Skip to main content

Advertisement

Log in

Twenty-year sediment contamination trends in some tributaries of Lake Maggiore (Northern Italy): relation with anthropogenic factors

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Lake tributaries collect contaminants from the watershed, which may accumulate in lake sediments over time and may be removed through the outlets. DDx, PCB, PAH, PBDE, and trace element (Hg, As, Cd, Ni, Cu, Pb) contamination was analyzed over 2001–2018 period in sediments of the 5 main tributaries and of the outlet of Lake Maggiore (Northern Italy). Sediment cores were collected in two points of the lake, covering 1995–2017 period. Concentrations were compared to Sediment Quality Guidelines (PECs), potential sources and drivers (land use, population numbers, industrial activities, hydrology) were analyzed, and temporal trends were calculated (Mann-Kendall test). PCB, PBDE, Pb, Cd, and Hg contamination derives mainly from heavy urbanization and industry. Cu and Pb show a temporal decreasing trend in the basin, likely as result of improved wastewater treatments and change in use. A recent PAH increase in the whole lake may derive from a single point source. A legacy DDx and Hg industrial pollution is still present, due to high persistence in sediments. Values of DDx, Hg, Pb, and Cu above the PECs in lake sediments and/or in the outlet show potential risk for aquatic organisms. Results highlight the key role of tributaries in driving contamination from the watershed to the lake through sediment transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated and/or analyzed during the current study are available in the reports regarding Lake Maggiore at the website www.cipais.org.

References

  • Ahmed AM, Lyautey E, Bonnineau C, Dabrin A, Pesce S (2018) Environmental concentrations of copper, alone or in mixture with arsenic, can impact river sediment microbial community structure and functions. Front Microbiol 9:1852. https://doi.org/10.3389/fmicb.2018.01852

    Article  Google Scholar 

  • Ambrosetti W, Barbanti L, Rolla A, Castellano L, Sala N (2012) Hydraulic paths and estimation of the real residence time of the water in Lago Maggiore (N Italy): application of massless markers transported in 3D motion fields. J Limnol 71:23–33. https://doi.org/10.4081/jlimnol.2012.e2

    Article  Google Scholar 

  • Amorosi A, Centineo MC, Dinelli E, Lucchini F, Tateo F (2002) Geochemical and mineralogical variations as indicators of provenance changes in Late Quaternary deposits of SE Po plain. Sediment Geol 151:273–292. https://doi.org/10.1016/S0037-0738(01)00261-5

    Article  CAS  Google Scholar 

  • ARPA Lombardia (2014) Stato delle acque superficiali bacino del Fiume Ticino e Lago Maggiore. Rapporto annuale 2012. Agenzia Regionale per la Protezione dell’Ambiente (ARPA) Lombardia, Settore Monitoraggi Ambientali Marzo 2014:31 pp

  • Baran A, Mierzwa-Hersztek M, Gondek K, Tarnawski M, Szara M, Gorczyca O, Koniarz T (2019) The influence of the quantity and quality of sediment organic matter on the potential mobility and toxicity of trace elements in bottom sediment. Environ Geochem Health 41:2893–2910. https://doi.org/10.1007/s10653-019-00359-7

    Article  CAS  Google Scholar 

  • Barbieri M (2016) The importance of enrichment factor (EF) and geoaccumulation index (Igeo) to evaluate the soil contamination. J Geol Geophys 5:237. https://doi.org/10.4172/2381-8719.1000237

    Article  Google Scholar 

  • Baudo R (1989) Metals in Lake Maggiore. Mem Ist Ital Idrobiol 46:261–286

    Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Stat Soc B 57:289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x

    Article  Google Scholar 

  • Camusso M, Gasparella A (2006) Measuring bioavailable trace metals from freshwater sediments by diffusive gradients in thin films (DGT) in monitoring procedures for quality assessment. Ann Chim 96:205–213. https://doi.org/10.1002/adic.200690020

    Article  CAS  Google Scholar 

  • Canadian Environmental Protection Act (1999) Federal environmental quality guidelines polybrominated diphenyl ethers (PBDEs). Environment Canada 1-25

  • Chen L, Yanga Y, Chena J, Gao S, Qi S, Suna C, Shena Z (2017) Spatial-temporal variability and transportation mechanism of polychlorinated biphenyls in the Yangtze River Estuary. Sci Total Environ 598:12–20. https://doi.org/10.1016/j.scitotenv.2017.04.069

    Article  CAS  Google Scholar 

  • Chiffoleau JF, Cossa D, Auger D, Truquet I (1994) Trace metal distribution, partition and fluxes in the Seine estuary (France) in low discharge regime. Mar Chem 47:145–158. https://doi.org/10.1016/0304-4203(94)90105-8

    Article  CAS  Google Scholar 

  • CIPAIS (2013) Ricerche sull’evoluzione del Lago Maggiore. Aspetti limnologici. Programma quinquennale 2008-2012. Campagna 2012 e rapporto quinquennale 2008-2012. International Commission for the Protection of Italian-Swiss Waters (CIPAIS). http://www.cipais.org/

  • CIPAIS (2016) Ricerche sull’evoluzione del Lago Maggiore. Aspetti limnologici. Programma quinquennale 2013-2015. Campagna 2015 e rapporto triennale 2013-2015. International Commission for the Protection of Italian-Swiss Waters (CIPAIS). http://www.cipais.org/

  • Combi T, Miserocchi S, Langone L, Guerra R (2016) Polychlorinated biphenyls (PCBs) in sediments from the western Adriatic Sea: sources, historical trends and inventories. Sci Total Environ 562:580–587. https://doi.org/10.1016/j.scitotenv.2016.04.086

    Article  CAS  Google Scholar 

  • Damiani V, Thomas RL (1974) Mercury in the sediments of the Pallanza basin. Nature 251:696–697

    Article  CAS  Google Scholar 

  • Eljarrat E, Barceló D (2003) Priority lists for persistent organic pollutants and emerging contaminants based on their relative toxic potency in environmental samples. Trends Anal Chem 22:655–665. https://doi.org/10.1016/S0165-9936(03)01001-X

    Article  CAS  Google Scholar 

  • Fenocchi A, Rogora M, Sibilla S, Ciampittiello M, Dresti C (2018) Forecasting the evolution in the mixing regime of a deep subalpine lake under climate change scenarios through numerical modelling (Lake Maggiore, Northern Italy/Southern Switzerland). Clim Dyn 51:3521–3536. https://doi.org/10.1007/s00382-018-4094-6

    Article  Google Scholar 

  • Gardes T, Debret M, Copard Y, Patault E, Winiarski T, Develle A-L, Sabatier P, Dendievel A-M, Mourier B, Marcotte S, Leroy B, Portet-Koltalo F (2020) Reconstruction of anthropogenic activities in legacy sediments from the Eure River, a major tributary of the Seine Estuary (France). Catena 190:104513. https://doi.org/10.1016/j.catena.2020.104513

    Article  CAS  Google Scholar 

  • Grosbois C, Courtin-Nomade A, Robin E, Bril H, Tamura N, Schäfer J, Blanc G (2011) Fate of arsenic-bearing phases during the suspended transport in a gold mining district (Isle river Basin, France). Sci Total Environ 409:4986–4999. https://doi.org/10.1016/j.scitotenv.2011.07.045

    Article  CAS  Google Scholar 

  • Grosbois C, Meybeck M, Lestel L, Lefèvre I, Moatar F (2012) Severe and contrasted polymetallic contamination patterns (1900–2009) in the Loire River sediments (France). Sci Total Environ 435-436:290–305. https://doi.org/10.1016/j.scitotenv.2012.06.056

    Article  CAS  Google Scholar 

  • Guilizzoni P, Levine SN, Manca M, Marchetto A, Lami A, Ambrosetti W, Brauer A, Gerli S, Carrara EA, Rolla A, Guzzella L, Vignati DAL (2012) Ecological effects of multiple stressors on a deep lake (Lago Maggiore, Italy) integrating neo and palaeolimnological approaches. J Limnol 71:1–22. https://doi.org/10.4081/jlimnol.2012.e1

    Article  Google Scholar 

  • Guzzella L, Patrolecco L, Pagnotta R, Langone L, Guilizzoni P (1998) DDT and other organochlorine compounds in the Lake Maggiore sediments: a recent point source of contamination. Fresenius Environ Bull 7:79–89

    Google Scholar 

  • Guzzella L, Salerno F, Freppaz M, Roscioli C, Pisanello F, Poma G (2016) POP and PAH contamination in the southern slopes of Mt. Everest (Himalaya, Nepal): long-range atmospheric transport, glacier shrinkage, or local impact of tourism? Sci Total Environ 544:382–390. https://doi.org/10.1016/j.scitotenv.2015.11.118

    Article  CAS  Google Scholar 

  • Guzzella L, Novati N, Casatta N, Roscioli C, Valsecchi L, Binelli A, Parolini M, Solcà N, Bettinetti B, Manca M, Mazzoni M, Piscia R, Volta P, Marchetto A, Lami A, Marziali L (2018) Spatial and temporal trends of target organic and inorganic micropollutants in Lake Maggiore and Lake Lugano (Italian-Swiss water bodies): contamination in sediments and biota. Hydrobiologia 824:271–290. https://doi.org/10.1007/s10750-017-3494-7

    Article  CAS  Google Scholar 

  • Helsel DR, Frans LM (2006) Regional Kendall test for trend. Environ Sci Technol 40:4066–4073. https://doi.org/10.1021/es051650b

    Article  CAS  Google Scholar 

  • Kersten M, Smedes F (2010) Normalization procedures for sediment contaminants in spatial and temporal trend monitoring. J Environ Monit 4:109–115. https://doi.org/10.1039/B108102K

    Article  Google Scholar 

  • Kohler M, Zennegg M, Bogdal C, Gerecke AC, Schmid P, Heeb NV, Sturm M, Vonmont H, Kohler H-P E, Giger W (2008) Temporal trends, congener patterns, and sources of octa-, nona-, and decabromodiphenyl ethers (PBDE) and hexabromocyclododecanes (HBCD) in Swiss lake sediments. Environ Sci Technol 42:6378–6384. https://doi.org/10.1021/es702586r

    Article  CAS  Google Scholar 

  • Li G, Xia X, Yang Z, Wang R, Voulvoulis N (2006) Distribution and sources of polycyclic aromatic hydrocarbons in the middle and lower reaches of the Yellow River, China. Environ Pollut 144:985–993. https://doi.org/10.1016/j.envpol.2006.01.047

    Article  CAS  Google Scholar 

  • Liu J, Lu G, Zhang F, Nkoom M, Yan Z, Wu D (2018) Polybrominated diphenyl ethers (PBDEs) in a large, highly polluted freshwater lake, China: occurrence, fate, and risk assessment. Int J Environ Res Public Health 15:1529–1545. https://doi.org/10.3390/ijerph15071529

    Article  CAS  Google Scholar 

  • Long ER, Ingersoll CG, MacDonald DD (2006) Calculation and uses of mean sediment quality guideline quotients: a critical review. Environ Sci Technol 40:1726–1736. https://doi.org/10.1021/es058012d

    Article  CAS  Google Scholar 

  • Lorgeoux C, Moilleron R, Gasperi J, Ayrault S, Bonté P, Lefèvre I, Tassin B (2016) Temporal trends of persistent organic pollutants in dated sediment cores: chemical fingerprinting of the anthropogenic impacts in the Seine River basin, Paris. Sci Total Environ 541:1355–1363. https://doi.org/10.1016/j.scitotenv.2015.09.147

    Article  CAS  Google Scholar 

  • MacDonald DD, Ingersoll CG, Berger TA (2000) Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch Environ Contam Toxicol 39:20–31. https://doi.org/10.1007/s002440010075

    Article  CAS  Google Scholar 

  • Marchetto A, Lami A, Musazzi S, Masaferro J, Langone L, Guilizzoni P (2004) Lake Maggiore (N Italy) trophic history: fossil diatoms, plant pigments, chironomids and comparison with long-term limnological data. Quat Int 113:97–110. https://doi.org/10.1016/S1040-6182(03)00082-X

    Article  Google Scholar 

  • Marziali L, Valsecchi L (2021) Mercury bioavailability in fluvial sediments estimated using Chironomus riparius and diffusive gradients in thin-films (DGT). Environments 8:7. https://doi.org/10.3390/environments8020007

    Article  Google Scholar 

  • Marziali L, Rosignoli F, Drago A, Pascariello S, Valsecchi L, Rossaro B, Guzzella L (2017) Toxicity risk assessment of mercury, DDT and arsenic legacy pollution in sediments: a triad approach under low concentration conditions. Sci Total Environ 593-594:809–821. https://doi.org/10.1016/j.scitotenv.2017.03.219

    Article  CAS  Google Scholar 

  • Meybeck M, Lestel L, Bonté P, Moilleron R, Colin JL, Rousselot O, Hervé D, de Pontevès C, Grosbois C, Thévenot DR (2007) Historical perspective of heavy metals contamination (Cd, Cr, Cu, Hg, Pb, Zn) in the Seine River basin (France) following a DPSIR approach (1950–2005). Sci Total Environ 375:204–231. https://doi.org/10.1016/j.scitotenv.2006.12.017

    Article  CAS  Google Scholar 

  • Minh NH, Minh TB, Iwata H, Kajiwara N, Kunisue T, Takahashi S, Viet PH, Tuyen BC, Tanabe S (2007) Persistent organic pollutants in sediments from Sai Gon–Dong Nai River Basin, Vietnam: Levels and Temporal Trends. Arch Environ Contam Toxicol 52:458–465. https://doi.org/10.1007/s00244-006-0157-5

    Article  CAS  Google Scholar 

  • Pfeifer HR, Dorron MH, Rey D, Schlegel C, Ateeia O, Dalla Piazza R, Dubois JP, Mandia Y (2000) Chapter 2 Natural trace element input to the soil-sediment-water-plant system: examples of background and contaminated situations in Switzerland, Eastern France and Northern Italy. Trace Metals Environ 4:33–86. https://doi.org/10.1016/S0927-5215(00)80005-3

    Article  CAS  Google Scholar 

  • Pfeifer HR, Gueye-Girardet A, Reymond D, Schlegel C, Temgoua E, Hesterberg DL, Chou JW (2004) Dispersion of natural arsenic in the Malcantone watershed, Southern Switzerland: field evidence for repeated sorption-desorption and oxidation-reduction processes. Geoderma 122:205–234. https://doi.org/10.1016/j.geoderma.2004.01.009

    Article  CAS  Google Scholar 

  • Pisanello F, Marziali L, Rosignoli F, Poma G, Roscioli C, Pozzoni F, Guzzella L (2016) In situ bioavailability of DDT and Hg in sediments of the Toce River (Lake Maggiore basin, Northern Italy): accumulation in benthic invertebrates and passive samplers. Environ Sci Pollut Res Int 23:10542–10555. https://doi.org/10.1007/s11356-015-5900-x

    Article  CAS  Google Scholar 

  • Quensen JF, Tiedje JM, Jain MK, Mueller SA (2001) Factors controlling the rate of DDE dechlorination to DDMU in Palos Verdes Margin sediments under anaerobic conditions. Environ Sci Technol 35:286–291. https://doi.org/10.1021/es0012873

    Article  CAS  Google Scholar 

  • R Core Team (2020) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Roberts TL (2014) Cadmium and phosphorous fertilizers: the issues and the science “SYMPHOS 2013”. 2nd International Symposium on Innovation and Technology in the Phosphate Industry. Procedia Eng 83:52–59. https://doi.org/10.1016/j.proeng.2014.09.012

    Article  CAS  Google Scholar 

  • Rogora M, Mosello R, Kamburska L, Salmaso N, Cerasino L, Leoni B, Garibaldi L, Soler V, Lepori F, Colombo L, Buzzi F (2015) Recent trends in chloride and sodium concentrations in the deep subalpine lakes (Northern Italy). Environ Sci Pollut Res 22:19013–19026. https://doi.org/10.1007/s11356-015-5090-6

    Article  CAS  Google Scholar 

  • Rossi G, Muntau H, Marengo G, Sangregorio J (1988) 32-Pathways of trace metals in a freshwater· ecosystem-concepts and methods. In: Joint Research Centre, Ispra, Commission of the European Communities, 1987 Programme Progress Report. Environmental Protection: 84-103

  • Rossi D, Baudo R, Bo F, Vivian R, Muntau H (1992) Chemical composition of Lake Maggiore sediments in 1986. Mem Ist Ital Idrobiol 51:53–114

    Google Scholar 

  • Rothwell JJ, Evans MG, Allott TEH (2007) Lead contamination of fluvial sediments in an eroding blanket peat catchment. Appl Geochem 22:446–459. https://doi.org/10.1016/j.apgeochem.2006.11.002

    Article  CAS  Google Scholar 

  • Ruiz-Fernandez CA, Ontiveros-Cuadras FJ, Sericano JL, Sanchez-Cabeza JA, Kwong LLW, Dunbar RB, Mucciarone DA, Perez-Bernal LH, Páez-Osuna F (2014) Long-range atmospheric transport of persistent organic pollutants to remote lacustrine environments. Sci Total Environ 493:505–520. https://doi.org/10.1016/j.scitotenv.2014.05.002

    Article  CAS  Google Scholar 

  • Sharley DJ, Sharp SM, Bourgues S, Pettigrove VJ (2016) Detecting long-term temporal trends in sediment-bound trace metals from urbanised catchments. Environ Pollut 219:705–713. https://doi.org/10.1016/j.envpol.2016.06.072

    Article  CAS  Google Scholar 

  • Simpson SL, Batley GE, Hamilton IL, Spadaro DA (2011) Guidelines for copper in sediments with varying properties. Chemosphere 85:1487–1495. https://doi.org/10.1016/j.chemosphere.2011.08.044

    Article  CAS  Google Scholar 

  • Smolders AJP, Guerrero Hiza MA, van der Velde G, Roelofs JGM (2002) Dynamics of discharge, sediment transport, heavy metal pollution and Sábalo (Prochilodus lineatus) catches in the lower Pilcomayo river (Bolivia). River Res Appl 18:415–427. https://doi.org/10.1002/rra.690

    Article  Google Scholar 

  • Suh J-Y, Birch GF (2005) Use of grain-size and elemental normalization in the interpretation of trace metal concentrations in soils of the reclaimed area adjoining Port Jackson, Sydney, Australia. Water Air Soil Pollut 160:357–371. https://doi.org/10.1007/s11270-005-2884-z

    Article  CAS  Google Scholar 

  • Tang Z, Huang Q, Yang Y, Zhu X, Fu H (2013) Organochlorine pesticides in the lower reaches of Yangtze River: occurrence, ecological risk and temporal trends. Ecotoxicol Environ Saf 87:89–97. https://doi.org/10.1016/j.ecoenv.2012.10.001

    Article  CAS  Google Scholar 

  • US-EPA (1998) Method 7473 (SW-846). Mercury in solids and solutions by thermal decomposition, amalgamation, and atomic absorption spectrophotometry. Revision 0, US Environmental Protection Agency, Washington, DC

  • US-EPA (2002) Methods for the determination of total organic carbon (TOC) in soils and sediments. US Environmental Protection Agency, Ecological Risk Assessment Support Center, Office of Research and Development NCEA-C-1282, EMASC-001, April 2002

  • Valsecchi L, Roscioli C, Zanini C, Schiavon A, Guzzella L, Marziali L (2020) Determinazione del metilmercurio in sedimenti e biota d’acqua dolce mediante Analizzatore Automatico di Mercurio e GC-MS. Notiziario dei Metodi Analitici IRSA News 1(2020):20–29

    Google Scholar 

  • Vignati DAL, Guilizzoni P (2011) Metalli nel Lago Maggiore: livelli naturali e antropici. Acqua Aria 1:22–27

    Google Scholar 

  • Vignati DAL, Hintelmann H, Metcalfe CD, Marchetto A, Ponti B, Bettinetti R, Marziali L, Tartari G (2014) Hg contamination in a large, subalpine lake (Lago Maggiore, Italy): combined insights from geochronology and MC-ICP-MS analysis. Abstract book Society of Environmental Toxicology and Chemistry (SETAC) North America 35th Annual Meeting Vancouver, British Columbia, 9–13 November 2014:102

  • Wang Z, Hua P, Li R, Bai Y, Fan G, Wang P, Hu BX, Zhang J, Krebs P (2019) Concentration decline in response to source shift of trace metals in Elbe River, Germany: a long-term trend analysis during 1998-2016. Environ Pollut 250:511–519. https://doi.org/10.1016/j.envpol.2019.04.062

    Article  CAS  Google Scholar 

  • Yang Z, Wang Y, Shen Z, Niu J, Tang Z (2009) Distribution and speciation of heavy metals in sediments from the mainstream, tributaries, and lakes of the Yangtze River catchment of Wuhan, China. J Hazard Mater 166:1186–1194. https://doi.org/10.1016/j.jhazmat.2008.12.034

    Article  CAS  Google Scholar 

  • Yu G, Bu Q, Cao Z, Du X, Xia J, Wu M, Huang J (2016) Brominated flame retardants (BFRs): a review on environmental contamination in China. Chemosphere 150:479–490. https://doi.org/10.1016/j.chemosphere.2015.12.034

    Article  CAS  Google Scholar 

  • Yunker MB, Macdonald RW, Vingarzan RM, Goyette RH (2002) PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org Geochem 33:489–515. https://doi.org/10.1016/S0146-6380(02)00002-5

    Article  CAS  Google Scholar 

  • Zhang D, Wang JJ, Ni H-G, Zeng H (2017) Spatial-temporal and multi-media variations of polycyclic aromatic hydrocarbons in a highly urbanized river from South China. Sci Total Environ 581:621–628. https://doi.org/10.1016/j.scitotenv.2016.12.171

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Marzia Ciampitello (CNR-IRSA Verbania, Italy) for her support in recovery of river flow data and Andrea Lami of the same Institute for sediment core dating.

Funding

This work was supported by the International Commission for the Protection of Italian-Swiss Waters (CIPAIS), Research Programs 2001–2007, 2008–2012, 2013–2015, and 2016–2018 (www.cipais.org).

Author information

Authors and Affiliations

Authors

Contributions

Laura Marziali: investigation, conceptualization, writing, formal analysis. Licia Guzzella: investigation, conceptualization, writing. Franco Salerno: formal analysis. Aldo Marchetto: investigation, review. Lucia Valsecchi: investigation, data curation. Stefano Tasselli: investigation, data curation. Claudio Roscioli: investigation, data curation. Alfredo Schiavon: formal analysis, figure editing.

Corresponding author

Correspondence to Laura Marziali.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Ester Heath

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 359 kb)

ESM 2

(XLSX 42.3 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marziali, L., Guzzella, L., Salerno, F. et al. Twenty-year sediment contamination trends in some tributaries of Lake Maggiore (Northern Italy): relation with anthropogenic factors. Environ Sci Pollut Res 28, 38193–38208 (2021). https://doi.org/10.1007/s11356-021-13388-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-13388-6

Keywords

Navigation