Galán C (2020) Atmospheric pollutants and their association with olive and grass aeroallergen concentrations in Córdoba (Spain). Environ Sci Pollut Res 27:45447–45459. https://doi.org/10.1007/s11356-020-10422-x

    CAS  Article  Google Scholar 

  61. Porcel Carreño S, Gómez Nieves E, Fernández-Caldas E, Abel Fernández E, Cases B, Tudela JI, Maghfour Martin Y, Domínguez Domínguez E, Alvarado Arenas M, Jiménez Timón S, Ahmida T, García Ponce JF, Jiménez Gallardo P, Alvarado Izquierdo MI, Arbeiza H (2020) Immunochemical and physical quantitation of grass and olive pollen allergens and correlation with asthma admitions in Cáceres, Spain. Allergen and pollen counts as markers/predictors of allergic asthma. J Investig Allergol Clin Immunol 30(5):334–339. https://doi.org/10.18176/jiaci.0434

    CAS  Article  Google Scholar 

  62. Punt W, Hoen P, Blackmore S, Nilsson A, Thomas L (2007) Glossary of pollen and spore terminology. Rev Palaeobot Palynol 143:1–81. https://doi.org/10.1016/j.revpalbo.2006.06.008

    Article  Google Scholar 

  63. Reinmuth-Selzle K, Kampf CJ, Lucas K, Lang-Yona N, Fröhlich-Nowoisky J, Shiraiwa M, Lakey PSJ, Lai S, Liu F, Kunert AT, Ziegler K, Shen F, Sgarbanti R, Weber B, Bellinghausen I, Saloga J, Weller MG, Duschl A, Schuppan D, Pöschl U (2017) Air pollution and climate change effects on allergies in the anthropocene: abundance, interaction, and modification of allergens and adjuvants. Environ Sci Technol 18;51(8):4119-4141. https://doi.org/10.1021/acs.est.6b04908

  64. Rodríguez V, Kilimajer J, Craciunesco C, Narganes MJ, Cabrera M, Subiza J (2018) Madrid, 38 years of pollen observation: Poaceae pollen counts in a changing weather. Allergy 73(S105):700–702. https://doi.org/10.1111/all.13539

    Article  Google Scholar 

  65. Rodríguez-Rajo F, Jato V, Gonzalez-Parrado Z, Elvira-Rendueles B, Moreno-Grau S, Vega-Maray A, Fernandez-Gonzalez D, Asturias JA, Suarez-Cervera M (2011) The combination of airborne pollen and allergen quantification to reliably assess the real pollinosis risk in different bioclimatic areas. Aerobiologia 27:1–12. https://doi.org/10.1007/s10453-010-9170-2

    Article  Google Scholar 

  66. Rogerieux F, Godfrin D, Senechal H, Motta AC, Marliere M, Peltre G, Lacroix G (2007) Modifications of Phleum pratense grass pollen allergens following artificial exposure to gaseous air pollutants (O3, NO2, SO2). Int Arch Allergy Immunol 143:127–134. https://doi.org/10.1159/000099079

    CAS  Article  Google Scholar 

  67. Ščevková J (2003) The influence of temperature, relative humidity, and rainfall on the occurrence of pollen allergens (Betula, Poaceae, Ambrosia artemisiifolia) in the atmosphere of Bratislava. Int J Biometeorol 48(1):1–5. https://doi.org/10.1007/s00484-003-0166-2

    Article  Google Scholar 

  68. Ščevková J, Vašková Z, Sepšiová R, Dušička J, Kováč J (2020) Relationship between Poaceae pollen and Phl p 5 allergen concentrations and the impact of weather variables and air pollutants on their levels in the atmosphere. Heliyon 6:e04421. https://doi.org/10.1016/j.heliyon.2020.e04421

    Article  Google Scholar 

  69. Sénéchal H, Visez N, Charpin D, Shahali Y, Peltre G, Biolley J-P, Lhuissier F, Couderc R, Yamada O, Malrat-Domenge A, Pham-Thi N, Poncet P, Sutra J-P (2015) A review of the effects of major atmospheric pollutants on pollen grains, pollen content, and allergenicity. The Scientific World Journal 2015:940243. https://doi.org/10.1155/2015/94024310.1155/2015/940243

  70. Solomon RW (2002) Airborne pollen: A brief life. J Allergy Clin Immunol 109:895–900. https://doi.org/10.1067/mai.2002.125556

    Article  Google Scholar 

  71. Suárez-Cervera M, Castells T, Vega-Maray A, Civantos E, del Pozo V, Fernández-González D, Moreno-Grau S, Moral A, López-Iglesias C, Lahoz C, Seoane-Camba JA (2008) Effects of air pollutionon Cup a 3 allergen in Cupressus arizonica pollen grains. Ann Allergy Asthma Immunol 101(1):57–66. https://doi.org/10.1016/S1081-1206(10)60836-8

    Article  Google Scholar 

  72. Subiza J, Jerez M, Jimenez JA, Narganes MJ, Cabrera M, Varela S, Subiza E (1995) Allergenic pollen pollinosis in Madrid. J Allergy Clin Immunol 96(1):15–23. https://doi.org/10.1016/s0091-6749(95)70028-5

    CAS  Article  Google Scholar 

  73. Subiza J, Cabrera M, Cárdenas JM, Craciunesco C, Narganes MJ (2020) Incremento de los Recuentos de Pólenes de Madrid Durante 40 Años, su Relación con el Incremento de la Temperatura y Prevalencia de Sensibilización. J Investig Allergol Clin Immunol 30(Suppl 1):35–212 ISSN 1018-9068

    Google Scholar 

  74. Taylor PE, Flagan RC, Valenta V, Glovsky MM (2002) Release of allergens as respirable aerosols: a link between grass pollen and asthma. J Allergy Clin Immunol 109:51–56. https://doi.org/10.1067/mai.2002.120759

    Article  Google Scholar 

  75. Varela S, Subiza J, Subiza JL, Rodriguez R, García B, Jerez M, Jiménez JA, Panzani R (1997) Platanus pollen as an important cause of pollinosis. J Allergy Clin Immunol 100(6 Pt 1):748–754. https://doi.org/10.1016/s0091-6749(97)70268-9

    CAS  Article  Google Scholar 

  76. Vinckier E, Smets E (2001) The potential role of orbicules as a vector of allergens. Allergy 56(12):1129–1136. https://doi.org/10.1034/j.1398-9995.2001.00172

    CAS  Article  Google Scholar 

  77. Visez N, Chassarda G, Azarkana N, Naas O, Sénéchal H, Sutra JP, Poncet P, Choële M (2015) Wind-induced mechanical rupture of birch pollen: potential implications for allergen dispersal. J Aerosol Sci 89:77–84. https://doi.org/10.1016/j.jaerosci.2015.07.005

    CAS  Article  Google Scholar 

  78. WHO (2018) Ambient (outdoor) air pollution. https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health (visited 14/12/20).

  79. Ziello C, Sparks TH, Estrella N, Belmonte J, Bergmann KC, Bucher E, Brighetti MA, Damialis A, Detandt M, Galán C, Gehrig R, Grewling L, Gutiérrez Bustillo AM, Hallsdóttir M, Kockhans-Bieda MC, de Linares C, Myszkowska D, Pàldy A, Sánchez A, Smith M, Thibaudon M, Travaglini A, Uruska A, Valencia-Barrera RM, Vokou D, Wachter R, de Weger LA, Menzel A (2012) Changes to airborne pollen counts across Europe. PLoS One 7(4):e34076. https://doi.org/10.1371/journal.pone.0034076

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank Maruxa Suárez Cervera, PhD (Department of Botany, Faculty of Pharmacy, University of Barcelona, Spain), and José Ignacio Tudela, Bárbara Cases (Inmunotek S.L.), and María José Narganes (Clínica Subiza) for their valuable help.

Declarations

Not applicable.

Ethics approval and consent to participate

Not applicable.

Consent for publication

All authors gave their consent for the manuscript submitted.

Competing interests

The authors declare no competing interests.

Funding

This study was partially funded by the Foundation of the Spanish Society of Allergology and Clinical Immunology.

Author information

Affiliations

Authors

Contributions

CM, SJ, and SJL: the conception and design of the study; methodology, acquisition of data, and interpretation of data, revising it critically for important intellectual content.

CM: founding acquisition, project administration, and drafting the article.

FCE and MGS: revising the article for important intellectual content and interpretation of the data.

GB: data curation, statistical analysis, and interpretation of data.

All authors approved the final version of the manuscript to be submitted.

Corresponding author

Correspondence to Martha Cabrera.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Lotfi Aleya

Supplementary Information

ESM 1

(DOCX 39 kb)

ESM 2

(DOCX 97 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cabrera, M., Subiza, J., Fernández-Caldas, E. et al. Influence of environmental drivers on allergy to pollen grains in a case study in Spain (Madrid): meteorological factors, pollutants, and airborne concentration of aeroallergens. Environ Sci Pollut Res 28, 53614–53628 (2021). https://doi.org/10.1007/s11356-021-14346-y

Download citation

Keywords

  • Aeroallergens
  • Grass pollen
  • Phl p 1
  • Phl p 5
  • Climate
  • Pollution
  • Allergy
  • Madrid