In this comprehensive quantitative analysis, we summarized the most up-to-date evidence from 45 epidemiologic studies published on or before mid-August 2020 and found ambient and household air pollution exposures were linked to significant and noteworthy increases in the risk of stunting (e.g., HAZ) and prenatal determinant of stunting (e.g., SGA). A 10 μg/m3 increase in PM2.5 levels over the entire pregnancy was associated with an 8% (95% CI: 3–13%) increase in the risk of SGA, and a range of 2%–5% elevated risk was observed with increased PM2.5 exposure during the three trimester periods. Similarly, exposure to household air pollution was associated with a 19% (95% CI: 10–29%) increase in the risk of stunting among children aged 5 or below, with suggestive positive associations observed for severe stunting.
We identified three previous systematic reviews linking ambient air pollution with SGA and IUGR (Zhu et al. 2015; Yuan et al. 2019) and household air pollution with HAZ (Bruce et al. 2013). Of the reviews that focused on ambient PM2.5 exposure, only Zhu et al. (2015) conducted a quantitative evaluation of the evidence, while Yuan et al. (2019) only offered qualitative observations. In a 2015 review, Zhu et al. (2015) evaluated six studies on the association between PM2.5 and SGA and reported OR of 1.15 (95% CI: 1.10–1.20) for SGA per increase in PM2.5 exposure during the entire pregnancy. When we included the same studies and 12 additional new publications in our latest meta-analysis, we found an OR of 1.09 (95% CI: 1.04–1.14; Figure S2). Our pooled OR estimates are smaller in magnitude than those reported in Zhu et al. (2015). One explanation for this is that individual epidemiologic studies published after the 2015 meta-analysis tend to report effect estimates that are lower in magnitude and statistical significance compared to earlier studies. More recently published studies were from cities in Asia (e.g., China), where PM2.5 levels were much higher than in cities with much lower pollution levels (i.e., 4–22μg/m3) where earlier studies were conducted.
This phenomena of decreasing effect size with increasing PM2.5 concentrations have been previously documented (Vodonos et al. 2018) and suggests a non-linear association between exposure and response. Nonetheless, our findings are supported by existing literature on the impact of ambient air pollution on stunting defined as HAZ. A recent study found that prenatal exposure to the 1997 Indonesian forest fires is associated with a 0.41 in HAZ (or 3.4 cm) at age 17, which implies a loss of 4% of average monthly wages for approximately 1 million Indonesian workers born during this period (Tan-Soo and Pattanayak 2019). Results of a study conducted in Bangladesh, where stunting prevalence is as high as 36%, children with a high quartile of PM2.5 exposure (52–73 μg/m3) had 1.13 times the risk of stunting (HAZ < − 2) than that of children in the lowest quartile of exposure (Goyal and Canning 2018).
For household air pollution, we identified eleven epidemiologic studies for stunting defined by HAZ, including three studies published after a previous meta-analysis (Bruce et al. 2013). Bruce et al. (2013) reported a pooled OR of 1.27 (95% CI: 1.12–1.43) based on two studies. Our pooled effect estimates for household air pollution from cooking with solid fuels are consistent with but smaller than the Bruce et al. (2013) estimates. Overall, the volume of new evidence from both ambient and household particulate exposure suggests a high level of consistency regarding the association between ambient and household particulate pollution and stunting and prenatal determinants of stunting.
There is a strong biological basis for the relationship between air pollution exposure and low birthweight. Kannan et al. (2006) reviewed the evidence from existing literature and determined there are potentially five distinct mechanisms at work: oxidative stress, inflammation, coagulation, endothelial function, and hemodynamic responses. While precise biological mechanisms connecting air pollution with impaired fetal growth are unknown, it is commonly hypothesized that transplacental and postnatal exposure to particulate matter may result in oxidative stress leading to DNA damage. Induced acute placental and pulmonary inflammation, increased possibility for coagulation, and triggered endothelial dysfunction are also hypothesized biological mechanisms.
We acknowledge several limitations in this meta-analysis. First, we observed a moderate to high degree of heterogeneity across gestational exposure periods and exposure metrics. Such heterogeneity may be explained by differences in study design methods and exposure assessment, covariate adjustment, study population, and/or PM chemical composition. Unfortunately, the studies did not provide enough detailed data to explore potential effect modification by socioeconomic status. More evidence on the independent and joint effects of early life exposures to air pollution, nutrition, social class, and the effect of PM constituents on stunting-related risks is warranted. There were not enough studies using other exposure windows (e.g., months) to be evaluated. As a result, our observed effects on stunting-related risks, limited to the entire pregnancy period and specific trimester periods, does not enable us to evaluate the impact of increased exposures to air pollution over shorter time windows. Moreover, while the majority of the included studies evaluated stunting-related outcomes as categorical measures (e.g., HAZ < − 2 SD), it is important to note that growth faltering occurs along the gradient, and children above the conventional cutoff points for SGA/IUGR/HAZ may still experience suboptimal linear growth, especially in low-resource settings (Prendergast and Humphrey 2014; de Onis and Branca 2016). As a result, the actual impact of air pollution on stunting or growth failure may be underestimated. Finally, while we used clear criteria for the inclusion of studies, we did not assess the quality of each included study.
These limitations are balanced by the substantial strengths of our study. Our updated meta-analysis review is timely and warranted given that substantial new evidence has been published since the previous meta-analyses on this topic (6 versus 18 for ambient PM2.5 pollution in the current review, 2 versus 11 for household air pollution). Additional value is also derived from updating results of earlier reviews using comparable methods, including effects from both the continuous and categorical measures of PM2.5 and PM10 exposures. Prior to this review, an effort had not been attempted to join all available childhood stunting-related outcomes or to include a focus on exposures from ambient particulate pollution exposure and household air pollution. Our pooled estimates were robust in sensitivity analyses, as demonstrated by removing one study from the main analysis. There was also no significant publication bias according to Begg’s and Egger’s tests.