Skip to main content
Log in

Selective removal of common cyanotoxins: a review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The development of cyanobacterial blooms can have adverse effects on water bodies and may produce cyanotoxins. Several physical and chemical methods have been applied to remove cyanotoxins, but they have been significantly challenged due to extensive energy footprint and over-used chemicals, which limits practical application on a large scale. Selective removal has been regarded as the most promising approach recently for the elimination of prevalent and major bloom-forming cyanotoxins (e.g., microcystins and cylindrospermopsin) as natural organic matters and radical scavengers are ineluctably present in real scenarios. This paper reviews current advancements in research on selective oxidation and adsorption of cyanotoxins. Its goal is to provide comprehensive information on the treatment mechanism and the process feasibility involved in the cyanotoxin removal from real-world waters. Moreover, perspectives of cyanotoxin control and in situ selective elimination approaches are also reviewed. It is expected that the information gathered and discussed in this review can provide a useful and novel reference and direction for future pilot-scale applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  • Agrawal SC, Singh V (2000) Vegetative survival, akinete formation and germination in three blue-green algae and one green alga in relation to light intensity, temperature, heat shock and UV exposure. Folia Microbiol 45(5):439–446

    Article  CAS  Google Scholar 

  • Ando N, Matsui Y, Kurotobi R, Nakano Y, Matsushita T, Ohno K (2010) Comparison of natural organic matter adsorption capacities of super-powdered activated carbon and powdered activated Carbon. Water Res 44:4127–4136

    Article  CAS  Google Scholar 

  • Antoniou MG, de la Cruz AA, Dionysiou DD (2005) Cyanotoxins: new generation of water contaminants. J Environ Eng 131(9):1239–1243

    Article  CAS  Google Scholar 

  • Antoniou MG, Shoemaker JA, de la Cruz AA, Dionysiou DD (2008a) LC/MS/MS structure elucidation of reaction intermediates formed during the TiO2 photocatalysis of microcystin-LR. Toxicon 51(6):1103–1118

    Article  CAS  Google Scholar 

  • Antoniou MG, Shoemaker JA, Cruz AA, Dionysiou DD (2008b) Unveiling new degradation intermediates/pathways from the photocatalytic degradation of microcystin-LR. Environ Sci Technol 42(23):8877–8883

    Article  CAS  Google Scholar 

  • Antoniou MG, Nicolaou PA, Shoemaker JA, de la Cruz AA, Dionysiou DD (2009) Impact of the morphological properties of thin TiO2 photocatalytic films on the detoxification of water contaminated with the cyanotoxin, microcystin-LR. Appl Catal B Environ 91(1-2):165–173

    Article  CAS  Google Scholar 

  • Antoniou MG, Boraei I, Solakidou M, Deligiannakis Y, Abhishek M, Lawton LA, Edwards C (2018) Enhancing photocatalytic degradation of the cyanotoxin microcystin-LR with the addition of sulfate-radical generating oxidants. J Hazard Mater 360:461–470

    Article  CAS  Google Scholar 

  • Arias-paic M, Cawley KM, Byg S, Rosario-ortiz FL (2016) Enhanced DOC removal using anion and cation ion exchange resins. Water Res 88:981–989

    Article  CAS  Google Scholar 

  • Aschermann G, Jeihanipour A, Shen J, Mkongo G, Dramas L, Croue JP, SchaFer A (2016) Seasonal variation of organic matter concentration and characteristics in the Maji ya Chai River (Tanzania): impact on treatability by ultrafiltration. Water Res 101:370–381

    Article  CAS  Google Scholar 

  • Banker R, Carmeli S, Werman M, Teltsch B, Porat R, Sukenik A (2001) Uracil moiety is required for toxicity of the cyanobacterial hepatotoxin cylindrospermopsin. J Toxicol Env Heal A 62(4):281–288

    Article  CAS  Google Scholar 

  • Boyer GL, Watzin MC, Shambaugh AD, Satchwell MF, Rosen BH, Mihuc T (2004) The occurrence of cyanobacterial toxins in Lake Champlain. In: Manley TO, Manley PL, Mihuc TB (eds) Lake Champlain: partnerships and research in the new millennium. Springer, Boston, MA

    Google Scholar 

  • Brooks BW, Lazorchak JM, Howard MDA, Johnson MVV, Morton SL, Perkins DAK, Reavie ED, Scott GI, Smith SA, Steevens JA (2015) Are harmful algal blooms becoming the greatest inland water quality threat to public health and aquatic ecosystems? Environ Toxicol Chem 35(1):6–13

    Article  Google Scholar 

  • Buxton GV, Greenstock CL, Helman WP, Ross AB (1988) Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O) in Aqueous Solution. J Phys Chem Ref Data 17(2):513–886

    Article  CAS  Google Scholar 

  • Carmichael WW (2001) Health effects of toxin-producing cyanobacteria: the CyanoHABs. Hum Ecol Risk Assess 7(5):1393–1407

    Article  Google Scholar 

  • Chai S, Zhao G, Zhang Y, Wang Y, Nong F, Li M, Li D (2012) Selective photoelectrocatalytic degradation of recalcitrant contaminant driven by an nP heterojunction nanoelectrode with molecular recognition ability. Environ Sci Technol 46(18):10182–10190

    Article  CAS  Google Scholar 

  • Chang J, Chen Z, Wang Z, Shen J, Chen Q, Kang J, Yang L, Liu X, Nie C (2014a) Ozonation degradation of microcystin-LR in aqueous solution: intermediates, byproducts and pathways. Water Res 63:52–61

    Article  CAS  Google Scholar 

  • Chang S, Li C, Lin J, Li Y, Lee M (2014b) Effective removal of Microcystis aeruginosa and microcystin-LR using nanosilicate platelets. Chemosphere 99:49–55

    Article  CAS  Google Scholar 

  • Chang J, Chen Z, Wang Z, Kang J, Chen Q, Yuan L, Shen J (2015) Oxidation of microcystin-LR in water by ozone combined with UV radiation: the removal and degradation pathway. Chem Eng J 276:97–105

    Article  CAS  Google Scholar 

  • Chen M, Blatchley ER (2020) Chlorine/UV treatment of anatoxin-a by activation of the secondary amine functional group. Water Res Technol 6:1412–1420

    Article  CAS  Google Scholar 

  • Dai G, Quan C, Zhang X, Liu J, Song L, Gan N (2012) Fast removal of cyanobacterial toxin microcystin-LR by a low-cytotoxic microgel-Fe(III) complex. Water Res 46(5):1482–1489

    Article  CAS  Google Scholar 

  • Dawson RM (1998) The toxicology of microcystins. Toxicon 36(7):953–962

    Article  CAS  Google Scholar 

  • de Figueiredo DR, Azeiteiro UM, Esteves SM, Gonçalves FJ, Pereira MJ (2004) Microcystin-producing blooms–a serious global public health issue. Ecotoxicol Environ Saf 59(2):151–163

    Article  Google Scholar 

  • de la Cruz AA, Hiskia A, Kaloudis T, Chernoff N, Hill D, Antoniou MG, He X, Loftin K, O’Shea K, Zhao C, Pelaez M, Han C, Lynch TJ, Dionysiou DD (2013) A review on cylindrospermopsin: the global occurrence, detection, toxicity and degradation of a potent cyanotoxin. Environ Sci Process Impacts 15(11):1979–2003

    Article  Google Scholar 

  • Dixit F, Barbeau B, Mohseni M (2018) Simultaneous uptake of NOM and Microcystin-LR by anion exchange resins: effect of inorganic ions and resin regeneration. Chemosphere 192:113–121

    Article  CAS  Google Scholar 

  • Dixit F, Barbeau B, Mohseni M (2019a) Microcystin-LR removal by ion exchange: investigating multicomponent interactions in natural waters. Environ Pollut 253:790–799

    Article  CAS  Google Scholar 

  • Dixit F, Barbeau B, Mohseni M (2019b) Removal of microcystin-LR from spiked natural and synthetic waters by anion exchange. Sci Total Environ 655:571–580

    Article  CAS  Google Scholar 

  • Falconer IR (2005) Cyanobacterial toxins of drinking water supplies: cylindrospermopsins and microcystins. CRC Press, Boca Raton

    Google Scholar 

  • Fang Y, Huang Y, Yang J, Wang P, Chen G (2011) Unique ability of BiOBr to decarboxylated-Glu and d-MeAsp in the photocatalytic degradation of microcystin-LR in water. Environ Sci Technol 45(4):1593–1600

    Article  CAS  Google Scholar 

  • Fang YF, Ma WH, Huang YP, Cheng GW (2013) Exploring the reactivity of multicomponent photocatalysts: insight into the complex valence band of BiOBr. Chem Eur J 19(9):3224–3229

    Article  CAS  Google Scholar 

  • Fang YF, Zhang Y, Ma WH, Johnson DM, Huang YP (2014) Degradation of microcystin-LR in water: hydrolysis of peptide bonds catalyzed by maghemite under visible light. Appl Catal B Environ 160-161:597–605

    Article  CAS  Google Scholar 

  • Fang Y, Zhou W, Tang C, Huang Y, Johnson DM, Ren ZJ, Ma W (2018) Brönsted catalyzed hydrolysis of microcystin-LR by siderite. Environ Sci Technol 52(11):6426–6437

    Article  CAS  Google Scholar 

  • Fang Y, Cao X, Zhou W, Li Y, Johnson DM, Huang Y (2020) Catalytic hydrolysis of microcystin-LR peptides on the surface of naturally occurring minerals. Res Chem Intermed 46:1141–1152

    Article  CAS  Google Scholar 

  • Fernando PUAI, Glasscott MW, Pokrzywinski K, Fernando BM, Kosgei GK, Moores LC (2021) Analytical methods incorporating molecularly imprinted polymers (MIPs) for the quantification of microcystins: a mini-review. Crit Rev Anal Chem:1–15. https://doi.org/10.1080/10408347.2020.1868284

  • Fotiou T, Triantis TM, Kaloudis T, Hiskia A (2015) Evaluation of the photocatalytic activity of TiO2 based catalysts for the degradation and mineralization of cyanobacterial toxins and water off-odor compounds under UV-A, solar and visible light. Chem Eng J 261:17–26

    Article  CAS  Google Scholar 

  • Fotiou T, Triantis TM, Kaloudis T, O’Shea KE, Dionysiou DD, Hiskia A (2016) Assessment of the roles of reactive oxygen species in the UV and visible light photocatalytic degradation of cyanotoxins and water taste and odor compounds using C–TiO2. Water Res 90:52–61

    Article  CAS  Google Scholar 

  • Fristachi A, Sinclair JL, Hall S, Berkman JAH, Boyer G, Burkholder J, Burns J , Carmichael W, DuFour A, Frazier W, Morton SL, O’Brien E, Walker S (2008) Occurrence of cyanobacterial harmful algal blooms workgroup report. In: Cyanobacterial harmful algal blooms: state of the science and research needs. Springer, New York

  • Ghernaout B, Ghernaout D, Saiba A (2010) Algae and cyanotoxins removal by coagulation/flocculation: a review. Desalin Water Treat 20(1-3):133–143

    Article  CAS  Google Scholar 

  • Griffiths DJ, Saker ML (2003) The Palm Island mystery disease 20 years on: a review of research on the cyanotoxin cylindrospermopsin. Environ Toxicol 18(2):78–93

    Article  CAS  Google Scholar 

  • Gunten U (2003) Ozonation of drinking water: part I. Oxidation kinetics and product formation. Water Res 37(7):1443–1467

    Article  Google Scholar 

  • He X, Pelaez M, Westrick JA, O’Shea KE, Hiskia A, Triantis T, Kaloudis T, Stefan MI, Armah A, Dionysiou DD (2012) Efficient removal of microcystin-LR by UV-C/H2O2 in synthetic and natural water samples. Water Res 46(5):1501–1510

    Article  CAS  Google Scholar 

  • He X, Zhang G, de la Cruz AA, O’Shea KE, Dionysiou DD (2014) Degradation mechanism of cyanobacterial toxin cylindrospermopsin by hydroxyl radicals in homogeneous UV/H2O2 process. Environ Sci Technol 48(8):4495–4504

    Article  CAS  Google Scholar 

  • Henao E, Rzymski P, Waters MN (2020) A review on the study of cyanotoxins in paleolimnological research: current knowledge and future needs. Toxins 12(6):2–15

    Google Scholar 

  • Ho L, Lambling P, Bustamante H, Duker P, Newcombe G (2011) Application of powdered activated carbon for the adsorption of cylindrospermopsin and microcystin toxins from drinking water supplies. Water Res 45:2954–2964

    Article  CAS  Google Scholar 

  • Hoeger SJ, Hitzfeld BC, Dietrich DR (2005) Occurrence and elimination of cyanobacterial toxins in drinking water treatment plants. Toxicol Appl Pharm 203(3):231–242

    Article  CAS  Google Scholar 

  • Hoigné J, Bader H (1983) Rate constants of reactions of ozone with organic and inorganic compounds in water—II: dissociating organic compounds. Water Res 17(2):185–194

    Article  Google Scholar 

  • Hu C, Rzymski P (2019) Programmed cell death-like and accompanying release of microcystin in freshwater bloom-forming cyanobacterium microcystis: from identification to ecological relevance. Toxins 11(706):2–19

    Google Scholar 

  • Huang WL, Zhu Q (2009) DFT calculations on the electronic structures of BiOX (X = F, Cl, Br, I) photocatalysts with and without semicore Bi 5d states. J Comput Chem 30(2):183–190

    Article  Google Scholar 

  • Huang W, He H, Dong B, Chu H, Xu G, Yan Z (2015) Effects of macro-porous anion exchange and coagulation treatment on organic removal and membrane fouling reduction in water treatment. Desalination 355:204–216

    Article  CAS  Google Scholar 

  • Huang W, Fang G, Chen Y, Chan M, Chen H, Wang C (2018) Degradation of cyanotoxin-nodularin in drinking water by catalytic ozonation using a Ag-TiO2 hybrid catalyst. Environ Eng Sci 35(10):1087–1095

    Article  CAS  Google Scholar 

  • Huber MM, Canonica S, Park GY, von Gunten U (2003) Oxidation of pharmaceuticals during ozonation and advanced oxidation processes. Environ Sci Technol 37(5):1016–1024

    Article  CAS  Google Scholar 

  • Jiang J, Zhao K, Xiao X, Zhang L (2012) Synthesis and facet-dependent photoreactivity of BiOCl single-crystalline nanosheets. J Am Chem Soc 134(10):4473–4476

    Article  CAS  Google Scholar 

  • Jiang W, Chen L, Batchu SR, Gardinali PR, Jasa L, Marsalek B, Zboril R, Dionysiou DD, O’Shea KE, Sharma VK (2014) Oxidation of microcystin-LR by ferrate(VI): kinetics, degradation pathways, and toxicity assessments. Environ Sci Technol 48(20):12164–12172

    Article  CAS  Google Scholar 

  • Kim MS, Lee C (2019) Ozonation of microcystins: kinetics and toxicity decrease. Environ Sci Technol 53(11):6427–6435

    Article  CAS  Google Scholar 

  • Kim MS, Kim HH, Lee KM, Lee HJ, Lee C (2017) Oxidation of microcystin-LR by ferrous-tetrapolyphosphate in the presence of oxygen and hydrogen peroxide. Water Res 114:277–285

    Article  CAS  Google Scholar 

  • Kinnear S (2010) Cylindrospermopsin: a decade of progress on bioaccumulation research. Mar Drugs 8(3):542–564

    Article  CAS  Google Scholar 

  • Krzywicka A, Kwarciak-Kozłowska A (2014) Advanced oxidation processes with coke plant wastewater treatment. Water Sci Technol 69(9):1875–1878

    Article  CAS  Google Scholar 

  • Kull TPJ, Sjövall OT, Tammenkoski MK, Backlund PH, Meriluoto JAO (2006) Oxidation of the cyanobacterial hepatotoxin microcystin-LR by chlorine dioxide: influence of natural organic matter. Environ Sci Technol 40(5):1504–1510

    Article  CAS  Google Scholar 

  • Kumar P, Hegde K, Brar SK, Cledon M, Kermanshahi Pour A (2018) Physico-chemical treatment for the degradation of cyanotoxins with emphasis on drinking water treatment-how far have we come? J Environ Chem Eng 6(4):5369–5388

    Article  CAS  Google Scholar 

  • Lanaras T, Cook CM, Eriksson JE, Meriluoto JAO, Hotokka M (1991) Computer modelling of the 3-dimensional structures of the cyanobacterial hepatotoxins microcystin-LR and nodularin. Toxicon 29(7):901–906

    Article  CAS  Google Scholar 

  • Li W, Xu X, Lyu B, Tang Y, Zhang Y, Chen F, Korshin G (2019) Degradation of typical macrolide antibiotic roxithromycin by hydroxyl radical: kinetics, products, and toxicity assessment. Environ Sci Pollut Res 26(14):14570–14582

    Article  CAS  Google Scholar 

  • Likodimos V, Dionysiou DD, Falaras P (2010) Clean water: water detoxification using innovative photocatalysts. Rev Environ Sci Biotechnol 9(2):87–94

    Article  CAS  Google Scholar 

  • Lin JH, Kao WC, Tsai KP, Chen CY (2005) A novel algal toxicity testing technique for assessing the toxicity of both metallic and organic toxicants. Water Res 39(9):1869–1877

    Article  CAS  Google Scholar 

  • Liu M, Ding X, Yang Q, Wang Y, Zhao G, Yang N (2017) A pM leveled photoelectrochemical sensor for microcystin-LR based on surface molecularly imprinted TiO2 @CNTs nanostructure. J Hazard Mater 331:309–320

    Article  CAS  Google Scholar 

  • Matsui Y, Ando N, Sasaki H, Matsushita T, Ohno K (2009) Branched pore kinetic model analysis of geosmin adsorption on super-powdered activated carbon. Water Res 43:3095–3103

    Article  CAS  Google Scholar 

  • Menezes C, Valério E, Botelho MJ, Dias E (2020) Isolation and characterization of cylindrospermopsis raciborskii strains from finished drinking water. Toxins 12(1):40

    Article  CAS  Google Scholar 

  • Merel S, Clément M, Mourot A, Fessard V, Thomas O (2010a) Characterization of cylindrospermopsin chlorination. Sci Total Environ 408(16):3433–3442

    Article  CAS  Google Scholar 

  • Merel S, Clément M, Thomas O (2010b) State of the art on cyanotoxins in water and their behaviour towards chlorine. Toxicon 55(4):677–691

    Article  CAS  Google Scholar 

  • Merel S, Walker D, Chicana R, Snyder S, Baures E, Thomas O (2013) State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. Environ Int 59:303–327

    Article  CAS  Google Scholar 

  • Metcalf JS, Codd GA (2004) Cyanobacterial toxins in the water environment. Foundation for Water Research, Marlow

    Google Scholar 

  • Miao HF, Qin F, Tao GJ, Tao WY, Ruan WQ (2010) Detoxification and degradation of microcystin-LR and -RR by ozonation. Chemosphere 79(4):355–361

    Article  CAS  Google Scholar 

  • Niu J, Li Y, Wang W (2013) Light-source-dependent role of nitrate and humic acid in tetracycline photolysis: kinetics and mechanism. Chemosphere 92(11):1423–1429

    Article  CAS  Google Scholar 

  • Onstad GD, Strauch S, Meriluoto J, Codd GA, von Gunten U (2007) Selective oxidation of key functional groups in cyanotoxins during drinking water ozonation. Environ Sci Technol 41(12):4397–4404

    Article  CAS  Google Scholar 

  • Paerl HW, Paul VJ (2012) Climate change: links to global expansion of harmful cyanobacteria. Water Res 46(5):1349–1363

    Article  CAS  Google Scholar 

  • Paerl HW, Hall NS, Calandrino ES (2011) Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Sci Total Environ 409(10):1739–1745

    Article  CAS  Google Scholar 

  • Paerl HW, Gardner WS, Havens KE, Joyner AR, McCarthy MJ, Newell SE, Qin B, Scott JT (2016) Mitigating cyanobacterial harmful algal blooms in aquatic ecosystems impacted by climate change and anthropogenic nutrients. Harmful Algae 54:213–222

    Article  Google Scholar 

  • Papadimitriou T, Kormas K, Dionysiou DD, Laspidou C (2016) Using H2O2 treatments for the degradation of cyanobacteria and microcystins in a shallow hypertrophic reservoir. Environ Sci Pollut Res 23(21):21523–21535

    Article  CAS  Google Scholar 

  • Pavagadhi S, Tang ALL, Sathishkumar M, Loh KP, Balasubramanian R (2013) Removal of microcystin-LR and microcystin-RR by graphene oxide: adsorption and kinetic experiments. Water Res 47(13):4621–4629

    Article  CAS  Google Scholar 

  • Pelaez M, de la Cruz AA, O’Shea K, Falaras P, Dionysiou DD (2011) Effects of water parameters on the degradation of microcystin-LR under visible light-activated TiO2 photocatalyst. Water Res 45(12):3787–3796

    Article  CAS  Google Scholar 

  • Pestana CJ, Edwards C, Prabhu R, Robertson PKJ, Lawton LA (2015) Photocatalytic degradation of eleven microcystin variants and nodularin by TiO2 coated glass microspheres. J Hazard Mater 300:347–353

    Article  CAS  Google Scholar 

  • Plaas HE, Paerl HW (2021) Toxic cyanobacteria: a growing threat to water and air quality. Environ Sci Technol 55(1):44–64

    Article  CAS  Google Scholar 

  • Puddick J, Prinsep MR, Wood SA, Kaufononga SAF, Cary SC, Hamilton DP (2014) High levels of structural diversity observed in microcystins from Microcystis CAWBG11 and characterization of six new microcystin congeners. Mar Drugs 12(11):5372–5395

    Article  Google Scholar 

  • Qin B, Zhu G, Gao G, Zhang Y, Li W, Paerl HW, Carmichael WW (2010) A drinking water crisis in Lake Taihu, China: linkage to climatic variability and lake management. Environ Manag 45:105–112

    Article  Google Scholar 

  • Rapala J, Lahti K, Rasasen LA, Esala AL, Niemela SI, Sivonen K (2002) Endotoxins associated with cyanobacteria and their removal during drinking water treatment. Water Res 36:2627–2635

    Article  CAS  Google Scholar 

  • Reichelt M, Hummert C, Luckas B (1999) Hydrolysis of microcystins and nodularin by microwave radiation. Chromatographia 49(11):671–677

    Article  CAS  Google Scholar 

  • Ren X, Li J, Tan X, Wang X (2013) Comparative study of graphene oxide, activated carbon and carbon nanotubes as adsorbents for copper decontamination. Dalton Trans 42:5266–5274

    Article  CAS  Google Scholar 

  • Rodríguez E, Majado ME, Meriluoto J, Acero JL (2007a) Oxidation of microcystins by permanganate: reaction kinetics and implications for water treatment. Water Res 41(1):102–110

    Article  Google Scholar 

  • Rodríguez E, Onstad GD, Kull TPJ, Metcalf JS, Acero JL, von Gunten U (2007b) Oxidative elimination of cyanotoxins: comparison of ozone, chlorine, chlorine dioxide and permanganate. Water Res 41(15):3381–3393

    Article  Google Scholar 

  • Rodríguez E, Sordo A, Metcalf JS, Acero JL (2007c) Kinetics of the oxidation of cylindrospermopsin and anatoxin-a with chlorine, monochloramine and permanganate. Water Res 41(9):2048–2056

    Article  Google Scholar 

  • Rositano J, Nicholson BC, Pieronne P (1998) Destruction of cyanobacterial toxins by ozone. Ozone Sci Eng 20(3):223–238

    Article  CAS  Google Scholar 

  • Sathishkumar M, Pavagadhi S, Vijayaraghavan K, Balasubramanian R, Ong SL (2011) Concomitant uptake of microcystin-LR and -RR by peat under various environmental conditions. Chem Eng J 172:754–762

    Article  CAS  Google Scholar 

  • Senogles P, Shaw G, Smith M, Norris R, Chiswell R, Mueller J, Sadler R, Eaglesham G (2000) Degradation of the cyanobacterial toxin cylindrospermopsin, from Cylindrospermopsis raciborskii, by chlorination. Toxicon 38(9):1203–1213

    Article  CAS  Google Scholar 

  • Sharma VK, Triantis TM, Antoniou MG, He X, Pelaez M, Han C, Song W, O’Shea KE, Armah A, Kaloudis T (2012) Destruction of microcystins by conventional and advanced oxidation processes: a review. Sep Purif Technol 91:3–17

    Article  CAS  Google Scholar 

  • Song W, Teshiba T, Rein K, O’Shea KE (2005) Ultrasonically induced degradation and detoxification of microcystin-LR (cyanobacterial toxin). Environ Sci Technol 39(16):6300–6305

    Article  CAS  Google Scholar 

  • Song W, Xu T, Cooper WJ, Dionysiou DD, Cruz AA, O’Shea KE (2009) Radiolysis studies on the destruction of microcystin-LR in aqueous solution by hydroxyl radicals. Environ Sci Technol 43(5):1487–1492

    Article  CAS  Google Scholar 

  • Song W, Yan S, Cooper WJ, Dionysiou DD, O’Shea KE (2012) Hydroxyl radical oxidation of cylindrospermopsin (cyanobacterial toxin) and its role in the photochemical transformation. Environ Sci Technol 46(22):12608–12615

    Article  CAS  Google Scholar 

  • Sun R, Sun P, Zhang J, Esquivel-Elizondo S, Wu Y (2018) Microorganisms-based methods for harmful algal blooms control: a review. Bioresour Technol 248:12–20

    Article  CAS  Google Scholar 

  • Szlag DC, Spies B, Szlag RG, Westrick JA (2019) Permanganate oxidation of microcystin-LA: kinetics, quantification, and implications for effective drinking water treatment. J Toxicol 2019:1–13

    Article  Google Scholar 

  • Teng W, Wu Z, Feng D, Fan J, Wang J, Wei H, Song M, Zhao D (2013) Rapid and efficient removal of microcystins by ordered mesoporous silica. Environ Sci Technol 47(15):8633–8641

    Article  CAS  Google Scholar 

  • USEPA (2015) Drinking water health advisory for the cyanobacterial microcystin toxins. In United States Environmental Protection Agency, Washington DC

    Google Scholar 

  • Vasapollo G, Sole RD, Lucia M, Lazzoi MR, Scardino A, Scorrano S, Mele G (2011) Molecularly imprinted polymers: present and future prospective. Int J Mol Sci 12(9):5908–5945

    Article  CAS  Google Scholar 

  • Wang S, Ma W, Fang Y, Jia M, Huang Y (2014) Bismuth oxybromide promoted detoxification of cylindrospermopsin under UV and visible light illumination. Appl Catal B Environ 150-151:380–388

    Article  CAS  Google Scholar 

  • Wang S, Wang L, Ma W, Johnson DM, Fang Y, Jia M, Huang Y (2015) Moderate valence band of BiOXs (X=Cl, Br and I) for the best photocatalytic degradation efficiency of MC-LR. Chem Eng J 259:410–416

    Article  CAS  Google Scholar 

  • Wang R, Li J, Jiang Y, Lu Z, Li R, Li J (2017) Heterologous expression of mlrA gene originated from Novosphingobium sp. THN1 to degrade microcystin-RR and identify the first step involved in degradation pathway. Chemosphere 184:159–167

    Article  CAS  Google Scholar 

  • Wang S, Chen Y, Jiao Y, Li Z (2019) Detoxification of cylindrospermopsin by pyrite in water. Catalysts 9(9):699

    Article  CAS  Google Scholar 

  • Wang S, Zhang H, Ge H, Shi Y, Li Z (2020) Photodegradation of microcystin-LR by pyridyl iron porphyrin immobilized on NaY zeolite. Water Sci Technol 81(1):121–130

    Article  Google Scholar 

  • Wang S, Ji B, Cui B, Ma Y, Guo D, Liu Y (2021) Cadmium-effect on performance and symbiotic relationship of microalgal-bacterial granules. J Clean Prod 282:125383

    Article  CAS  Google Scholar 

  • Wen G, Ma J, Liu ZQ, Zhao L (2011) Ozonation kinetics for the degradation of phthalate esters in water and the reduction of toxicity in the process of O3/H2O2. J Hazard Mater 195:371–377

    Article  CAS  Google Scholar 

  • Westrick JA, Szlag DC, Southwell BJ, Sinclair J (2010) A review of cyanobacteria and cyanotoxins removal/inactivation in drinking water treatment. Anal Bioanal Chem 397(5):1705–1714

    Article  CAS  Google Scholar 

  • Wormer L, Huerta-Fontela M, Cires S, Carrasco D, Quesada A (2010) Natural photodegradation of the cyanobacterial toxins microcystin and cylindrospermopsin. Environ Sci Technol 44(8):3002–3007

    Article  CAS  Google Scholar 

  • Xiao X, Zhang WD (2010) Facile synthesis of nanostructured BiOI microspheres with high visible light-induced photocatalytic activity. J Mater Chem 20(28):5866–5870

    Article  CAS  Google Scholar 

  • Yan S, Jia A, Merel S, Snyder SA, O’Shea KE, Dionysiou DD, Song W (2016) Ozonation of cylindrospermopsin (cyanotoxin): degradation mechanisms and cytotoxicity assessments. Environ Sci Technol 50:1437–1446

  • Yang B, Park HD, Hong SW, Lee SH, Park JA, Choi JW (2020) Photocatalytic degradation of microcystin-LR and anatoxin-a with presence of natural organic matter using UV-light emitting diodes/TiO2 process. J Water Process Eng 34:101163

    Article  Google Scholar 

  • Yilmaz M, Phlips EJ (2011) Toxicity and genetic diversity of Cylindrospermopsis raciborskii in Florida, USA. Lake Reserv Manag 27(3):235–244

    Article  CAS  Google Scholar 

  • Žegura B (2016) An overview of the mechanisms of microcystin-LR genotoxicity and potential carcinogenicity. Mini-Rev Med Chem 16:1–21

    Article  Google Scholar 

  • Zhang X, Li J, Yang JY, Wood KV, Rothwell AP, Li W, Blatchley ER (2016) Chlorine/UV process for decomposition and detoxification of microcystin-LR. Environ Sci Technol 50(14):7671–7678

    Article  CAS  Google Scholar 

  • Zhao C, Pelaez M, Dionysiou DD, Pillai SC, Byrne JA, O’Shea KE (2014) UV and visible light activated TiO2 photocatalysis of 6-hydroxymethyl uracil, a model compound for the potent cyanotoxin cylindrospermopsin. Catal Today 224:70–76

    Article  CAS  Google Scholar 

  • Zhou L, Ji Y, Zeng C, Zhang Y, Wang Z, Yang X (2013) Aquatic photodegradation of sunscreen agent p-aminobenzoic acid in the presence of dissolved organic matter. Water Res 47(1):153–162

    Article  CAS  Google Scholar 

  • Zong W, Sun F, Sun X (2013) Evaluation on the generative mechanism and biological toxicity of microcystin-LR disinfection by products formed by chlorination. J Hazard Mater 252:293–299

    Article  Google Scholar 

Download references

Acknowledgements

Shulian Wang was grateful to the National Natural Science Foundation of China (51909082).

Funding

This work was funded by National Natural Science Foundation of China (51909082).

Author information

Authors and Affiliations

Authors

Contributions

Shulian Wang—conceptualization, writing, and editing; Yiying Jiao—literature search and data analysis; Zhi Rao—validation.

Corresponding author

Correspondence to Zhi Rao.

Ethics declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare that they have no competing interests.

Additional information

Responsible Editor: Vitor Vasconcelos

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Jiao, Y. & Rao, Z. Selective removal of common cyanotoxins: a review. Environ Sci Pollut Res 28, 28865–28875 (2021). https://doi.org/10.1007/s11356-021-13798-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-13798-6

Keywords

Navigation