Abstract
One hundred and ninety-six drinking water samples from the different regions of Tarragona province (Catalonia, Spain) were analysed to determine the gross alpha and beta activity. Individual alpha emitting isotope activities were also determined to evaluate a possible relationship between their radiological content and the lithological and hydrogeological formations present in the studied area. The results obtained showed that approximately 23% of the analysed samples, mainly from five of the evaluated regions, had a gross alpha index exceeding the parametric value of 0.1 Bq/L for waters intended for human consumption according to the current legislation. This could be related to the presence of natural radionuclides in these water samples. The differences between the radiological content in these samples could be related to the different lithological conditions of the areas included in this study. High activity levels of 234U, 238U, 224Ra, 226Ra and 228Ra were detected in specific samples, mainly from granitic and carbonate areas. This research also focuses on evaluating the radiological risk associated with water ingestion. In this regard, consuming 95.5% of the drinking water samples analysed would not imply a health risk to the population as the annual effective doses calculated were below 0.1 mSv/year. There was only one sample that exceeded this level with a value of 0.33 mSv/year. 226Ra activity concentration was the radionuclide that mainly contributed to this dose.





Similar content being viewed by others
References
Agència Catalana de l’Aigua (2005a) Masses d’aigua subterrània de Catalunya. Bloc de Gaià - Sant Martí Sarroca - Bonastre 27. https://aca-web.gencat.cat/aca/documents/ca/fitxes_masses_aigua_subterrania/mas_20_def.pdf. Accessed 22 Apr 2020
Agència Catalana de l’Aigua (2005b) Masses d’aigua subterrània de Catalunya. Priorat 50. https://aca-web.gencat.cat/aca/documents/ca/fitxes_masses_aigua_subterrania/mas_50_def.pdf. Accessed 22 Apr 2020
Agència Catalana de l’Aigua (2005c) Masses d’aigua subterrània de Catalunya. Llaberia-Prades Meridional 28. https://aca-web.gencat.cat/aca/documents/ca/fitxes_masses_aigua_subterrania/mas_28_def.pdf. Accessed 22 Apr 2020
Agència Catalana de l’Aigua (2005d) Masses d’aigua subterrània de Catalunya. Prades - Alt Francolí 27. https://aca-web.gencat.cat/aca/documents/ca/fitxes_masses_aigua_subterrania/mas_27_def.pdf. Accessed 22 Apr 2020
Agència Catalana de l’Aigua (2019) Estudi de volums d’aigua subministrats i captats a Catalunya. Any 2018. http://aca.gencat.cat/web/.content/10_ACA/J_Publicacions/06-estudis-consums-i-volums/06_eess_cens2018_ca.pdf. Accessed 31 Mar 2020
Alonso H, Cruz-Fuentes T, Rubiano JG et al (2015) Radon in groundwater of the Northeastern Gran Canaria aquifer. Water 7:2575–2590. https://doi.org/10.3390/w7062575
Amrane M, Oufni L (2017) Determination for levels of uranium and thorium in water along Oum Er-Rabia river using alpha track detectors. J Radiat Res Appl Sci 10:246–251. https://doi.org/10.1016/j.jrras.2017.05.002
Balasch JC, Pino D, Ruiz-Bellet JL et al (2019) The extreme floods in the Ebro River basin since 1600 CE. Sci Total Environ 646:645–660. https://doi.org/10.1016/j.scitotenv.2018.07.325
Corbacho JA, Guillén J, Miralles Y, Baeza A (2014) Procedimiento para la determinación de los índices de actividad alfa total en aguas potables mediante la metodología de desecación y medida en detectores de ZNS(ag) o en contador proporcional. Colección Informes Técnicos 11.2014. Serie Vigilancia Radiológ
Ajuntament de Reus, Aigües de Reus, Agència Catalana de l’Aigua (2020) Rutes de l’aigua a Reus. https://www.reus.cat/sites/reus/files/Fitxers/arees/medi_ambient/documents/rutesAigua.pdf. Accessed 10 May 2020
Dinh Chau N, Dulinski M, Jodlowski P et al (2011) Natural radioactivity in groundwater - a review. Isot Environ Health Stud 47:415–437. https://doi.org/10.1080/10256016.2011.628123
European Commission (2013) Council Directive 2013/51/EURATOM of 22 October 2013 laying down requirements for the protection of the health of the general public with regard to radioactive substances in water intended for human consumption
Faraj T, Ragab A, El Alfy M (2020) Geochemical and hydrogeological factors influencing high levels of radium contamination in groundwater in arid regions. Environ Res 184:109303. https://doi.org/10.1016/j.envres.2020.109303
Fonollosa E, Nieto A, Peñalver A et al (2015a) Presence of radionuclides in sludge from conventional drinking water treatment plants. A review. J Environ Radioact 141:24–31. https://doi.org/10.1016/j.jenvrad.2014.11.017
Fonollosa E, Peñalver A, Aguilar C, Borrull F (2015b) Polonium-210 levels in different environmental samples. Environ Sci Pollut Res 22:20032–20040. https://doi.org/10.1007/s11356-015-5158-3
Fonollosa E, Peñalver A, Borrull F, Aguilar C (2016) Radon in spring waters in the south of Catalonia. J Environ Radioact 151:275–281. https://doi.org/10.1016/j.jenvrad.2015.10.019
Guagliardi I, Zuzolo D, Albanese S et al (2020) Uranium, thorium and potassium insights on Campania region (Italy) soils: sources patterns based on compositional data analysis and fractal model. J Geochem Explor 212:106508. https://doi.org/10.1016/j.gexplo.2020.106508
Guerrero JL, Vallejos Á, Cerón JC et al (2016) U-isotopes and 226Ra as tracers of hydrogeochemical processes in carbonated karst aquifers from arid areas. J Environ Radioact 158–159:9–20. https://doi.org/10.1016/j.jenvrad.2016.03.015
Institut Cartogràfic i Geològic de Catalunya (2017) Technical report of the hydrogeological area map of Catalonia 1:250.000 (catalan)
Institut Cartogràfic i Geològic de Catalunya (2020) InstaMaps. https://www.instamaps.cat. Accessed 2 Apr 2020
Institut d’Estadística de Catalunya (2020) Densidad de población. Comarcas y Aran, ámbitos y provincias. 2019. https://www.idescat.cat/pub/?id=aec&n=249&lang=es. Accessed 27 Apr 2020
International Atomic Energy Agency (1963) A basic toxicity classification of radionuclides. In: Tech. Reports Ser. no. 15. https://inis.iaea.org/collection/NCLCollectionStore/_Public/24/072/24072024.pdf. Accessed 2 May 2020
International Atomic Energy Agency (2014) The environmental behaviour of radium: revised edition. In: Tech. Reports Ser. no. 476. https://www-pub.iaea.org/MTCD/Publications/PDF/trs476web-45482131.pdf. Accessed 2 May 2020
ISO 13164-4:2015 (E) (2015) Water quality - Radon-222 - Part 4: Test method using two-phase liquid scintillation counting. International Organization for Standardization, Geneva
Kamenova-Totzeva RM, Totzev AV, Kotova RM (2018) Radium content in Bulgarian mineral waters. Nucl Technol Radiat Prot 33:133–138. https://doi.org/10.2298/NTRP1801133K
Khattab M (2016) Determination of uranium concentrations and 234U/ 238U activity ratio in some granitic rock samples by alpha spectrometry: application of a radiochemical procedure. Radiat Prot Environ 39:122–127. https://doi.org/10.4103/0972-0464.194961
Kleinschmidt R, Black J, Akber R (2011) Mapping radioactivity in groundwater to identify elevated exposure in remote and rural communities. J Environ Radioact 102:235–243. https://doi.org/10.1016/j.jenvrad.2010.11.013
Linhoff B, Charette M, Wadham J (2020) Rapid mineral surface weathering beneath the Greenland Ice Sheet shown by radium and uranium isotopes. Chem Geol 547:119663. https://doi.org/10.1016/j.chemgeo.2020.119663
Llauradó M, Vallés I, Abelairas A, et al (2004) Procedimientos de determinación de los índices de actividad beta total y beta resto en aguas mediante contador proporcional. Colección Informes Técnicos 11.2004. Serie Vigilancia Radiológica Ambiental. Procedimiento 1.5
Mola M, Palomo M, Peñalver A et al (2013) Comparative study of different analytical methods for the determination of 238U, 234U, 235U, 230Th and 232Th in NORM samples (Southern Catalonia). J Environ Radioact 115:207–213. https://doi.org/10.1016/j.jenvrad.2012.05.029
Moreno V, Bach J, Zarroca M et al (2018) Characterization of radon levels in soil and groundwater in the North Maladeta Fault area (Central Pyrenees) and their effects on indoor radon concentration in a thermal spa. J Environ Radioact 189:1–13. https://doi.org/10.1016/j.jenvrad.2018.03.001
Nguyen Dinh C, Rajchel L, Duong Van H, Nowak J (2017) 224Ra and the 224Ra/228Ra activity ratio in selected mineral waters from the Polish Carpathians. Geol Q 61:771–778. https://doi.org/10.7306/gq.1365
Nieto A, Palomo M, Ruana J et al (2013) Evaluation of the use of reverse osmosis to eliminate natural radionuclides from water samples. Water Environ Res 85:2265–2270. https://doi.org/10.2175/106143013X13807328848298
Nieto A, Ruana J et al (2015) Study of the radiological impact caused by the extraction of the residue of a dicalcium phosphate industrial plant. Radioprotection 50:135–140. https://doi.org/10.1051/radiopro/2014038
Palau Miguel M, Guevara Alemany E, Cáceres Monllor DA, Moreno Seisdedos M (2020) Informe Técnico: Calidad del agua de consumo humano en España 2018. https://www.mscbs.gob.es/profesionales/saludPublica/saludAmbLaboral/aguas/aconsumo/Doc/ult_ver_2018_INFORME_AGUA_CONSUMO.pdf. Accessed 3 May 2020
Palomo M, Peñalver A, Borrull F, Aguilar C (2007) Measurement of radioactivity in bottled drinking water in Spain. Appl Radiat Isot 65:1165–1172. https://doi.org/10.1016/j.apradiso.2007.04.022
Peñalver A, Baciu T, Borrull F, Aguilar C (2020) Possible factors influencing the accumulation of different radionuclides in sludge from a drinking water treatment plant located in Southern Catalonia between 2002 and 2018. Water Air Soil Pollut 231:. doi: https://doi.org/10.1007/s11270-020-04491-4
Pérez-Moreno SM, Guerrero JL, Mosqueda F et al (2020) Hydrochemical behaviour of long-lived natural radionuclides in Spanish groundwaters. Catena 191:1–13. https://doi.org/10.1016/j.catena.2020.104558
Przylibski TA, Domin E, Gorecka J, Kowalska A (2020) 222Rn concentration in groundwaters circulating in granitoid massifs of Poland. Water 12. https://doi.org/10.3390/w12030748
RD 140/2003 (2003) Real Decreto 140/2003, de 7 de febrero, por el que se establecen los criterios sanitarios de la calidad del agua de consumo humano. Boletín Oficial del Estado, número 45. Madrid, 21 de febrero de 2003
RD 314/2016 (2016) Real Decreto 314/2016, de 29 de julio, por el que se modifican el Real Decreto 140/2003, de 7 de febrero, por el que se establecen los criterios sanitarios de la calidad del agua de consumo humano, el Real Decreto 1798/2010, de 30 de diciembre, por el que. Boletín Oficial del Estado, número 183. Madrid, 30 de julio de 2016
RD 783/2001 (2001) Real Decreto 783/2001, de 6 de julio, por el que se aprueba el Reglamento sobre protección sanitaria contra radiaciones ionizantes. Boletín Oficial del Estado, número 178. Madrid, 26 de julio de 2001
Ródenas C, Gómez J, Soto J, Maraver F (2008) Natural radioactivity of spring water used as spas in Spain. J Radioanal Nucl Chem 277:625–630. https://doi.org/10.1007/s10967-007-7158-3
Sherif MI, Sturchio NC (2018) Radionuclide geochemistry of groundwater in the Eastern Desert, Egypt. Appl Geochem 93:69–80. https://doi.org/10.1016/j.apgeochem.2018.04.004
Singaraja C, Chidambaram S, Jacob N et al (2016) Radon levels in groundwater in the Tuticorin district of Tamil Nadu, South India. J Radioanal Nucl Chem 307:1165–1173. https://doi.org/10.1007/s10967-015-4312-1
Soto J, Fernández L, Gómez J, Ródenas C (1995) Study of the occurrence of 222Rn and 226Ra in drinking water in Spain. Health Phys 69:961–965. https://doi.org/10.1097/00004032-199512000-00012
UNE-EN ISO 10704:2019 (2019) Water quality - gross alpha and gross beta activity - test method using thin source deposit (Endorsed by Asociación Española de Normalización in May of 2019)
World Health Organization (2018) Management of radioactivity in drinking-water. https://apps.who.int/iris/bitstream/handle/10665/272995/9789241513746-eng.pdf?ua=1. Accessed 28 May 2020
Yuce G, Ugurluoglu D, Dilaver AT et al (2009) The effects of lithology on water pollution: natural radioactivity and trace elements in water resources of Eskisehir Region (Turkey). Water Air Soil Pollut 202:69–89. https://doi.org/10.1007/s11270-008-9959-6
Acknowledgements
The authors would like to thank the Consorci d’Aigües de Tarragona (CAT) for their invaluable cooperation.
Availability of data and materials
Not applicable
Author information
Authors and Affiliations
Contributions
JMR and APH contributed to the study conception and design. Material preparation, data collection and analysis were performed by JMR. The first draft of the manuscript was written by JMR and APH, CA and FBB commented on previous versions of the manuscript. JMR, APH, CA and FBB read and approved the final manuscript.
Corresponding author
Ethics declarations
Ethics approval and consent to participate
Not applicable
Consent for publication
Not applicable
Competing interests
The authors declare that they have no competing interests
Additional information
Responsible Editor: Georg Steinhauser
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Ratia, J.M., Hernando, A.P., Aguilar, C. et al. Role of lithology in the presence of natural radioactivity in drinking water samples from Tarragona province. Environ Sci Pollut Res 28, 39333–39344 (2021). https://doi.org/10.1007/s11356-021-13470-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11356-021-13470-z


