Skip to main content

Advertisement

Log in

Optimal estimates for dissolved and suspended particulate material fluxes in the Yangtze River, China

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Accurate estimate of riverine material fluxes in dissolved and suspended particulate forms is a fundamental issue in monitoring water environments of large basins. Here we collected sub-daily observations of dissolved pollutants (NO3-N, NH4+-N, and DOC) and daily data of suspended sediment (SS) at eight gauging stations with controlling areas varied from 694,700 to 1,705,400 km2 located in the Yangtze River basin of China, and selected optimal estimates for both dissolved and suspended particulate material fluxes from five time-averaging methods and two regression methods. The results showed that time-averaging methods generally performed better in estimating dissolved pollutants, while regression methods were more applicable for suspended particulate materials. Compared with the selected optimal methods, the conventional method generally overestimated material fluxes by 0.09–49.75% in most cases. Longer sampling interval and smaller controlling area often led to larger uncertainty in estimation and critical values of sampling interval and controlling area were generally found to be 10–20 days and 1.3 million km2 in the Yangtze River basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abrahart RJ, White SM (2001) Modelling sediment transfer in Malawe: comparing back propagation neural network solution against a multiple linear regression benchmark using small data sets. Phys Chem Earth (B) 26:19–24

    Article  Google Scholar 

  • Afan HA, Afan HA, El-Shafie A et al (2015) ANN based sediment prediction model utilizing different input scenarios. Water Resour Manag 29(4):1231–1245

    Article  Google Scholar 

  • Ali G, Abbas S (2013) Exploring CO2 sources and sinks nexus through integrated approach: insight from Pakistan. J Environ Inf 22:112–122

    Google Scholar 

  • Asselman NEM (2000) Fitting and interpretation of sediment rating curves. J Hydrol 234:228–248

    Article  Google Scholar 

  • Aulenbach BT, Burns DA, Shanley JB, Yanai RD, Bae K, Wild AD, Yang Y, Yi D (2016) Approaches to stream solute load estimation for solutes with varying dynamics from five diverse small watersheds. Ecosphere 7(6)

  • Birgand F (2010) Uncertainties in assessing annual nitrate loads and concentration indicators: part 1. Impact of sampling frequency and load estimation algorithms. Trans ASABE 53(2):437–446

    Article  Google Scholar 

  • Chai C, Yu Z, Song X, Cao X (2006) The status and characteristics of eutrophication in the Yangtze River (Changjiang) estuary and the adjacent east china sea, china. Hydrobiologia 563(1):313–328

    Article  CAS  Google Scholar 

  • Chen Z, Li J, Shen H et al (2001) Yangtze River of China: historical analysis of discharge variability and sediment flux. Geomorphology (Amsterdam, Netherlands) 41(2-3):77–91

    Google Scholar 

  • Choubin B, Darabi H, Rahmati O, Sajedi-Hosseini F, Kløve B (2018) River suspended sediment modelling using the CART model: a comparative study of machine learning techniques. Sci Total Environ 615:272–281

    Article  CAS  Google Scholar 

  • Dai SB, Lu XX (2010) Sediment deposition and erosion during the extreme flood events in the middle and lower reaches of the Yangtze River. Quat Int 226(1):4–11

    Article  Google Scholar 

  • Dibike YB, Velickov S, Solomatine D, Abbott MB (2001) Model induction with support vector machines: introduction and applications. J Comput Civ Eng 15(3):208–216

    Article  Google Scholar 

  • Feng L, Hu C, Chen X, Song Q (2014) Influence of the Three Gorges Dam on total suspended matters in the Yangtze estuary and its adjacent coastal waters: observations from MODIS. Remote Sens Environ 140:779–788

    Article  Google Scholar 

  • Ferguson RI (1986) River loads underestimated by rating curves. Water Resour Res 22(1):74–76

    Article  CAS  Google Scholar 

  • Ferguson RI (1987) Accuracy and precision of methods for estimating river loads. Earth Surf Process Landf 12(1):95–104

    Article  Google Scholar 

  • Fu G (2003) Analysis of the estimation methods for the river pollutant fluxes (I): comparison and analysis of the estimation methods of period fluxes. Res Environ Sci 1 (in Chinese)

  • Goher ME, Farhat HI, Abdo MH, Salem SG (2014) Metal pollution assessment in the surface sediment of Lake Nasser, Egypt. Egypt J Aquat Res 40(3):213–224

    Article  Google Scholar 

  • Hao CL, Deng YX, Wang YH et al (2012) Study on the selection and error analysis of riverine pollutant flux estimation methods. Acta Sci Circumst 32(7):1670–1676 (in Chinese)

    CAS  Google Scholar 

  • Harmel RD, Smith DR, King KW, Slade RM (2009) Estimating storm discharge and water quality data uncertainty: a software tool for monitoring and modeling applications. Environ Model Software: Environ Data News 24(7):832–842

    Article  Google Scholar 

  • Horowitz AJ (2008) Determining annual suspended sediment and sediment-associated trace element and nutrient fluxes. Sci Total Environ 400(1):315–343

    Article  CAS  Google Scholar 

  • Hua W, Huai YY, Fengnian Z et al (2019) Dynamics of nutrient export from the Yangtze River to the East China Sea. Estuar Coast Shelf Sci 229:106415

    Article  CAS  Google Scholar 

  • Jain SK (2001) Development of integrated sediment rating curves using ANNs. J Hydraul Eng (New York, NY) 127(1):30–37

    Google Scholar 

  • Jiang Y, Frankenberger JR, Bowling LC, Sun Z (2014a) Quantification of uncertainty in estimated nitrate-N loads in agricultural watersheds. J Hydrol (Amsterdam) 519:106–116

    Article  Google Scholar 

  • Jiang Z, Liu J, Chen J, Chen Q, Yan X, Xuan J, Zeng J (2014b) Responses of summer phytoplankton community to drastic environmental changes in the Changjiang (Yangtze River) estuary during the past 50 years. Water Res (Oxford) 54:1–11

    Article  CAS  Google Scholar 

  • Johnes PJ (2007) Uncertainties in annual riverine phosphorus load estimation: impact of load estimation methodology, sampling frequency, base flow index and catchment population density. J Hydrol (Amsterdam) 332(1-2):241–258

    Article  Google Scholar 

  • Jones AS, Horsburgh JS, Mesner NO, Ryel RJ, Stevens DK (2012) Influence of sampling frequency on estimation of annual total phosphorus and total suspended solids Loads1: influence of sampling frequency on estimation of annual total phosphorus and total suspended solids loads. J Am Water Resour Assoc 48(6):1258–1275

    Article  Google Scholar 

  • Kelly PT, Vanni MJ, Renwick WH (2018) Assessing uncertainty in annual nitrogen, phosphorus, and suspended sediment load estimates in three agricultural streams using a 21-year dataset. Environ Monit Assess 190(2)

  • Kisi O, Shiri J (2012) River suspended sediment estimation by climatic variables implication: comparative study among soft computing techniques. Comput Geosci 43:73–82

    Article  Google Scholar 

  • Kronvang B, Bruhn AJ (1996) Choice of sampling strategy and estimation method for calculating nitrogen and phosphorus transport in small lowland streams. Hydrol Process 10(11):1483–1501

    Article  Google Scholar 

  • Li W, Lei Q, Yen H, Zhai L, Hu W, Li Y, Wang H, Ren T, Liu H (2019a) Investigation of watershed nutrient export affected by extreme events and the corresponding sampling frequency. J Environ Manag 250:109477

    Article  CAS  Google Scholar 

  • Li Y, Yen H, Daren HR et al (2019b) Effects of sampling strategies and estimation algorithms on total nitrogen load determination in a small agricultural head water watershed. J Hydrol (Amsterdam) 579:124114

    Article  CAS  Google Scholar 

  • Littlewood I (1995) Hydrological regimes, sampling strategies, and assessment of errors in mass load estimates for United Kingdom rivers. Environ Int 21(2):211–220

    Article  CAS  Google Scholar 

  • Lu XX, Li S, He M, Zhou Y, Bei R, Li L, Ziegler AD (2011) Seasonal changes of nutrient fluxes in the upper Changjiang basin: an example of the Longchuanjiang River, China. J Hydrol (Amsterdam) 405(3):344–351

    Article  CAS  Google Scholar 

  • Lu Y, Gao Y, Yang T (2020) A review of mass flux monitoring and estimation methods for biogeochemical interface processes in watersheds. J Geogr Sci 30(6):881–907

    Article  Google Scholar 

  • Makarynskyy O, Makarynska D, Rayson M, Langtry S (2015) Combining deterministic modelling with artificial neural networks for suspended sediment estimates. Appl Soft Comput 35:247–256

    Article  Google Scholar 

  • Malagó A, Bouraoui F, Vigiak O, Grizzetti B, Pastori M (2017) Modelling water and nutrient fluxes in the Danube River basin with SWAT. Sci Total Environ 603-604:196–218

    Article  CAS  Google Scholar 

  • McKee LJ, Ganju NK, Schoellhamer DH (2006) Estimates of suspended sediment entering San Francisco bay from the Sacramento and San Joaquin delta, San Francisco bay, California. J Hydrol (Amsterdam) 323(1):335–352

    Article  Google Scholar 

  • Moatar F, Meybeck M (2005) Compared performances of different algorithms for estimating annual nutrient loads discharged by the eutrophic river Loire. Hydrol Process 19(2):429–444

    Article  CAS  Google Scholar 

  • Moatar F, Person G, Meybeck M, Coynel A, Etcheber H, Crouzet P (2006) The influence of contrasting suspended particulate matter transport regimes on the bias and precision of flux estimates. Sci Total Environ 370(2-3):515–531

    Article  CAS  Google Scholar 

  • Moran PW, Nowell LH, Kemble NE, Mahler BJ, Waite IR, van Metre PC (2017) Influence of sediment chemistry and sediment toxicity on macroinvertebrate communities across 99 wadable streams of the Midwestern USA. Sci Total Environ 599-600:1469–1478

    Article  CAS  Google Scholar 

  • Mustafa MR, Isa MH, Rezaur RB (2011) A comparison of artificial neural networks for prediction of suspended sediment discharge in river-a case study in Malaysia. World Acad Sci 81:372–376

    Google Scholar 

  • Nava V, Patelli M, Rotiroti M, Leoni B (2019) An R package for estimating river compound load using different methods. Environ Model Software: Environ Data News 117:100–108

    Article  Google Scholar 

  • Piniewski M, Marcinkowski P, Koskiaho J, Tattari S (2019) The effect of sampling frequency and strategy on water quality modelling driven by high-frequency monitoring data in a boreal catchment. J Hydrol (Amsterdam) 579:124186

    Article  CAS  Google Scholar 

  • Preston SD, Bierman VJ, Silliman SE (1989) An evaluation of methods for the estimation of tributary mass loads. Water Resour Res 25(6):1379–1389

    Article  CAS  Google Scholar 

  • Quilbé R, Rousseau AN, Duchemin M, Poulin A, Gangbazo G, Villeneuve JP (2006) Selecting a calculation method to estimate sediment and nutrient loads in streams: application to the Beaurivage river (Québec, Canada). J Hydrol (Amsterdam) 326(1-4):295–310

    Article  Google Scholar 

  • Richards RP, Holloway J (1987) Monte Carlo studies of sampling strategies for estimating tributary loads. Water Resour Res 23(10):1939–1948

    Article  CAS  Google Scholar 

  • Salles C, Tournoud MG, Chu Y (2008) Estimating nutrient and sediment flood loads in a small Mediterranean river. Hydrol Process 22(2):242–253

    Article  CAS  Google Scholar 

  • Schleppi P, Waldner PA, Stähli M (2006) Errors of flux integration methods for solutes in grab samples of runoff water, as compared to flow-proportional sampling. J Hydrol (Amsterdam) 319(1):266–281

    Article  Google Scholar 

  • Schoellhamer DH, Mumley TE, Leatherbarrow JE (2007) Suspended sediment and sediment-associated contaminants in San Francisco bay. Environ Res 105(1):119–131

    Article  CAS  Google Scholar 

  • Shen ZL (2004) Nitrogen transport fluxes in the Yangtze River. Adv Water Sci 06:752–759 (in Chinese)

    Google Scholar 

  • Singh G, Panda R (2011) Daily sediment yield modeling with artificial neural network using 10-fold cross validation method: a small agricultural watershed, Kapgari, India. Int J Earth Sci Eng 6(4):443–450

    Google Scholar 

  • Skarbøvik E, Stålnacke P, Bogen J, Bønsnes TE (2012) Impact of sampling frequency on mean concentrations and estimated loads of suspended sediment in a Norwegian river: implications for water management. Sci Total Environ 433:462–471

    Article  CAS  Google Scholar 

  • Snelder TH, McDowell RW, Fraser CE (2017) Estimation of catchment nutrient loads in New Zealand using monthly water quality monitoring data. J Am Water Resour Assoc 53(1):158–178

    Article  CAS  Google Scholar 

  • Stelzer RS, Likens GE (2006) Effects of sampling frequency on estimates of dissolved silica export by streams: The role of hydrological variability and concentration-discharge relationships. Water Resour Res 42(7)

  • Stow CA, Borsuk ME, Stanley DW (2001) Long-term changes in watershed nutrient inputs and riverine exports in the Neuse River, North Carolina. Water Res 35:1489–1499

    Article  CAS  Google Scholar 

  • Tong Y, Zhao Y, Zhen G, Chi J, Liu X, Lu Y, Wang X, Yao R, Chen J, Zhang W (2015) Nutrient loads flowing into coastal waters from the main rivers of china (2006-2012). Sci Rep 5(1):16678

    Article  CAS  Google Scholar 

  • Tong Y, Bu X, Chen J, Zhou F, Chen L, Liu M, Tan X, Yu T, Zhang W, Mi Z, Ma L, Wang X, Ni J (2017) Estimation of nutrient discharge from the Yangtze River to the East China Sea and the identification of nutrient sources. J Hazard Mater 321:728–736

    Article  CAS  Google Scholar 

  • Toor GS, Harmel RD, Haggard BE, Schmidt G (2008) Evaluation of regression methodology with low-frequency water quality sampling to estimate constituent loads for ephemeral watersheds in texas. J Environ Qual 37(5):1847–1854

  • Vapnik VN (1995) The nature of statistical learning theory. Springer, New York

    Book  Google Scholar 

  • Vigiak O, Malagó A, Bouraoui F, Vanmaercke M, Obreja F, Poesen J, Habersack H, Fehér J, Grošelj S (2017) Modelling sediment fluxes in the Danube river basin with SWAT. Sci Total Environ 599-600:992–1012

    Article  CAS  Google Scholar 

  • Webb BW, Phillips JM, Walling DE, Littlewood IG, Watts CD, Leeks GJL (1997) Load estimation methodologies for British rivers and their relevance to the LOIS RACS(R) programme. Sci Total Environ 194-195:379–389

    Article  Google Scholar 

  • Webb BW, Phillips JM, Walling DE (2000) A new approach to deriving ‘best-estimate’ chemical fluxes for rivers draining the LOIS study area. Sci Total Environ 251:45–54

    Article  Google Scholar 

  • Wenske D, Jen CH, Böse M, Lin JC (2012) Assessment of sediment delivery from successive erosion on stream-coupled hillslopes via a time series of topographic surveys in the central high mountain range of Taiwan. Quat Int 263:14–25

    Article  Google Scholar 

  • Whyte DC, Kirchner JW (2000) Assessing water quality impacts and cleanup effectiveness in streams dominated by episodic mercury discharges. Sci Total Environ 260(1):1–9

    Article  CAS  Google Scholar 

  • Williams ND, Walling DE, Leeks GJL (2008) An analysis of the factors contributing to the settling potential of fine fluvial sediment. Hydrol Process 22(20):4153–4162

    Article  Google Scholar 

  • Williams MR, King KW, Macrae ML, Ford W, van Esbroeck C, Brunke RI, English MC, Schiff SL (2015) Uncertainty in nutrient loads from tile-drained landscapes: effect of sampling frequency, calculation algorithm, and compositing strategy. J Hydrol (Amsterdam) 530:306–316

    Article  CAS  Google Scholar 

  • Worrall F, Howden NJK, Burt TP (2013) Assessment of sample frequency bias and precision in fluvial flux calculations–an improved low bias estimation method. J Hydrol (Amsterdam) 503:101–110

    Article  CAS  Google Scholar 

  • Yadav A, Yadav A, Chatterjee S et al (2018) Prediction of suspended sediment yield by artificial neural network and traditional mathematical model in Mahanadi river basin, India. Sustain Water Resour Manag 4(4):745–759

    Article  CAS  Google Scholar 

  • Zamyadi A, Gallichand J, Duchemin M (2007) Comparison of methods for estimating sediment and nitrogen loads from a small agricultural watershed. Can Biosyst Eng 49:1

    Google Scholar 

  • Zhang Q, Blomquist JD, Moyer DL, Chanat JG (2019) Estimation bias in water-quality constituent concentrations and fluxes: a synthesis for Chesapeake Bay rivers and streams. Front Ecol Evol 7:109

    Article  Google Scholar 

  • Zhou M, Shen Z, Yu R (2008) Responses of a coastal phytoplankton community to increased nutrient input from the Changjiang (Yangtze) River. Cont Shelf Res 28(12):1483–1489

    Article  Google Scholar 

  • Zhu Y, Lu XX, Zhou Y (2007) Suspended sediment flux modeling with artificial neural network: an example of the Longchuanjiang River in the upper Yangtze catchment, China. Geomorphology (Amsterdam, Netherlands) 84(1):111–125

    Google Scholar 

Download references

Acknowledgements

We appreciate the valuable comments and suggestions of the journal editors and anonymous reviewers. The authors also thank the Bureau of Hydrology of Changjiang Water Resources Commission for providing the unique research dataset.

Availability of data and materials

All the data and materials in the manuscript are available upon request.

Funding

This work was financially supported by the National Key R&D Program of China (grant number: 2016YFA0600901), and the National Natural Science Foundation of China (grant no. 52079094).

Author information

Authors and Affiliations

Authors

Contributions

T.T.Y., L.Z., and Y.Y. led the writing. Y.Y., Y.H.Z., and X.F.Z. designed the framework. T.T.Y. and B.Q. processed the data. T.T.Y. analyzed the data and visualized the results.

Corresponding authors

Correspondence to Yao Yue or Yuhong Zeng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Xianliang Yi

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, T., Zhang, L., Yue, Y. et al. Optimal estimates for dissolved and suspended particulate material fluxes in the Yangtze River, China. Environ Sci Pollut Res 28, 41337–41350 (2021). https://doi.org/10.1007/s11356-021-13581-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-13581-7

Keywords

Navigation