Skip to main content
Log in

Effects of allelochemical artemisinin in Artemisia annua on Microcystis aeruginosa: growth, death mode, and microcystin-LR changes

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

To investigate the effects of an allelochemical artemisinin extracted from Artemisia annua (A. annua) on cell growth, death mode, and microcystin-LR (MC-LR) changes of Microcystis aeruginosa (M. aeruginosa), a series of morphological and biochemical characteristics were studied. The results showed that artemisinin could inhibit the growth of M. aeruginosa and reduce the content of phycobiliprotein. Under the allelopathy of artemisinin, algae cells deformed due to swelling, which caused cell membranes to rupture and cell contents to leak. FDA/PI double-staining results showed that 15.10–94.90% of algae cells experienced the death mode of necrosis-like. Moreover, there were 8.35–14.50% of algae cells undergoing programmed cell death, but their caspase-3-like protease activity remained unchanged, which may mean that algae cells were not experiencing caspase-dependent apoptosis under artemisinin stress. Attacked by artemisinin directly, both intracellular and extracellular MC-LR increased sharply with the upregulation of mcyB, mcyD, and mcyH. The upregulation multiple of mcyH suggested that M. aeruginosa could accelerate transportation of algal toxin under adverse conditions of artemisinin. Artemisinin not only can inhibit the growth of M. aeruginosa but it also causes the accelerated release and increase of microcystin-LR. These imply that the application of artemisinin should be reconsidered in practical water bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Affenzeller MJ, Darehshouri A, Andosch A, Lütz C, Lütz-Meindl U (2009) Salt stress-induced cell death in the unicellular green alga Micrasterias denticulate. J Exp Bot 60:939–954

    Article  CAS  Google Scholar 

  • Alkhatatbeh MJ, Enjeti AK, Baqar S, Ekinci EI, Liu D, Thorne RF, Lincz LF (2018) Strategies for enumeration of circulating microvesicles on a conventional flow cytometer: counting beads and scatter parameters. J Circul Biomark 7:1849454418766966

    Article  CAS  Google Scholar 

  • Bayles KW (2014) Bacterial programmed cell death: making sense of a paradox. Nat Rev Microbiol 12:63–69

    Article  CAS  Google Scholar 

  • Belz RG, Hurle K (2004) A novel laboratory screening bioassay for crop seedling allelopathy. J Chem Ecol 30:175–198

    Article  CAS  Google Scholar 

  • Bidle KD, Falkowski PG (2004) Cell death in planktonic, photosynthetic microorganisms. Nat Rev Microbiol 2:643–655

    Article  CAS  Google Scholar 

  • Bidle KD (2016) Programmed cell death in unicellular phytoplankton. Curr Biol 26:594–607

    Article  CAS  Google Scholar 

  • Blankenship RE (2014) Molecular mechanisms of photosynthesis. John Wiley and Sons Ltd., United Kingdom

    Google Scholar 

  • Broker LE, Kruyt FAE, Giaccone G (2005) Cell death independent of caspases: a review. Clin Cancer Res 11:3155–3162

    Article  Google Scholar 

  • Bunthof, C.J., Braak, S., Van Den, Breeuwer, P., ., Rombouts, F.M., Abee, T., . 1999. Rapid fluorescence assessment of the viability of stressed Lactococcus lactis. Appl Environ Microbiol 65, 3681-3689.

    Article  CAS  Google Scholar 

  • Ceballoslaita L, Calvobegueria L, Lahoz J, Bes M, Fillat MF, Peleato M (2015) γ-Lindane increases microcystin synthesis in Microcystis aeruginosa PCC7806. Marine Drugs 13:5666–5680

    Article  CAS  Google Scholar 

  • Chen S, Zhang L, Chen H, Chen Z, Wen Y (2019a) Enantioselective toxicity of chiral herbicide metolachlor to Microcystis aeruginosa. J Agric Food Chem 67:1631–1637

    Article  CAS  Google Scholar 

  • Chen YT, Weng YY, Zhou M, Meng YY, Liu JL, Yang L, Zuo ZJ (2019b) Linalool- and alpha-terpineol-induced programmed cell death in Chlamydomonas reinhardtii. Ecotoxicol Environ Saf 167:435–440

    Article  CAS  Google Scholar 

  • Darehshouri A, Affenzeller M, Lütz-Meindl U (2008) Cell death upon H2O2 induction in the unicellular green alga Micrasterias. Plant Biol 10:732–745

    Article  CAS  Google Scholar 

  • Dingman JE, Lawrence JE (2012) Heat-stress-induced programmed cell death in Heterosigma akashiwo (Raphidophyceae). Harmful Algae 16:108–116

    Article  Google Scholar 

  • Dorsey, J., ., Yentsch, C.M., Mayo, S., ., Mckenna, C., . 2010. Rapid analytical technique for the assessment of cell metabolic activity in marine microalgae. Cytometry Part A 10, 622-628.

    Article  Google Scholar 

  • Egranéli (2006) Kill your enemies and eat them with the help of your toxins: an algal strategy. S Afr J Mar Sci 28:331–336

    Article  Google Scholar 

  • Fan G, Liu D, Lin Q (2013) Fluorescein diacetate and propidium iodide FDA-PI double staining detect the viability of Microcystis sp. after ultrasonic irradiation. J Food Agricult Environ 11:2419–2421

    Google Scholar 

  • Feng Y, Chang X, Zhao L, Li X, Li W, Jiang Y (2013) Nanaomycin A methyl ester, an actinomycete metabolite: algicidal activity and the physiological response of Microcystis aeruginosa. Ecol Eng 53:306–312

    Article  Google Scholar 

  • Fernandezherrera LJ, Bandschmidt CJ, Lopezcortes DJ, Hernandezguerrero CJ, Bustillosguzman JJ, Nunezvazquez EJ (2016) Allelopathic effect of Chattonella marina var. marina (Raphidophyceae) on Gymnodinium catenatum (Dinophycea). Harmful Algae 51:1–9

    Article  Google Scholar 

  • Fuchs Y, Steller H (2011) Programmed cell death in animal development and disease. Cell 147:742–758

    Article  CAS  Google Scholar 

  • Galluzzi L, Aaronson SA, Abrams J, Alnemri ES, Andrews DW, Baehrecke EH, Bazan NG, Blagosklonny MV, Blomgren K, Borner C (2009) Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes. Cell Death Differ 16:1093–1107

    Article  CAS  Google Scholar 

  • Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW (2018) Molecular mechanisms of cell death : recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ 25:486–541

    Article  Google Scholar 

  • Goswami S, Diengdoh OL, Syiem MB, Pakshirajan K, Kiran MG (2015) Zn(II) and Cu(II) removal by Nostoc muscorum: a cyanobacterium isolated from a coal mining pit in Chiehruphi, Meghalaya, India. Can J Microbiol 61:1–7

    Article  CAS  Google Scholar 

  • Graham JL, Loftin KA, Meyer MT, Ziegler AC (2010) Cyanotoxin mixtures and taste-and-odor compounds in cyanobacterial blooms from the Midwestern United States. Environ Sci Technol 44:7361–7368

    Article  CAS  Google Scholar 

  • Granéli E, Edvardsen B, Roelke DL, Hagström JA (2012) The ecophysiology and bloom dynamics of Prymnesium spp. Harmful Algae 14:260–270

    Article  Google Scholar 

  • Hu LB, Zhou W, Yang JD, Chen J, Yin YF, Shi ZQ (2011) Cinnamaldehyde induces PCD-like death of Microcystis aeruginosa via reactive oxygen species. Water Air Soil Pollut 217:105–113

    Article  CAS  Google Scholar 

  • Inderjit, Duke SO (2003) Ecophysiological aspects of allelopathy. Planta 217:529–539

    Article  CAS  Google Scholar 

  • ISO, 8692-2012. Water quality-fresh water algal growth inhibition test with unicellular green algae.

  • Kaebernick M, Neilan BA, Borner T, Dittmann E (2000) Light and the transcriptional response of the microcystin biosynthesis gene cluster. Appl Environ Microbiol 66:3387–3392

    Article  CAS  Google Scholar 

  • Kuniyoshi TM, Sevilla E, Bes MT, Fillat MF, Peleato ML (2013) Phosphate deficiency (N/P 40:1) induces mcyD transcription and microcystin synthesis in Microcystis aeruginosa PCC7806. Plant Physiol Biochem 65:120–124

    Article  CAS  Google Scholar 

  • Li M, Nkrumah PN, Peng Q (2015a) Different tolerances to chemical contaminants between unicellular and colonial morph of Microcystis aeruginosa: excluding the differences among different strains. J Hazard Mater 285:245–249

    Article  CAS  Google Scholar 

  • Li Y, Zhu H, Lei X, Zhang H, Guan C, Chen Z, Zheng W, Xu H, Tian Y, Yu Z (2015b) The first evidence of deinoxanthin from Deinococcus sp. Y35 with strong algicidal effect on the toxic dinoflagellate Alexandrium tamarense. J Hazard Mater 290:87–95

    Article  CAS  Google Scholar 

  • Li J, Hu J, Cao L, Yuan Y (2020) Growth, physiological responses and microcystin-production/-release dynamics of Microcystis aeruginosa exposed to various luteolin doses. Ecotoxicol Environ Saf 196:110540

    Article  CAS  Google Scholar 

  • Lu ZY, Sha J, Tian Y, Zhang XZ, Liu BY, Wu ZB (2017) Polyphenolic allelochemical pyrogallic acid induces caspase-3(like)-dependent programmed cell death in the cyanobacterium Microcystis aeruginosa. Algal Res 21:148–155

    Article  Google Scholar 

  • Macdonald HR, Zaech P (2010) Light scatter analysis and sorting of cells activated in mixed leukocyte culture. Cytometry Part A 3:55–58

    Article  Google Scholar 

  • Marcoux G, Duchez AC, Cloutier N, Provost P, Nigrovic PA, Boilard E (2016) Revealing the diversity of extracellular vesicles using high-dimensional flow cytometry analyses. Sci Rep 6:35928

    Article  CAS  Google Scholar 

  • Moutier W, Duforêt-Gaurier L, Thyssen M, Loisel H, Mériaux X, Courcot L, Dessailly D, Rêve AH, Grégori G, Alvain S (2017) Evolution of the scattering properties of phytoplankton cells from flow cytometry measurements. PLoS One 12:e0181180

    Article  CAS  Google Scholar 

  • Nakai S, Inoue Y, Hosomi M, Murakami A (1999) Growth inhibition of blue-green algae by allelopathic effects of macrophytes. Water Sci Technol 39:47–53

    Article  Google Scholar 

  • Ni L, Acharya K, Hao X, Li S (2012a) Isolation and identification of an anti-algal compound from Artemisia annua and mechanisms of inhibitory effect on algae. Chemosphere 88:1051–1057

    Article  CAS  Google Scholar 

  • Ni L, Acharya K, Hao X, Li S, Li Y, Li Y (2012b) Effects of Artemisinin on photosystem II performance of Microcystis aeruginosa by in vivo chlorophyll fluorescence. Bull Environ Contam Toxicol 89:1165–1169

    Article  CAS  Google Scholar 

  • Ni L, Acharya K, Ren G, Li S, Li Y, Li Y (2013) Preparation and characterization of anti-algal sustained-release granules and their inhibitory effects on algae. Chemosphere 91:608–615

    Article  CAS  Google Scholar 

  • Ni L, Hao X, Li S, Chen S, Ren G, Zhu L (2011) Inhibitory effects of the extracts with different solvents from three compositae plants on cyanobacterium Microcystis aeruginosas. Sci China-chem 54:1123–1129

    Article  CAS  Google Scholar 

  • Ni L, Jie X, Wang P, Li S, Hu S, Li Y, Li Y, Acharya K (2015a) Characterization of unsaturated fatty acid sustained-release microspheres for long-term algal inhibition. Chemosphere 120:383–390

    Article  CAS  Google Scholar 

  • Ni L, Li D, Hu S, Wang P, Li S, Li Y, Li Y, Acharya K (2015b) Effects of artemisinin sustained-release granules on mixed alga growth and microcystins production and release. Environ Sci Pollut Res 22:18637–18644

    Article  CAS  Google Scholar 

  • Ni L, Yue F, Zhang J, Rong S, Liu X, Wang Y, Wang P, Li D, Wang N, Wu H, Li S (2020) Cell membrane damage induced by continuous stress of artemisinin sustained-release microspheres (ASMs) on Microcystis aeruginosa at different physiological stages. Environ Sci Pollut Res 27:12624–12634

    Article  CAS  Google Scholar 

  • Paerl HW, Huisman J (2010) Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environ Microbiol Rep 1:27–37

    Article  CAS  Google Scholar 

  • Pei Y, Liu L, Hilt S, Xu R, Wang B, Li C, Chang X (2018) Root exudated algicide of Eichhornia crassipes enhances allelopathic effects of cyanobacteria Microcystis aeruginosa on green algae. Hydrobiologia 823:67–77

    Article  Google Scholar 

  • Rastogi RP, Sonani RR, Madamwar D (2015) Effects of PAR and UV radiation on the structural and functional integrity of phycocyanin, phycoerythrin and allophycocyanin isolated from the marine cyanobacterium Lyngbya sp. A09DM. Photochem. Photobiol. 91(4):837–844

    Article  CAS  Google Scholar 

  • Scherer PI, Raeder U, Geist J, Zwirglmaier K (2016) Influence of temperature, mixing, and addition of microcystin-LRon microcystin gene expression in Microcystis aeruginosa. Microbiologyopen 6

  • Sevilla E, Martinluna B, Vela L, Bes MT, Peleato ML, Fillat MF (2010) Microcystin-LR synthesis as response to nitrogen: transcriptional analysis of the mcyD gene in Microcystis aeruginosa PCC7806. Ecotoxicology 19:1167–1173

    Article  CAS  Google Scholar 

  • Shi XL, Kong FX, Yu Y, Yang Z (2007) Survival of Microcystis aeruginosa and Scenedesmus obliquus under dark anaerobic conditions. Mar Freshw Res 58:634–639

    Article  CAS  Google Scholar 

  • Stern A, Rahman A, Birtwistle MR (2017) Cell size assays for mass cytometry. Cytometry Part A 91:14–24

    Article  CAS  Google Scholar 

  • Takács-Buia L, Iordachel C, Efimov N, Caloianu M, Montreuil J, Bratosin D (2010) Pathogenesis of osteoarthritis: chondrocyte replicative senescence or apoptosis? Cytometry Part B Clin Cytometry 74B:356–362

    Google Scholar 

  • Tan K, Wen C, Feng H, Chao X, Su H (2016) Nuclear dynamics and programmed cell death in Arabidopsis root hairs. Plant Sci 253:77–85

    Article  CAS  Google Scholar 

  • van Doorn WG, Woltering EJ (2005) Many ways to exit? Cell death categories in plants. Trends Plant Sci 10:117–122

    Article  CAS  Google Scholar 

  • Vavilala SL, Sinha M, Gawde KK, Shirolikar S, Dsouza JS (2016) KCl induces a caspase-independent programmed cell death in the unicellular green chlorophyte Chlamydomonas reinhardtii (Chlorophyceae). Phycologia 55:378–392

    Article  CAS  Google Scholar 

  • Walsby AE, Avery A, Schanz F (1998) The critical pressures of gas vesicles in Planktorhrix rubescens in relation tothe depth of winter mixing in Lake Zürich, Switzerland. J Plankton Res 20:1357–1375

    Article  Google Scholar 

  • Wang R, Hua M, Yu Y, Zhang M, Xian QM, Yin DQ (2016) Evaluating the effects of allelochemical ferulic acid on Microcystis aeruginosa by pulse-amplitude-modulated (PAM) fluorometry and flow cytometry. Chemosphere 147:264–271

    Article  CAS  Google Scholar 

  • Wang R, Xue Q, Wang J, Tan L, Zhang Q, Zhao Y, Anderson DM (2017) Effects of an allelochemical in Phaeodactylum tricornutum filtrate on Heterosigma akashiwo: morphological, physiological and growth effects. Chemosphere 186:527–534

    Article  CAS  Google Scholar 

  • Wang S, Wang Y, Ma X, Xu Z (2015) Effects of garlic and diallyl trisulfide on the growth, photosynthesis, and alkaline phosphatase activity of the toxic cyanobacterium Microcystis aeruginosa. Environ Sci Pollut Res 23:5712–5720

    Article  CAS  Google Scholar 

  • Wang S, Xu Z (2016) Effects of dihydroartemisinin and artemether on the growth, chlorophyll fluorescence, and extracellular alkaline phosphatase activity of the cyanobacterium Microcystis aeruginosa. PLoS One 11:e0164842

    Article  CAS  Google Scholar 

  • Wu C, Chang X, Dong H, Li D, Liu J (2008) Allelopathic inhibitory effect of Myriophyllum aquaticum (Vell.) Verdc. on Microcystis aeruginosa and its physiological mechanism. Acta Ecol Sin 28:2595–2603

    Article  CAS  Google Scholar 

  • Wu X, Wu H, Wang S, Wang Y, Zhang R, Hu X, Ye J (2018) Effect of propionamide on the growth of Microcystis flos-aquae colonies and the underlying physiological mechanisms. Sci Total Environ 630:526–535

    Article  CAS  Google Scholar 

  • Xiang W, Hao W, Junren C, Jinyun Y (2013) Effects of allelochemical extracted from water lettuce (Pistia stratiotes Linn.) on the growth, microcystin production and release of Microcystis aeruginosa. Environ Sci Pollut Res 20:8192–8201

    Article  CAS  Google Scholar 

  • Xiao X, Chen Y, Liang X, Lou L, Tang X (2010) Effects of Tibetan hulless barley on bloom-forming cyanobacterium (Microcystis aeruginosa) measured by different physiological and morphologic parameters. Chemosphere 81:1118–1123

    Article  CAS  Google Scholar 

  • Xiao X, Huang H, Ge Z, Rounge TB, Shi J, Xu X, Li R, Chen Y (2014) A pair of chiral flavonolignans as novel anti-cyanobacterial allelochemicals derived from barley straw (Hordeum vulgare): characterization and comparison of their anti-cyanobacterial activities. Environ Microbiol 16:1238–1251

    Article  CAS  Google Scholar 

  • Xu C-Y, Yang J, Ma M-R, Hu X-Q, You W-H (2012) Characteristics of phytoplankton community changes in Dianshan Lake during peak period of algal blooms. Huan jing ke xue 33:1136–1143

    Google Scholar 

  • Yang K, Chen Q, Zhang D, Zhang H, Lei X, Chen Z, Li Y, Hong Y, Ma X, Zheng W (2017) The algicidal mechanism of prodigiosin from Hahella sp. KA22 against Microcystis aeruginosa. Sci Rep 7:7750–7750

    Article  CAS  Google Scholar 

  • Yokoyama H, Danjo T, Ogawa K, Wakabayashi H (2010) A vital staining technique with fluorescein diacetate (FDA) and propidium iodide (PI) for the determination of viability of myxosporean and actinosporean spores. J Fish Dis 20:281–286

    Article  Google Scholar 

  • Zhao W, Zheng Z, Zhang J, Roger S-F, Luo X (2019) Allelopathically inhibitory effects of eucalyptus extracts on the growth of Microcystis aeruginosa. Chemosphere 225:424–433

    Article  CAS  Google Scholar 

  • Zhou LH, Zheng TL, Wang X, Ye JL, Tian Y, Hong HS (2007) Effect of five chinese traditional medicines on the biological activity of a red-tide causing alga—Alexandrium tamarense. Harmful Algae 6:354–360

    Article  CAS  Google Scholar 

  • Zhou T, Zheng J, Cao H, Wang X, Lou K, Zhang X, Tao Y (2018) Growth suppression and apoptosis-like cell death in Microcystis aeruginosa by H2O2: a new insight into extracellular and intracellular damage pathways. Chemosphere 211:1098–1108

    Article  CAS  Google Scholar 

  • Zhu J, Liu B, Wang J, Gao Y, Wu Z (2010) Study on the mechanism of allelopathic influence on cyanobacteria and chlorophytes by submerged macrophyte ( Myriophyllum spicatum ) and its secretion. Aquat Toxicol 98:196–203

    Article  CAS  Google Scholar 

  • Zuo Z, Zhu Y, Bai Y, Wang Y (2012) Acetic acid-induced programmed cell death and release of volatile organic compounds in Chlamydomonas reinhardtii. Plant Physiol Biochem 51:175–184

    Article  CAS  Google Scholar 

  • Zuo Z, Chen Z, Shi M, Zhu Y, Bai Y, Wang Y (2015) Reactive oxygen species contribute to the release of volatile organic compounds from Chlamydomonas reinhardtii during programmed cell death. Phycol Res 63:37–42

    Article  CAS  Google Scholar 

Download references

Availability of data and material

The datasets analyzed during the current study are available from the corresponding author on reasonable request.

Funding

This work was supported jointly by the Key Program of the National Natural Science Foundation of China (Grant Nos. 51779079, 51979137), the Natural Science Foundation of Jiangsu Province (Grant No. BK20181313), the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions (TAPP).

Author information

Authors and Affiliations

Authors

Contributions

Lixiao Ni: methodology, software, investigation, writing-original draft, project administration, and funding acquisition.

Hanqi Wu: writing-review and editing, investigation, formal analysis, visualization, and software.

Cunhao Du: formal analysis, visualization, and data curation.

Xianglan Li: software and investigation.

Yan Li: data curation and investigation.

Chu Xu: writing-review and editing and data curation.

Peifang Wang: validation and writing: review and editing.

Shiyin Li: conceptualization, project administration, and validation.

Jianhua Zhang: resources and supervision.

Xuqing Chen: conceptualization and writing: review and editing.

Corresponding author

Correspondence to Shiyin Li.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Vitor Vasconcelos

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, L., Wu, H., Du, C. et al. Effects of allelochemical artemisinin in Artemisia annua on Microcystis aeruginosa: growth, death mode, and microcystin-LR changes. Environ Sci Pollut Res 28, 45253–45265 (2021). https://doi.org/10.1007/s11356-021-13793-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-13793-x

Keywords

Navigation