Skip to main content

Advertisement

Log in

Cytotoxicity, in vivo toxicity, and chemical composition of the hexane extract of Plectranthus amboinicus (Lour.) Spreng

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Cancer is a universal health issue, and many anticancer therapeutic drugs have been isolated from natural products. This study analyzed the cytotoxic and apoptotic activity of Plectranthus amboinicus leaf hexane (PALH) extract in MDA-MB-231 (median inhibitory concentration [IC50] = 39.26 μg/mL) and MCF7 (IC50 = 89.05 μg/mL) breast cancer cell lines. Cells appeared rounded and shrunken, indicating morphological changes due to apoptosis induction. The primary constituent of PALH was phenol, 5-methyl-2-(1-methylethyl) (44%). PALH extract treatment increased the percentage of late apoptotic cells in the MDA-MB231 cell line (58% ± 1.5% at 200 μg/mL) compared to the control group, as evidenced by the activated caspase-3 and caspase-7 identified and captured by fluorescence microscopy. The relative migration rate in MDA-MB-231 cells treated with 10 μg/mL of PALH extract for 48 h was significantly lower compared to the control group. Analysis of acute (2000 mg/kg/BW) and subacute (250 and 500 mg/kg/BW) toxicity of PALH extract in mice showed no mortality or adverse effects in the kidney and liver histology compared to the control group. PALH extract can be considered nontoxic as it does not cause any adverse changes and so can be proposed as a potential breast anticancer agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All the data presented can be found online.

References

  • Abutaha N, Al-zharani M, Al-Doaiss AA, Baabbad A, Al-malki AM, Dekhil H (2020) Anticancer, antioxidant, and acute toxicity studies of a Saudi polyherbal formulation, PHF5. Open Chem 18:472–481

    Article  CAS  Google Scholar 

  • Annapurani S, Priya R (1999) Antimutagenic, antitumourogenic and antigenotoxic effects of polyphenol extracts of selected medicinal plants. Indian J Nutr Diet 36:431–435

    Google Scholar 

  • Arts JH, Muijser H, Appel MJ, Kuper CF, Bessems JG, Woutersen RA (2004) Subacute (28-day) toxicity of furfural in Fischer 344 rats: a comparison of the oral and inhalation route. Food Chem Toxicol 42:1389–1399

    Article  CAS  Google Scholar 

  • Arumugam G, Swamy MK, Sinniah UR (2016) Plectranthus amboinicus (Lour.) Spreng: botanical, phytochemical, pharmacological and nutritional significance. Molecules 21:369

    Article  CAS  Google Scholar 

  • Asiimwe S, Borg-Karlsson A-K, Azeem M, Mugisha KM, Namutebi A, Gakunga NJ (2014) Chemical composition and toxicological evaluation of the aqueous leaf extracts of Plectranthus amboinicus (Lour.) Spreng. Int J Pharm Sci Invent 3:19–27

    Google Scholar 

  • Bao J, Zhu L, Zhu Q, Su J, Liu M, Huang W (2016) SREBP-1 is an independent prognostic marker and promotes invasion and migration in breast cancer. Oncol Lett 12:2409–2416

    Article  CAS  Google Scholar 

  • Baskar R, Lee KA, Yeo R, Yeoh K-W (2012) Cancer and radiation therapy: current advances and future directions. Int J Med Sci 9:193–199

    Article  Google Scholar 

  • Bautista ARPL, Moreira E, Batista MS, Miranda M, Gomes I (2004) Subacute toxicity assessment of annatto in rat. Food Chem Toxicol 42:625–629

    Article  CAS  Google Scholar 

  • Benarba B, Pandiella A (2018) Colorectal cancer and medicinal plants: principle findings from recent studies. Biomed Pharmacother 107:408–423

    Article  CAS  Google Scholar 

  • Boersma HH, Kietselaer BL, Stolk LM, Bennaghmouch A, Hofstra L, Narula J, Heidendal GA, Reutelingsperger CP (2005) Past, present, and future of annexin A5: from protein discovery to clinical applications. J Nucl Med 46:2035–2050

    CAS  Google Scholar 

  • Bray F, Jemal A, Grey N, Ferlay J, Forman D (2012) Global cancer transitions according to the Human Development Index (2008–2030): a population-based study. Lancet Oncol 13:790–801

    Article  Google Scholar 

  • Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424

    Article  Google Scholar 

  • Buznego MT, Perez-Saad H (1999) Antiepileptic effect of Plectranthus amboinicus (Lour.) Spreng.(french marjoram). Rev Neurol 29:388–389

    CAS  Google Scholar 

  • Chang S-T, Wang DS-Y, Wu C-L, Shiah S-G, Kuo Y-H, Chang C-J (2000) Cytotoxicity of extractives from Taiwania cryptomerioides heartwood. Phytochemistry 55:227–232

    Article  CAS  Google Scholar 

  • Desai AG, Qazi GN, Ganju RK, El-Tamer M, Singh J, Saxena AK, Bedi YS, Taneja SC, Bhat HK (2008) Medicinal plants and cancer chemoprevention. Curr Drug Metab 9:581–591

    Article  CAS  Google Scholar 

  • Ediriweera MK, Tennekoon KH, Samarakoon SR, Thabrew I, Dilip De Silva E (2016) A study of the potential anticancer activity of Mangifera zeylanica bark: evaluation of cytotoxic and apoptotic effects of the hexane extract and bioassay-guided fractionation to identify phytochemical constituents. Oncol Lett 11:1335–1344

    Article  CAS  Google Scholar 

  • Ferraz RP, Bomfim DS, Carvalho NC, Soares MB, da Silva TB, Machado WJ, Prata APN, Costa EV, Moraes VRS, Nogueira PCL (2013) Cytotoxic effect of leaf essential oil of Lippia gracilis Schauer (Verbenaceae). Phytomedicine 20:615–621

    Article  CAS  Google Scholar 

  • Gurgel A, da Silva J, Grangeiro A, Oliveira DC, Lima CM, da Silva A, Souza I (2009) In vivo study of the anti-inflammatory and antitumor activities of leaves from Plectranthus amboinicus (Lour.) Spreng (Lamiaceae). J Ethnopharmacol 2:361–363

    Article  Google Scholar 

  • He K, Zeng L, Shi G, Zhao G-X, Kozlowski JF, McLaughlin JL (1997) Bioactive compounds from Taiwania cryptomerioides. J Nat Prod 60:38–40

    Article  CAS  Google Scholar 

  • Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:770–776

    Article  CAS  Google Scholar 

  • Islam MT, Khalipha AB, Bagchi R, Mondal M, Smrity SZ, Uddin SJ, Shilpi JA, Rouf R (2019) Anticancer activity of thymol: a literature-based review and docking study with emphasis on its anticancer mechanisms. IUBMB Life 71:9–19

    Article  CAS  Google Scholar 

  • Issa AY, Volate SR, Wargovich MJ (2006) The role of phytochemicals in inhibition of cancer and inflammation: new directions and perspectives. J Food Compos Anal 19:405–419

    Article  CAS  Google Scholar 

  • Jaafari A, Mouse HA, Rakib EM, Tilaoui M, Benbakhta C, Boulli A, Zyad A (2007) Chemical composition and antitumor activity of different wild varieties of Moroccan thyme. Rev Bras 17:477–491

    CAS  Google Scholar 

  • Jarrar Y, Al-Doaiss A, Alfaifi M, Shati A, Al-Kahtani M, Jarrar B (2020) The influence of five metallic nanoparticles on the expression of major drug-metabolizing enzyme genes with correlation of inflammation in mouse livers. Environ Toxicol Pharmacol 80:103449

    Article  CAS  Google Scholar 

  • Kang S-H, Kim Y-S, Kim E-K, Hwang J-W, Jeong J-H, Dong X, Lee J-W, Moon S-H, Jeon B-T, Park P-J (2016) Anticancer effect of thymol on AGS human gastric carcinoma cells. J Microbiol Biotechnol 26:28–37

    Article  CAS  Google Scholar 

  • Kerns SL, Ostrer H, Rosenstein BS (2014) Radiogenomics: using genetics to identify cancer patients at risk for development of adverse effects following radiotherapy. Cancer Discov 4:155–165

    Article  CAS  Google Scholar 

  • Khan T, Ali M, Khan A, Nisar P, Jan SA, Afridi S, Shinwari ZK (2020) Anticancer plants: a review of the active phytochemicals, applications in animal models, and regulatory aspects. Biomolecules 10:47

    Article  CAS  Google Scholar 

  • Kim W, Park C, Park J, Cheong H, Kim S-J (2020) Pine needle hexane extract promote cell cycle arrest and premature senescence via p27 KIP1 upregulation gastric cancer cells. Food Sci Biotechnol 29:845–853

    Article  CAS  Google Scholar 

  • Kumar S, Sharma VK, Yadav S, Dey S (2017) Antiproliferative and apoptotic effects of black turtle bean extracts on human breast cancer cell line through extrinsic and intrinsic pathway. Chem Cent J 11:1–10

    Article  CAS  Google Scholar 

  • Legault J, Pichette A (2007) Potentiating effect of β-caryophyllene on anticancer activity of α-humulene, isocaryophyllene and paclitaxel. J Pharm Pharmacol 59:1643–1647

    Article  CAS  Google Scholar 

  • Levitsky DO, Dembitsky VM (2015) Anti-breast cancer agents derived from plants. Nat Prod Bioprospect 5:1–16

    Article  CAS  Google Scholar 

  • Loha M, Mulu A, Abay SM, Ergete W, Geleta B (2019) Acute and subacute toxicity of methanol extract of Syzygium guineense leaves on the histology of the liver and kidney and biochemical compositions of blood in rats. Evid Based Complement Alternat Med:2019 Mar 10;2019:5702159. https://doi.org/10.1155/2019/5702159. PMID: 30956682; PMCID: PMC6431459

  • Lowe S, Lin A (2000) Apoptosis in cancer. Carcinogenesis 21:485–495

    Article  CAS  Google Scholar 

  • Matovina C, Birkeland AC, Zick S, Shuman AG (2017) Integrative medicine in head and neck cancer. Otolaryngol Head Neck Surg 156:228–237

    Article  Google Scholar 

  • Meeran SM, Ahmed A, Tollefsbol TO (2010) Epigenetic targets of bioactive dietary components for cancer prevention and therapy. Clin Epigenetics 1:101–116

    Article  CAS  Google Scholar 

  • Motadi LR, Choene MS, Mthembu NN (2020) Anticancer properties of Tulbaghia violacea regulate the expression of p53-dependent mechanisms in cancer cell lines. Sci Rep 10:1–11

    Article  CAS  Google Scholar 

  • Nagoor Meeran MF, Javed H, Al Taee H, Azimullah S, Ojha SK (2017) Pharmacological properties and molecular mechanisms of thymol: prospects for its therapeutic potential and pharmaceutical development. Front Pharmacol 8:380

    Article  CAS  Google Scholar 

  • Nasr FA, Abutaha N, Al-Zahrani M, Farooq M, Wadaan MA (2018) Anticancer potential of plant extracts from Riyadh (saudi Arabia) on MDA-MB-231 breast cancer cells. Afr J Tradit Complement Altern Med 15:46–53

    Article  CAS  Google Scholar 

  • No OT (2008) 407: repeated Dose 28-day oral toxicity study in rodents. OECD guidelines for the testing of chemicals, Section 4

  • Patel RD, Mahobia NK, Singh MP, Singh A, Sheikh NW, Alam G, Singh SK (2010a) Antioxidant potential of leaves of Plectranthus amboinicus (Lour) Spreng. Pharm Lett 2:240–245

    Google Scholar 

  • Patel R, Mahobia N, Waseem N, Upwar N, Singh S (2010b) Phyto-physicochemical investigation of leaves of Plectranthus amboinicus (Lour) Spreng. Pharm J 2:536–542

    Google Scholar 

  • Pillai PG, Suresh P, Aggarwal G, Doshi G, Bhatia V (2011) Pharmacognostical standardization and toxicity profile of the methanolic leaf extract of Plectranthus amboinicus (Lour) Spreng. J Appl Pharm Sci 1:76

    Google Scholar 

  • Saleh KA, Albinhassan TH, Al-Ghazzawi AM, Mohaya A, Shati AA, Ayoub HJ, Abdallah QM (2020) Anticancer property of hexane extract of Suaeda fruticose plant leaves against different cancer cell lines. Trop J Pharm Res 19:129–136

    Article  CAS  Google Scholar 

  • Salehi B, Mishra AP, Shukla I, Sharifi-Rad M, Contreras MM, Segura-Carretero A, Fathi H, Nasrabadi NN, Kobarfard F, Sharifi-Rad J (2018) Thymol, thyme, and other plant sources: Health and potential uses. Phytother Res 32:1688–1706

    Article  Google Scholar 

  • Satyapal US, Kadam VJ, Ghosh R (2008) Hepatoprotective activity of livobond a polyherbal formulation against CCl4 induced hepatotoxicity in rats. Int J Pharmacol 4:472–476

    Article  Google Scholar 

  • Shu L, Cheung K-L, Khor TO, Chen C, Kong A-N (2010) Phytochemicals: cancer chemoprevention and suppression of tumor onset and metastasis. Cancer Metastasis Rev 29:483–502

    Article  CAS  Google Scholar 

  • Slee EA, Harte MT, Kluck RM, Wolf BB, Casiano CA, Newmeyer DD, Wang H-G, Reed JC, Nicholson DW, Alnemri ES (1999) Ordering the cytochrome c–initiated caspase cascade: hierarchical activation of caspases-2,-3,-6,-7,-8, and-10 in a caspase-9–dependent manner. J Cell Biol 144:281–292

    Article  CAS  Google Scholar 

  • Sudhakar A (2009) History of cancer, ancient and modern treatment methods. J Cancer Ther 1:1

    Google Scholar 

  • Surh Y-J (2003) Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer 3:768–780

    Article  CAS  Google Scholar 

  • Thomas-Charles C, Fennell H (2019) Anti-prostate cancer activity of plant-derived bioactive compounds. Curr Mol Biol Rep 5:140–151

    Article  Google Scholar 

  • Timmer J, Salvesen G (2007) Caspase substrates. Cell Death Differ 14:66–72

    Article  CAS  Google Scholar 

  • Wang H, Oo Khor T, Shu L, Su Z-Y, Fuentes F, Lee J-H, Tony Kong A-N (2012) Plants vs. cancer: a review on natural phytochemicals in preventing and treating cancers and their druggability. Anti Cancer Agents Med Chem 12:1281–1305

    Article  CAS  Google Scholar 

  • Warrier P, Nambiar V, Ramankutty C (1996) Indian medicinal plants: a compendium of 500 species: Orient Longman Ltd. Chennai 3:38–90

    Google Scholar 

  • Widakowich C, de Castro JG, De Azambuja E, Dinh P, Awada A (2007) Side effects of approved molecular targeted therapies in solid cancers. Oncologist 12:1443–1455

    Article  CAS  Google Scholar 

  • Yue Q, Gao G, Zou G, Yu H, Zheng X (2017) Natural products as adjunctive treatment for pancreatic cancer: recent trends and advancements. Biomed Res Int:2017;2017:8412508. https://doi.org/10.1155/2017/8412508. Epub 2017 Jan 23. PMID: 28232946; PMCID: PMC5292383

  • Zhou T, Li Y, Yang L, Liu L, Ju Y, Li C (2017) Silencing of ANXA3 expression by RNA interference inhibits the proliferation and invasion of breast cancer cells. Oncol Rep 37:388–398

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Deanship of Scientific Research, King Saud University, for funding through Vice Deanship of Scientific Research Chairs.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, N.A.; methodology, A.A., N.A., M.A.W., A.A.A., A.Z.; software, N.A., AA.; writing—original draft preparation, N.A. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Nael Abutaha.

Ethics declarations

Ethical approval and consent to participate

The experiments were approved by the Faculty of Science, Al Imam Mohammad Ibn Saud Islamic University, ethical committee (approval no. 1442-265).

Consent for publication

Not applicable

Competing interest

The authors declare no competing interests.

Additional information

Responsible Editor: Mohamed M. Abdel-Daim

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almalki, A., Abutaha, N., Al-Doaiss, A.A. et al. Cytotoxicity, in vivo toxicity, and chemical composition of the hexane extract of Plectranthus amboinicus (Lour.) Spreng. Environ Sci Pollut Res 28, 48141–48153 (2021). https://doi.org/10.1007/s11356-021-13796-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-13796-8

Keywords

Navigation