Skip to main content

Advertisement

Log in

Review on progress in concrete solar water collectors

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The solar-powered water heating method is the best way to use the available free solar radiation for thermal energy. Electrical water heating systems all over the world consume more electrical energy for their operation. The Solar Water Heating System (SWHS) has a higher efficiency than the electrical water heating system. As a result, SWHS plays an important role in the home, industry, hostel, and hotel. Various types of SWHS are published by different researchers. Concrete Collector Solar Water Heating (CCSWH) System used for dual purposes is one of the published works (space cooling and hot water production). The CCSWH system is discussed in this review, which includes both traditional and recent developments. Also, future research opportunities in this field are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

ACNT:

asphalt carbon nano-tube

CC:

concrete collector

CCSWH:

concrete collector solar water heater

ETC:

evacuated tube collectors

FPC:

flat-plate collectors

ICSSWH:

integrated collector storage solar water heater

ISSC:

integrated solar storage collector

mf.w :

flow rate of water

PCNT:

polycarbonate carbon nano-tube

Q(t):

heat retrieval by water per unit area per unit time

RCC:

reinforced cement concrete

RCCSC:

roof-integrated cement concrete solar collector

SWHS:

solar water heater system

References

  • Al-Saad MA, Jubran BA, Abu-Faris NA (1994) Development and testing of concrete solar collectors. Int J Sol Energy 16(1):27–40. https://doi.org/10.1080/01425919408914264

    Article  Google Scholar 

  • Alrashidi H, Ghosh A, Issa W, Sellami N, Mallick TK, Sundaram S (2020a) Thermal performance of semitransparent CdTe BIPV window at temperate climate. Sol Energy 195(November 2019):536–543. https://doi.org/10.1016/j.solener.2019.11.084

    Article  CAS  Google Scholar 

  • Alrashidi H, Issa W, Sellami N, Ghosh A, Mallick TK, Sundaram S (2020b) Performance assessment of cadmium telluride-based semi-transparent glazing for power saving in façade buildings. Energy and Buildings 215:109585. https://doi.org/10.1016/j.enbuild.2019.109585

    Article  Google Scholar 

  • Bopshetty SV, & Sukhatme SP (1992) Performance analysis of a solar concrete collector. 33(11).

  • Chandrika VS, Karthick A, Kumar NM, Kumar PM, Stalin B, Ravichandran M (2021) Experimental analysis of solar concrete collector for residential buildings. Int J Green Energy 00(00):1–9. https://doi.org/10.1080/15435075.2021.1875468

    Article  CAS  Google Scholar 

  • Chaurasia, P. B. L. (2000). Solar water heaters based on concrete collectors. 25, 703–716.

  • Devanarayanan K, Kalidasa Murugavel K (2014) Integrated collector storage solar water heater with compound parabolic concentrator—development and progress. Renew Sust Energ Rev 39:51–64. https://doi.org/10.1016/j.rser.2014.07.076

    Article  Google Scholar 

  • Fertahi S, Jamil A, & Benbassou A (2018) Review on Solar Thermal Stratified Storage Tanks ( STSST ): insight on stratification studies and efficiency indicators. 176(October), 126–145.

  • Garnier C, Muneer T, Currie J (2018) Numerical and empirical evaluation of a novel building integrated collector storage solar water heater. Renew Energy 126:281–295. https://doi.org/10.1016/j.renene.2018.03.041

    Article  Google Scholar 

  • Gautam A, Chamoli S, Kumar A, Singh S (2017) A review on technical improvements, economic feasibility and world scenario of solar water heating system. Renew Sust Energ Rev 68(September 2016):541–562. https://doi.org/10.1016/j.rser.2016.09.104

    Article  Google Scholar 

  • Ghosh, A. (2020). Potential of building integrated and attached/applied photovoltaic (BIPV/BAPV) for adaptive less energy-hungry building's skin: a comprehensive Review. J Clean Prod, 123343. https://doi.org/10.1016/j.jclepro.2020.123343

  • Ghosh A, Norton B, Mallick TK (2018) Influence of atmospheric clearness on PDLC switchable glazing transmission. Energy and Buildings 172:257–264. https://doi.org/10.1016/j.enbuild.2018.05.008

    Article  Google Scholar 

  • Ghosh A, Sarmah N, Sundaram S, Mallick TK (2019) Numerical studies of thermal comfort for semi-transparent building integrated photovoltaic (BIPV)-vacuum glazing system. Sol Energy 190(May):608–616. https://doi.org/10.1016/j.solener.2019.08.049

    Article  Google Scholar 

  • Harmim A, Boukar M, Amar M, & Haida A (2019) Simulation and experimentation of an integrated collector storage solar water heater designed for integration into building facade. 166.

  • Hazami M, Kooli S, Lazâar M, Farhat A, Belghith A (2010) Energetic and exergetic performances of an economical and available integrated solar storage collector based on concrete matrix. Energy Convers Manag 51(6):1210–1218. https://doi.org/10.1016/j.enconman.2009.12.032

    Article  CAS  Google Scholar 

  • He G, Zheng Y, Wu Y, Cui Z, & Qian K (2015) Promotion of building-integrated solar water heaters in urbanized areas in China : experience , potential , and recommendations. 42, 643–656.

  • Hegarty RO, Kinnane O, & Mccormack SJ (2017) Parametric investigation of concrete solar collectors for façade integration. 153, 396–413.

  • Hossain MS, Saidur R, Fayaz H, Rahim NA, Islam MR, Ahamed JU, Rahman MM (2011) Review on solar water heater collector and thermal energy performance of circulating pipe. 15, 3801–3812. https://doi.org/10.1016/j.rser.2011.06.008

  • Ibrahim O, Fardoun F, & Louahlia-gualous H (2014) Review of water-heating systems : general selection approach based on energy and environmental aspects. 72.

  • Jaisankar S, Ananth J, Thulasi S, Jayasuthakar ST, Sheeba KN (2011) A comprehensive review on solar water heaters. Renew Sust Energ Rev 15(6):3045–3050. https://doi.org/10.1016/j.rser.2011.03.009

    Article  CAS  Google Scholar 

  • Jamar A, Majid ZAA, Azmi WH, Norhafana M, Razak AA (2016) A review of water heating system for solar energy applications. Int Commun Heat Mass Transf 76:178–187. https://doi.org/10.1016/j.icheatmasstransfer.2016.05.028

    Article  Google Scholar 

  • Ji J, Luo CL, Sun W, He W, Jiang QY (2010) Effect of a dual-function solar collector integrated with building on the cooling load of building in summer. Chin Sci Bull 55(31):3626–3632. https://doi.org/10.1007/s11434-010-3040-8

    Article  Google Scholar 

  • Jie JI, Chenglong LUO, Wei SUN, Wei HE, Gang PEI, Chongwei HAN (2010) A numerical and experimental study of a dual-function solar collector. 55(15), 1568–1573. https://doi.org/10.1007/s11434-010-3117-

  • Juanicó L (2008) A new design of roof-integrated water solar collector for domestic heating and cooling. Sol Energy 82(6):481–492. https://doi.org/10.1016/j.solener.2007.12.007

    Article  Google Scholar 

  • Jubran BA (1994) Computational evaluation of solar heating systems using concrete solar collectors. 35(12), 1143–1155.

  • Karthick, A., Kalidasa Murugavel, K., Ghosh, A., Sudhakar, K., & Ramanan, P. (2020a). Investigation of a binary eutectic mixture of phase change material for building integrated photovoltaic (BIPV) system. Sol Energy Mater Sol Cells, 207. https://doi.org/10.1016/j.solmat.2019.110360

  • Karthick A, Kalidasa Murugavel K, Sudalaiyandi K, Muthu Manokar A (2020b) Building integrated photovoltaic modules and the integration of phase change materials for equatorial applications. Build Serv Eng Res Technol 41(5):634–652. https://doi.org/10.1177/0143624419883363

    Article  Google Scholar 

  • Karthick A, Murugavel KK, Ramanan P (2018) Performance enhancement of a building-integrated photovoltaic module using phase change material. Energy. 142:803–812. https://doi.org/10.1016/j.energy.2017.10.090

    Article  CAS  Google Scholar 

  • Khalid M, Shanks K, Ghosh A, Tahir A, Sundaram S, Mallick TK (2021) Temperature regulation of concentrating photovoltaic window using argon gas and polymer dispersed liquid crystal fi lms. Renew Energy 164:96–108. https://doi.org/10.1016/j.renene.2020.09.069

    Article  CAS  Google Scholar 

  • Krishnavel V, Karthick A, Murugavel KK (2014) Experimental analysis of concrete absorber solar water heating systems. Energy and Buildings 84:501–505. https://doi.org/10.1016/j.enbuild.2014.08.025

    Article  Google Scholar 

  • Li R, Dai Y, Wang R (2015) Experimental investigation and simulation analysis of the thermal performance of a balcony wall integrated solar water heating unit. Renew Energy 75:115–122. https://doi.org/10.1016/j.renene.2014.09.023

    Article  CAS  Google Scholar 

  • Mesloub A, Ghosh A (2020) Daylighting performance of light shelf photovoltaics (LSPV) for office buildings in hot desert-like regions. Appl Sci (Switzerland) 10(22):1–24. https://doi.org/10.3390/app10227959

    Article  CAS  Google Scholar 

  • Naidoo A (2020) The socio-economic impacts of solar water heaters compared across two communities : A case study of Cato Manor. 119(November 2019).

  • Nanda AK, Panigrahi CK (2016) A state-of-the-art review of solar passive building system for heating or cooling purpose. Front Energy 10(3):347–354. https://doi.org/10.1007/s11708-016-0403-0

    Article  Google Scholar 

  • Nayak JK, Sukhatme SP, & Limaye RG (1989) Performance studies on solar concrete collectors. 1, 45–56.

  • Nundy S, Ghosh A (2020) Thermal and visual comfort analysis of adaptive vacuum integrated switchable suspended particle device window for temperate climate. Renew Energy 156:1361–1372. https://doi.org/10.1016/j.renene.2019.12.004

    Article  Google Scholar 

  • Pasupathi MK, Alagar K, Michael Joseph Stalin P, Matheswaran MM, Aritra G (2020) Characterization of hybrid-nano/paraffin organic phase change material for thermal energy storage applications in solar thermal systems. Energies 13(19). https://doi.org/10.3390/en13195079

  • Patil SR, Lodha R, Keste AA (2020) Concrete solar collector—an experimental investigation in solar passive energy. Materials Today: Proceedings, 23, 366–372. https://doi.org/10.1016/j.matpr.2020.02.055

  • Prakash, D. (2018). Thermal analysis of building roof assisted with water heater and insulation material. 0123456789.

  • Pugsley A, Zacharopoulos A, Smyth M, & Mondol J (2019) Performance evaluation of the senergy polycarbonate and asphalt carbon nanotube solar water heating collectors for building integration. 137, 2–9.

  • Qiu S, Ruth M, Ghosh S (2015) Evacuated tube collectors: a notable driver behind the solar water heater industry in China. Renew Sust Energ Rev 47:580–588. https://doi.org/10.1016/j.rser.2015.03.067

    Article  Google Scholar 

  • Ramanan P, K., K. M, Karthick A (2019) Performance analysis and energy metrics of grid-connected photovoltaic systems. Energy Sustain Dev 52:104–115. https://doi.org/10.1016/j.esd.2019.08.001

    Article  Google Scholar 

  • Ramanan P, Kalidasa Murugavel K, Karthick A, Sudhakar K (2020) Performance evaluation of building-integrated photovoltaic systems for residential buildings in southern India. Build Serv Eng Res Technol 41(4):492–506. https://doi.org/10.1177/0143624419881740

    Article  Google Scholar 

  • Reddy P, Surendra Gupta MVN, Nundy S, Karthick A, Ghosh A (2020) Status of BIPV and BAPV system for less energy-hungry building in India—a review. In Applied Sciences (Switzerland) (Vol. 10, Issue 7). MDPI AG. https://doi.org/10.3390/app10072337

  • Sable A (2017) Experimental and economic analysis of concrete absorber collector solar water heater with use of dimpled tube. Resource-Efficient Technologies 3(4):483–490. https://doi.org/10.1016/j.reffit.2017.06.001

    Article  Google Scholar 

  • Sarachitti R, Chotetanorm C, Lertsatitthanakorn C, Rungsiyopas M (2011) Thermal performance analysis and economic evaluation of roof-integrated solar concrete collector. 43, 1403–1408. https://doi.org/10.1016/j.enbuild.2011.01.020

  • Scott JE (1976) The solar water heater industry in South Florida: History and projections. Sol Energy 18(5):387–393. https://doi.org/10.1016/0038-092X(76)90003-7

    Article  Google Scholar 

  • Sellami, R., Merzouk, N. K., Amirat, M., Chekrouni, R., Ouhib, N., & Hadji, A. (2016). Market potential and development prospects of the solar water heater field in Algeria. In Renew Sust Energ Rev (Vol. 65, pp. 617–625). https://doi.org/10.1016/j.rser.2016.07.043

  • Shrivastava RL, Kumar V, Untawale SP (2017) Modeling and simulation of solar water heater: a TRNSYS perspective. Renew Sust Energ Rev 67:126–143. https://doi.org/10.1016/j.rser.2016.09.005

    Article  Google Scholar 

  • Shukla A, Buddhi D, Sawhney RL (2009) Solar water heaters with phase change material thermal energy storage medium: a review. Renew Sust Energ Rev 13(8):2119–2125. https://doi.org/10.1016/j.rser.2009.01.024

    Article  CAS  Google Scholar 

  • Singh R, Lazarus IJ, & Souliotis M (2016) Recent developments in integrated collector storage ( ICS ) solar water heaters : A review. 54, 270–298.

  • Srivastava A, & Sharma BN (1982) Thermal performance of g r o u n d AS AN ( co , c , r ( co 2c2 r. 22.

  • Sun X, Sun X, Li X, Wang Z, He J, & Wang B (2014) Performance and building integration of all-ceramic solar collectors. 75, 176–180.

Download references

Author information

Authors and Affiliations

Authors

Contributions

Muthu Manokar: conceptualization; Alagar Karthick: supervision, methodology; Alagar Karthick and Muthu Manokar: investigations; Alagar Karthick: writing; Muthu Manokar and Alagar Karthick: original draft; Muthu Manokar: writing - original draft; Muthu Manokar and Alagar Karthick: validation.

Corresponding author

Correspondence to Alagar Karthick.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manokar, A.M., Karthick, A. Review on progress in concrete solar water collectors. Environ Sci Pollut Res 28, 22296–22309 (2021). https://doi.org/10.1007/s11356-021-13415-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-13415-6

Keywords

Navigation