Skip to main content

Lead exposure in consumers of culled invasive alien mammals in El Palmar National Park, Argentina

Abstract

Consumption of meat from animals hunted with Pb ammunition can cause toxic accumulation with consequent health risks, even if relatively small amounts are consumed in each exposure. In El Palmar National Park, Argentina, invasive alien mammals, wild boar (Sus scrofa) and axis deer (Axis axis), are culled with Pb ammunition and their meat is consumed. In this study, we evaluated blood Pb concentrations in 58 consumers of culled game and examined Pb exposure risk according to their demographics, duty, and consumption habits. Likewise, the likelihood of exposure was evaluated by quantifying Pb concentrations in meat samples of seven culled axis deer. Twenty-seven participants (46%) had detectable blood Pb levels (limit of detection = 3.3 μg/dL), with an average 4.75 ± 1.35 μg/dL (geometric mean ± geometric S.D.); the average for all participants was 3.25 ± 1.51 μg/dL. Blood Pb concentrations were significantly higher in hunters, in participants who reported consuming game meat more than 5 times per week, and in participants who reported frequently consuming cured game meat (compared to cooked or pickled). Pb concentration varied significantly along the trajectory of the bullet in deer muscle, being highest at mid-point but with detectable Pb levels even in distant tissue samples (control), suggesting potential for dietary intake by consumers. These findings provide evidence of Pb exposure risk in consumers and emphasize the relevance of replacing Pb ammunition with non-toxic alternatives. This change would reduce dietary exposure in frequent consumers and allow the use of game meat as safe food for people whilst eliminating collateral risks to wild animals and the environment.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Arnemo JM, Andersen O, Stokke S, Thomas VG, Krone O, Pain DJ, Mateo R (2016) Health and environmental risks from lead-based ammunition: science versus socio-politics. Ecohealth 13:618–622. https://doi.org/10.1007/s10393-016-1177-x

    Article  Google Scholar 

  2. Arrondo E, Navarro J, Perez-García JM, Mateo R, Camarero PR, Martin-Doimeadios RCR, Jiménez-Moreno M, Cortés-Avizanda A, Navas I, García-Fernández AJ, Sánchez-Zapata JA, Donázar JA (2020) Dust and bullets: stable isotopes and GPS tracking disentangle lead sources for a large avian scavenger. Environ Pollut 266:115022. https://doi.org/10.1016/j.envpol.2020.115022

    CAS  Article  Google Scholar 

  3. Assi MA, Hezmee MNM, Haron AW et al (2016) The detrimental effects of lead on human and animal health. Vet World 9:660–671. https://doi.org/10.14202/vetworld.2016.660-671

    CAS  Article  Google Scholar 

  4. Avery D, Watson T (2009) Regulation of lead-based ammunition around the world. In: Watson RT, Fuller M, Pokras M, Hunt WG (eds) Ingestion of lead from spent ammunition: implications for wildlife and humans. The Peregrine Fund, Boise, Idaho, USA., pp 161–168

    Google Scholar 

  5. Ballari SA, Cirignoli S, Winter M, et al. (2019) Sus scrofa. Categorización 2019 de los mamíferos de Argentina según su riesgo de extinción. Lista Roja de los mamíferos de Argentina. In: SAyDS–SAREM (eds.). http://cma.sarem.org.ar/es/especie-exotica/sus-scrofa. Accessed 28 Dec 1BC

  6. BfR (2011) Lead fragments in game meat can be an added health risk for certain consumer groups. http://www.bfr.bund.de/en/press_information/2011/32/lead_fragments_in_game_meat_can_be_an_added_health_risk_for_certain_consumer_groups-127610.html

  7. Birgisdottir BE, Knutsen HK, Haugen M, Gjelstad IM, Jenssen MTS, Ellingsen DG, Thomassen Y, Alexander J, Meltzer HM, Brantsæter AL (2013) Essential and toxic element concentrations in blood and urine and their associations with diet: Results from a Norwegian population study including high-consumers of seafood and game. Sci Total Environ 463–464:836–844. https://doi.org/10.1016/j.scitotenv.2013.06.078

    CAS  Article  Google Scholar 

  8. Bjermo H, Sand S, Nälsén C, Lundh T, Enghardt Barbieri H, Pearson M, Lindroos AK, Jönsson BAG, Barregård L, Darnerud PO (2013) Lead, mercury, and cadmium in blood and their relation to diet among swedish adults. Food Chem Toxicol 57:161–169. https://doi.org/10.1016/j.fct.2013.03.024

    CAS  Article  Google Scholar 

  9. Bonnefoy C, Menudier A, Moesch C, Lachâtre G, Mermet JM (2002) Validation of the determination of lead in whole blood by ICP-MS. J Anal At Spectrom 17:1161–1165. https://doi.org/10.1039/b201889f

    CAS  Article  Google Scholar 

  10. Broadway MS, McCallen EB, Caudell J, Stewart CM (2020) Ammunition type and shot placement determine lead fragmentation in deer. J Wildl Manag 84:1406–1414. https://doi.org/10.1002/jwmg.21917

    Article  Google Scholar 

  11. Budtz-Jørgensen E, Bellinger DC, Lanphear B, Grandjean P, on behalf of the International Pooled Lead Study Investigators (2013) An international pooled analysis for obtaining a benchmark dose for environmental lead exposure in children. Risk Anal 33:450–461. https://doi.org/10.1111/j.1539-6924.2012.01882.x

    Article  Google Scholar 

  12. Buenz EJ, Parry GJ (2017) Chronic lead intoxication from eating wild-harvested game. Am J Med 131:e181–e184. https://doi.org/10.1016/j.amjmed.2017.11.031

    CAS  Article  Google Scholar 

  13. Buenz EJ, Parry GJ, Bauer BA, Matheny LM, Breukel K (2017) A prospective observational study assessing the feasibility of measuring blood lead levels in New Zealand hunters eating meat harvested with lead projectiles. Contemp Clin Trials Commun 5:137–143. https://doi.org/10.1016/j.conctc.2017.02.002

    Article  Google Scholar 

  14. Caldwell KL, Cheng PY, Vance KA, Makhmudov A, Jarrett JM, Caudill SP, Ho DP, Jones RL (2019) LAMP: a CDC program to ensure the quality of blood-lead laboratory measurements. J Public Heal Manag Pract 25:S23–S30. https://doi.org/10.1097/PHH.0000000000000886

    Article  Google Scholar 

  15. Chiodo LM, Covington C, Sokol RJ, Hannigan JH, Jannise J, Ager J, Greenwald M, Delaney-Black V (2007) Blood lead levels and specific attention effects in young children. Neurotoxicol Teratol 29:538–546. https://doi.org/10.1016/j.ntt.2007.04.001

    CAS  Article  Google Scholar 

  16. Cindi MD, Mbonane TP, Naicker N (2020) Study protocol to examine the relationship between environmental exposure to lead and blood lead levels among children from day-care centres in Ekurhuleni Metropolitan Municipality. BMJ Open 10:e036687. https://doi.org/10.1136/bmjopen-2019-036687

    Article  Google Scholar 

  17. CLIAwaived.com n.d. https://www.cliawaived.com/amfile/file/download/file/1074/product/3079/

  18. COEH (2016) Prevention of childhood lead toxicity. Pediatrics 138:1. 10.1542/peds.2016-1493

  19. Damerau A, Venäläinen ER, Peltonen K (2012) Heavy metals in meat of Finnish city rabbits. Food Additives and Contaminants: Part B 5(4):246–250. https://doi.org/10.1080/19393210.2012.702131

  20. Dietert RR, Piepenbrink MS (2006) Lead and immune function. Crit Rev Toxicol 36:359–385. https://doi.org/10.1080/10408440500534297

    CAS  Article  Google Scholar 

  21. Dobrowolska A, Melosik M (2008) Bullet-derived lead in tissues of the wild boar (Sus scrofa) and red deer (Cervus elaphus). Eur J Wildl Res 54:231–235. https://doi.org/10.1007/s10344-007-0134-y

    Article  Google Scholar 

  22. EFSA Panel on Contaminants in the Food Chain (CONTAM) (2013) Scientific Opinion on Lead in Food. EFSA J 2010 8:4–1570. https://doi.org/10.2903/j.efsa.2010.1570

    CAS  Article  Google Scholar 

  23. Fachehoun RC, Lévesque B, Dumas P, St-Louis A, Dubé M, Ayotte P (2015) Lead exposure through consumption of big game meat in Quebec, Canada: risk assessment and perception. Food Addit Contam - Part A Chem Anal Control Expo Risk Assess 32:1501–1511. https://doi.org/10.1080/19440049.2015.1071921

    CAS  Article  Google Scholar 

  24. Falandysz J, Szymczyk-Kobrzyńska K, Brzostowski A et al (2005) Concentrations of heavy metals in the tissues of red deer (Cervus elaphus) from the region of Warmia and Mazury, Poland. Food Addit Contam 22:141–149. https://doi.org/10.1080/02652030500047273

    CAS  Article  Google Scholar 

  25. Flora SJS, Flora G, Saxena G (2006) Environmental occurrence, health effects and management of lead poisoning. Lead, In, pp 158–228

    Google Scholar 

  26. FSA (2017) Lead-shot game. https://www.food.gov.uk/safety-hygiene/lead-shot-game

  27. García-Fernandez AJ, Jiménez P, María-Mojica P et al (2008) Intoxicacion por plomo en buitres leonados Gyps fulvus. In: Alcantara (ed) Plan de acción para la erradicación del uso ilegal de venenos en el medio natural en Aragón. Actas del Seminario Mortalidad por intoxicación en aves necrófagas. Problemática y soluciones. Ainsa, Huesca (Spain), pp 1–100

    Google Scholar 

  28. Gerofke A, Ulbig E, Martin A, Müller-Graf C, Selhorst T, Gremse C, Spolders M, Schafft H, Heinemeyer G, Greiner M, Lahrssen-Wiederholt M, Hensel A (2018) Lead content in wild game shot with lead or non-lead ammunition – does “state of the art consumer health protection” require non-lead ammunition? PLoS One 13:1–23. https://doi.org/10.1371/journal.pone.0200792

    CAS  Article  Google Scholar 

  29. Gerofke A, Martin A, Schlichting D, et al. (2019) Heavy metals in game meat. In: Chemical hazards in foods of animal origin Food safety assurance and veterinary public health. pp 341–366

  30. Green RE, Pain DJ (2015) Risks of health effects to humans in the UK from ammunition-derived lead. In: Delahay RJ, Spray CJ (eds) Proceedings of the Oxford Lead Symposium. Lead ammunition: Understanding and minimising the risks to human and environmental health. The University of Oxford, UK, Edward Grey Institute, p 152

    Google Scholar 

  31. Green RE, Pain DJ (2019) Risks to human health from ammunition-derived lead in Europe. Ambio 48:954–968. https://doi.org/10.1007/s13280-019-01194-x

    CAS  Article  Google Scholar 

  32. Grund MD, Cornicelli L, Carlson LT, Butler EA (2010) Bullet fragmentation and lead deposition in white-tailed deer and domestic sheep. Human-Wildlife Interact 4:257–265

    Google Scholar 

  33. Gürtler RE, Martín Izquierdo V, Gil G, Cavicchia M, Maranta A (2017) Coping with wild boar in a conservation area: impacts of a 10-year management control program in north-eastern Argentina. Biol Invasions 19:11–24. https://doi.org/10.1007/s10530-016-1256-5

    Article  Google Scholar 

  34. Gürtler RE, Rodríguez-Planes LI, Gil G, Izquierdo VM, Cavicchia M, Maranta A (2018) Differential long-term impacts of a management control program of axis deer and wild boar in a protected area of north-eastern Argentina. Biol Invasions 20:1431–1447. https://doi.org/10.1007/s10530-017-1635-6

    Article  Google Scholar 

  35. Hampton JO, Laidlaw M, Buenz E, Arnemo JM (2018) Heads in the sand: public health and ecological risks of lead-based bullets for wildlife shooting in Australia. Wildl Res 45:287–306. https://doi.org/10.1071/WR17180

    Article  Google Scholar 

  36. Hunt WG, Burnham W, Parish CN et al (2006) Bullet fragments in deer remains: implications for lead exposure in avian scavengers. Wildl Soc Bull 34:167–170. https://doi.org/10.2193/0091-7648(2006)34[167:bfidri]2.0.co;2

    Article  Google Scholar 

  37. Hunt WG, Watson RT, Oaks JL, Parish CN, Burnham KK, Tucker RL, Belthoff JR, Hart G (2009) Lead bullet fragments in venison from rifle-killed deer: potential for human dietary exposure. PLoS One 4:1–6. https://doi.org/10.1371/journal.pone.0005330

    CAS  Article  Google Scholar 

  38. Iqbal S, Blumenthal W, Kennedy C, Yip FY, Pickard S, Flanders WD, Loringer K, Kruger K, Caldwell KL, Jean Brown M (2009) Hunting with lead: association between blood lead levels and wild game consumption. Environ Res 109:952–959. https://doi.org/10.1016/j.envres.2009.08.007

    CAS  Article  Google Scholar 

  39. Kanstrup N, Swift J, Stroud DA, Lewis M (2018) Hunting with lead ammunition is not sustainable: European perspectives. Ambio 47:846–857. https://doi.org/10.1007/s13280-018-1042-y

    CAS  Article  Google Scholar 

  40. Knott J, Gilbert J, Hoccom DG, Green RE (2010) Implications for wildlife and humans of dietary exposure to lead from fragments of lead rifle bullets in deer shot in the UK. Sci Total Environ 409:95–99. https://doi.org/10.1016/j.scitotenv.2010.08.053

    CAS  Article  Google Scholar 

  41. Knutsen HK, Brantsæter AL, Alexander J, Meltzer HM (2015) Associations between consumption of large game animals and blood lead levels in humans in Europe: the Norwegian experience. In: Proceedings of the Oxford Lead Symposium. Lead Ammunition: understanding and minimising the risks to human and environmental health. Edward Grey Institute, The University of Oxford, UK., p 152

  42. Kollander B, Widemo F, Ågren E, Larsen EH, Loeschner K (2017) Detection of lead nanoparticles in game meat by single particle ICP-MS following use of lead-containing bullets. Anal Bioanal Chem 409:1877–1885. https://doi.org/10.1007/s00216-016-0132-6

    CAS  Article  Google Scholar 

  43. Kosnett M (2009) Health effects of low dose lead exposure in adults and children, and preventable risk posed by the consumption of game meat harvested with lead ammunition. In: Watson RT, Fuller M, Pokras M, Hunt WG (eds) Ingestion of Lead from Spent Ammunition: Implications for Wildlife and Humans. The Peregrine Fund, Boise, Idaho, USA., pp 24–33

    Google Scholar 

  44. Lambertucci SA, Donázar JA, Huertas AD, Jiménez B, Sáez M, Sanchez-Zapata JA, Hiraldo F (2011) Widening the problem of lead poisoning to a South-American top scavenger: lead concentrations in feathers of wild Andean condors. Biol Conserv 144:1464–1471. https://doi.org/10.1016/j.biocon.2011.01.015

    Article  Google Scholar 

  45. Lanphear BP, Rauch S, Auinger P, Allen RW, Hornung RW (2018) Low-level lead exposure and mortality in US adults: a population-based cohort study. Lancet Public Health 3:e177–e184. https://doi.org/10.1016/S2468-2667(18)30025-2

    Article  Google Scholar 

  46. Legagneux P, Suffice P, Messier JS, Lelievre F, Tremblay JA, Maisonneuve C, Saint-Louis R, Bêty J (2014) High risk of lead contamination for scavengers in an area with high moose hunting success. PLoS One 9:e111546. https://doi.org/10.1371/journal.pone.0111546

    CAS  Article  Google Scholar 

  47. Lindboe M, Henrichsen EN, Høgasen HR, Bernhoft A (2012) Lead concentration in meat from lead-killed moose and predicted human exposure using Monte Carlo simulation. Food Addit Contam - Part A Chem Anal Control Expo Risk Assess 29:1052–1057. https://doi.org/10.1080/19440049.2012.680201

    CAS  Article  Google Scholar 

  48. Martin A, Müller-Graf C, Selhorst T, Gerofke A, Ulbig E, Gremse C, Greiner M, Lahrssen-Wiederholt M, Hensel A (2019) Comparison of lead levels in edible parts of red deer hunted with lead or non-lead ammunition. Sci Total Environ 653:315–326. https://doi.org/10.1016/j.scitotenv.2018.10.393

    CAS  Article  Google Scholar 

  49. Mateo R, Kanstrup N (2019) Regulations on lead ammunition adopted in Europe and evidence of compliance. Ambio 48:989–998. https://doi.org/10.1007/s13280-019-01170-5

    Article  Google Scholar 

  50. Mateo R, Rodríguez-de la Cruz M, Vidal D et al (2007) Transfer of lead from shot pellets to game meat during cooking. Sci Total Environ 372:480–485. https://doi.org/10.1016/j.scitotenv.2006.10.022

    CAS  Article  Google Scholar 

  51. Mateo R, Baos AR, Vidal D, Camarero PR, Martinez-Haro M, Taggart MA (2011) Bioaccessibility of pb from ammunition in game meat is affected by cooking treatment. PLoS One 6: https://doi.org/10.1371/journal.pone.0015892

  52. Mathee A, de Jager P, Naidoo S, Naicker N (2017) Exposure to lead in South African shooting ranges. Environ Res 153:93–98. https://doi.org/10.1016/j.envres.2016.11.021

    CAS  Article  Google Scholar 

  53. Meltzer HM, Dahl H, Brantsæter AL, Birgisdottir BE, Knutsen HK, Bernhoft A, Oftedal B, Lande US, Alexander J, Haugen M, Ydersbond TA (2013) Consumption of lead-shot cervid meat and blood lead concentrations in a group of adult Norwegians. Environ Res 127:29–39. https://doi.org/10.1016/j.envres.2013.08.007

    CAS  Article  Google Scholar 

  54. Menozzi A, Menotta S, Fedrizzi G, Lenti A, Cantoni AM, di Lecce R, Gnudi G, Pérez-López M, Bertini S (2019) Lead and copper in hunted wild boars and radiographic evaluation of bullet fragmentation between ammunitions. Food Addit Contam Part B Surveill 12:182–190. https://doi.org/10.1080/19393210.2019.1588389

    CAS  Article  Google Scholar 

  55. Millard S. (2018) EnvStats: an R package for environmental statistics, including US EPA guidance

  56. Müller-graf C, Gerofke A, Martin A, et al. (2017) Reduction of lead contents in game meat: results of the ‘Food safety of game meat obtained through hunting’ research project. In: Game meat hygiene. pp 201–212

  57. Naicker N, de Jager P, Naidoo S, Mathee A (2018) Is there a relationship between lead exposure and aggressive behavior in shooters? Int J Environ Res Public Health 15. https://doi.org/10.3390/ijerph15071427

  58. Neri AJ, Roy J, Jarrett J, Pan Y, Dooyema C, Caldwell K, Umar-Tsafe NT, Olubiyo R, Brown MJ (2014) Analysis of a novel field dilution method for testing samples that exceed the analytic range of point-of-care blood lead analyzers. Int J Environ Health Res 24:418–428. https://doi.org/10.1080/09603123.2013.857390

    CAS  Article  Google Scholar 

  59. Ortiz-Ortiz E, García-Nieto E, Juárez-Santacruz L et al (2017) Lead exposure: pottery impact in Tlaxcala, Mexico. Rev Int Contam Ambient 33:57–64. https://doi.org/10.20937/RICA.2017.33.01.05

    Article  Google Scholar 

  60. Palmer CD, Lewis ME, Geraghty CM et al (2006) Determination of lead, cadmium and mercury in blood for assessment of environmental exposure: a comparison between inductively coupled plasma-mass spectrometry and atomic absorption spectrometry. Spectrochim Acta - Part B At Spectrosc 61:980–990. https://doi.org/10.1016/j.sab.2006.09.001

    CAS  Article  Google Scholar 

  61. Plaza PI, Uhart M, Caselli A et al (2018) A review of lead contamination in South American birds: The need for more research and policy changes. Perspect Ecol Conserv:1–7. https://doi.org/10.1016/j.pecon.2018.08.001

  62. Romano M, Ferreyra H, Ferreyroa G, Molina FV, Caselli A, Barberis I, Beldoménico P, Uhart M (2016) Lead pollution from waterfowl hunting in wetlands and rice fields in Argentina. Sci Total Environ 545–546:104–113. https://doi.org/10.1016/j.scitotenv.2015.12.075

    CAS  Article  Google Scholar 

  63. Sevillano Morales J, Moreno-Ortega A, Amaro Lopez MA, Arenas Casas A, Cámara-Martos F, Moreno-Rojas R (2018) Game meat consumption by hunters and their relatives: a probabilistic approach. Food Addit Contam - Part A Chem Anal Control Expo Risk Assess 35:1739–1748. https://doi.org/10.1080/19440049.2018.1488183

    CAS  Article  Google Scholar 

  64. Slabe VA, Anderson JT, Cooper J, Miller TA, Brown B, Wrona A, Ortiz P, Buchweitz J, McRuer D, Dominguez-Villegas E, Behmke S, Katzner T (2020) Feeding ecology drives lead exposure of facultative and obligate avian scavengers in the eastern United States. Environ Toxicol Chem 39:882–892. https://doi.org/10.1002/etc.4680

    CAS  Article  Google Scholar 

  65. SNFA (2012) Lead in game in Sweden. https://www.bfr.bund.de/cm/343/lead-in-game-in-sweden.pdf

  66. Sobin C, Parisi N, Schaub T, de la Riva E (2011) A Bland-Altman comparison of the Lead Care® System and inductively coupled plasma mass spectrometry for detecting low-level lead in child whole blood samples. J Med Toxicol 7:24–32. https://doi.org/10.1007/s13181-010-0113-7

    Article  Google Scholar 

  67. Stanton NV, Fritsch T (2007) Evaluation of a second-generation portable blood lead analyzer in an occupational setting. Am J Ind Med 50:1018–1024. https://doi.org/10.1002/ajim.20525

    CAS  Article  Google Scholar 

  68. Stewart CM, Veverka NB (2011) The extent of lead fragmentation observed in deer culled by sharpshooting. J Wildl Manag 75:1462–1466. https://doi.org/10.1002/jwmg.174

    Article  Google Scholar 

  69. Stokke S, Brainerd S, Arnemo JM (2017) Metal deposition of copper and lead bullets in moose harvested in Fennoscandia. Wildl Soc Bull 41:98–106. https://doi.org/10.1002/wsb.731

    Article  Google Scholar 

  70. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Molecular, clinical and environmental toxicology Volume 3: Environmental Toxicology. Mol Clin Environ Toxicol 101:133–164. https://doi.org/10.1007/978-3-7643-8340-4

    Article  Google Scholar 

  71. Tekindal MA, Erdoğan BD, Yavuz Y (2017) Evaluating left-censored data through substitution, parametric, semi-parametric, and nonparametric methods: a simulation study. Interdiscip Sci Comput Life Sci 9:153–172. https://doi.org/10.1007/s12539-015-0132-9

    Article  Google Scholar 

  72. Thomas VG (2019) Rationale for the regulated transition to non-lead products in Canada: a policy discussion paper. Sci Total Environ 649:839–845. https://doi.org/10.1016/j.scitotenv.2018.08.363

    CAS  Article  Google Scholar 

  73. Thomas VG, Pain DJ, Kanstrup N, Green RE (2020) Setting maximum levels for lead in game meat in EC regulations: An adjunct to replacement of lead ammunition. Ambio. 49:2026–2037. https://doi.org/10.1007/s13280-020-01336-6

    CAS  Article  Google Scholar 

  74. Tsuji LJS, Wainman BC, Jayasinghe RK, VanSpronsen EP, Liberda EN (2009) Determining tissue-lead levels in large game mammals harvested with lead bullets: human health concerns. Bull Environ Contam Toxicol 82:435–439. https://doi.org/10.1007/s00128-009-9647-2

    CAS  Article  Google Scholar 

  75. Uhart M, del Ferreyra HV, Romano M et al (2019) Lead pollution from hunting ammunition in Argentina and current state of lead shot replacement efforts. Ambio 48:1015–1022. https://doi.org/10.1007/s13280-019-01178-x

    CAS  Article  Google Scholar 

  76. Wennberg M, Lundh T, Sommar JN, Bergdahl IA (2015) Time trends and exposure determinants of lead and cadmium in the adult population of northern Sweden 1990–2014. Environ Res 159:111–117. https://doi.org/10.1016/j.envres.2017.07.029

    CAS  Article  Google Scholar 

  77. WHO (2010) Exposure to lead: a major public health concern. World Health Organization, Geneva

    Google Scholar 

  78. WHO (2019) Lead poisoning and health. https://www.who.int/news-room/fact-sheets/detail/lead-poisoning-and-health. Accessed 28 Dec 1BC

  79. WHO (2020) Brief guide to analytical methods for measuring lead in blood, second edition. World Health Organization, Geneva

  80. Wiemeyer GM, Pérez MA, Torres Bianchini L, Sampietro L, Bravo GF, Jácome NL, Astore V, Lambertucci SA (2017) Repeated conservation threats across the Americas: high levels of blood and bone lead in the Andean Condor widen the problem to a continental scale. Environ Pollut 220:672–679. https://doi.org/10.1016/j.envpol.2016.10.025

    CAS  Article  Google Scholar 

  81. Wright JP, Dietrich KN, Ris MD, Hornung RW, Wessel SD, Lanphear BP, Ho M, Rae MN (2008) Association of prenatal and childhood blood lead concentrations with criminal arrests in early adulthood. PLoS Med 5:0732–0739. https://doi.org/10.1371/journal.pmed.0050101

    CAS  Article  Google Scholar 

  82. Zowczak M, Niedziałek G, Miler R, et al. (2016) The concentration of lead in muscle tissue of wild boars (Sus scrofa) in selected voivodeships in Poland.

Download references

Acknowledgements

We thank G. Wiemeyer for lending the LeadCare® II device, and S. Barandiaran and J. Uhart for logistical support. Special thanks are due to El Palmar National Park (EPNP) staff, especially L. Loyza, J. Yone, E. Munich, J. Zermathen, R. Achilli, J. Ballay, E. Bouvet, I. Ovelar, D. Lugreen, E Perrón, M. Panziera, M. Cardoso, and A. Maranta. We are also thankful to J.M. Hervás, C. Lipuma, and E. Ochoa, EPNP managers. We thank members of the Conservación Tierra de Palmares hunting club and the independent hunters group. We are grateful to those who voluntarily enrolled in the study and to San Benjamín Public Hospital staff, especially the biochemists, vaccinators, and radiologists. We acknowledge Administración de Parques Nacionales for launching Pb ammunition replacement for alien species control in 2019 and the Programa de Conservación Comunitaria del Territorio (UNICEN) for promoting wildlife conservation and human well-being through a One Health approach. We thank volunteers C. Villalba, M. Bartolotta, P. Ferrer, A. Aguiar, B. Resler, E. Amatte, M. Funes, and M. Guerrero. We are especially grateful to WWW Foundation and Secretaría de Políticas Universitarias (Ministerio de Educación, Cultura, Ciencia y Tecnología, Argentina) for funding this work. Delegación Centro-Este de la Administración de Parques Nacionales provided research permits (IF-2019-46151534-APN-DNC # APNAC).

Availability of data and materials

Supporting data and materials will be made available online upon acceptance at https://zenodo.org

Funding

The study on its data collection phase was funded by WWW Foundation and Secretaría de Políticas Universitarias del Ministerio de Educación, Cultura, Ciencia y Tecnología, Argentina (reference number 105/19, Expte. 2018-14465730).

Author information

Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by AEC, AT, WEC, VF, RETV, and MMU. The first draft of the manuscript was written by MMU, AT, and VF, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Agostina Tammone.

Ethics declarations

Ethics approval and consent to participate

All procedures performed in this study involving human participants were in accordance with the ethical standards of the Argentinean National Research Committee (Central Committee of Bioethics in Practice and Biomedical Research of the city of Paraná, Entre Ríos province, reference number 2312401) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

Consent for publication

Informed consent was obtained from all individual participants included in the study.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Lotfi Aleya

Supplementary Information

ESM 1

(PDF 75 kb)

ESM 2

(PDF 407 kb)

ESM 3

(PDF 72 kb)

ESM 4

(PDF 142 kb)

ESM 5

(PDF 1146 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tammone, A., Caselli, A.E., Condorí, W.E. et al. Lead exposure in consumers of culled invasive alien mammals in El Palmar National Park, Argentina. Environ Sci Pollut Res 28, 42432–42443 (2021). https://doi.org/10.1007/s11356-021-13654-7

Download citation

Keywords

  • Alien species control
  • Dietary exposure
  • Food safety
  • Game meat
  • Lead ammunition
  • Public health
  • Wildlife culling