Skip to main content
Log in

Denitrification using permeable reactive barriers with organic substrate or zero-valent iron fillers: controlling mechanisms, challenges, and future perspectives

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Nitrate as a diffusive agricultural contaminant has been causing substantial groundwater quality deterioration worldwide. In situ groundwater remediation techniques using permeable reactive barriers (PRBs) have attracted increasing interest. Particularly, PRBs based on biological denitrification, using the organic substrate as a biostimulator, and chemical nitrate reduction, using zero-valent iron (ZVI) as a reductant, are two major PRB approaches for groundwater denitrification. This review paper analyzed the published studies over the past 10 years (2010–2020) using laboratory, modeling, and field-scale approaches to explore the performance and mechanisms of these two types of PRBs. Important factors affecting the denitrification efficiencies as well as the influential mechanisms were discussed. Several research gaps have been identified and further research needs are discussed in the end.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  • Agrawal A, Tratnyek PG (1996) Reduction of nitro aromatic compounds by zero-valent iron metal. Environ Sci Technol 30:153–160

    CAS  Google Scholar 

  • Ahn SC, Oh SY, Cha DK (2008) Enhanced reduction of nitrate by zero-valent iron at elevated temperatures. J Hazard Mater 156:17–22

    CAS  Google Scholar 

  • Araújo R, Castro ACM, Baptista JS, Fiúza A (2016) Nanosized iron based permeable reactive barriers for nitrate removal–systematic review. Physics Chem Earth Parts A/B/C 94:29–34

    Google Scholar 

  • Ashok V, Hait S (2015) Remediation of nitrate-contaminated water by solid-phase denitrification process—a review. Environ Sci Pollut Res 22:8075–8093

    CAS  Google Scholar 

  • Bedessem ME, Edgar TV, Roll R (2005) Nitrogen removal in laboratory model leachfields with organic-rich layers. J Environ Qual 34:936–942

    CAS  Google Scholar 

  • Beganskas S, Gorski G, Weathers T, Fisher AT, Schmidt C, Saltikov C, Redford K, Stoneburner B, Harmon R, Weir W (2018) A horizontal permeable reactive barrier stimulates nitrate removal and shifts microbial ecology during rapid infiltration for managed recharge. Water Res 144:274–284

    CAS  Google Scholar 

  • Bhuvanesh S, Maneesh N, Sreekrishnan TR (2013) Start-up and performance of a hybrid anoxic reactor for biological denitrification. Bioresour Technol 129:78–84

    CAS  Google Scholar 

  • Brenzinger K, Dörsch P, Braker G (2015) pH-driven shifts in overall and transcriptionally active denitrifiers control gaseous product stoichiometry in growth experiments with extracted bacteria from soil. Front Microbiol 6:961

    Google Scholar 

  • Cameron SG, Schipper LA (2010) Nitrate removal and hydraulic performance of organic carbon for use in denitrification beds. Ecol Eng 36:1588–1595

    Google Scholar 

  • Capodici M, Avona A, Laudicina VA, Viviani G (2018) Biological groundwater denitrification systems: lab-scale trials aimed at nitrous oxide production and emission assessment. Sci Total Environ 630:462–468

    CAS  Google Scholar 

  • Capodici M, Morici C, Viviani G (2014) Batch test evaluation of four organic substrates suitable for biological groundwater denitrification. Chem Eng Trans 38:43–48. https://doi.org/10.3303/CET1438008

    Article  Google Scholar 

  • Chen SS, Hsu HD, Li CW (2004) A new method to produce nanoscale iron for nitrate removal. J Nanopart Res 6:639–647

    CAS  Google Scholar 

  • Chen YM, Li CW, Chen SS (2005) Fluidized zero valent iron bed reactor for nitrate removal. Chemosphere 59:753–759

    CAS  Google Scholar 

  • Cheng H, Zhu Q, Wang A, Weng M, Xing Z (2020) Composite of chitosan and bentonite cladding Fe–Al bimetal: effective removal of nitrate and by-products from wastewater. Environ Res 184:109336

    CAS  Google Scholar 

  • Choi JH, Shin WS, Choi SJ, Kim YH (2008) Reductive denitrification using zero-valent iron and bimetallic iron. Environ Technol 30:939–946

    Google Scholar 

  • Christianson LE, Bhandari A, Helmers MJ (2012) A practice-oriented review of woodchip bioreactors for subsurface agricultural drainage. Appl Eng Agric 28:861–874

    Google Scholar 

  • Chu L, Wang J (2013) Denitrification performance and biofilm characteristics using biodegradable polymers PCL as carriers and carbon source. Chemosphere 91:1310–1316

    CAS  Google Scholar 

  • Chung JB, Kim SH, Jeong BR, Lee YD (2004) Removal of organic matter and nitrogen from river water in a model floodplain. J Environ Qual 33:1017–1023

    CAS  Google Scholar 

  • Cole JA, Brown CM (1980) Nitrite reduction to ammonia by fermentative bacteria: a short circuit in the biological nitrogen cycle. FEMS Microbiol Lett 7:65–72

    CAS  Google Scholar 

  • Cook S (2009) Assessing the use and application of zero-valent iron nanoparticle technology for remediation at contaminated sites. US EPA, Office of Solid Waste and Emergency Response Office of Superfund Remediation and Technology Innovation, Washington

    Google Scholar 

  • Cyplik P, Juzwa W, Marecik R, Powierska-Czarny J, Piotrowska-Cyplik A, Czarny J, Drożdżyńska A, Chrzanowski L (2013) Denitrification of industrial wastewater: Influence of glycerol addition on metabolic activity and community shifts in a microbial consortium. Chemosphere 93(11):2823–2831

    CAS  Google Scholar 

  • Dong H, Li L, Lu Y, Cheng Y, Wang Y, Ning Q, Wang B, Zhang L, Zeng G (2019) Integration of nanoscale zero-valent iron and functional anaerobic bacteria for groundwater remediation: a review. Environ Int 124:265–277

    CAS  Google Scholar 

  • Elgood Z, Robertson WD, Schiff SL, Elgood R (2010) Nitrate removal and greenhouse gas production in a stream-bed denitrifying bioreactor. Ecol Eng 36:1575–1580

    Google Scholar 

  • Faisal AAH, Sulaymon AH, Khaliefa QM (2018) A review of permeable reactive barrier as passive sustainable technology for groundwater remediation. Int J Environ Sci Technol 15:1123–1138

    CAS  Google Scholar 

  • Fajardo C, Ortíz LT, Rodríguez-Membibre ML, Nande M, Lobo MC, Martin M (2012) Assessing the impact of zero-valent iron (ZVI) nanotechnology on soil microbial structure and functionality: A molecular approach. Chemosphere 86(8):802–808

    CAS  Google Scholar 

  • Fan X, Guan X, Ma J, Ai H (2009) Kinetics and corrosion products of aqueous nitrate reduction by iron powder without reaction conditions control. J Environ Sci 21(8):1028–1035

    CAS  Google Scholar 

  • Feng HG, Wang HL, Jing LX (2011) Mixture of walnut shell and sand used to nitrate removal in groundwater. Adv Mater Res 356–360:459–466

    Google Scholar 

  • Fermoso FG, Bartacek J, Jansen S, Lens PN (2009) Metal supplementation to UASB bioreactors: from cell-metal interactions to full-scale application. Sci Total Environ 407:3652–3667

    CAS  Google Scholar 

  • Filho MGJ, Menezes TR, Mendonça JO, Oliveira AD, Silva TF, Rondon NF, Silva FS, 2012. Organic facies: palynofacies and organic geochemistry approaches, in: panagiotaras, D. (Ed.), Geochemistry-Earth’s System Processes. -51-0586-2, ISBN, pp. 978–953.

  • Galloway JN, Aber JD, Erisman JW, Seitzinger SP, Howarth RW, Cowling EB, Cosby BJ (2003) The nitrogen cascade. Bioscience 53:341–356

    Google Scholar 

  • Ghane E, Fausey NR, Brown LC (2015) Modeling nitrate removal in a denitrification bed. Water Res 71:294–305

    CAS  Google Scholar 

  • Gibert O, Assal A, Devlin H, Elliot T, Kalin RM (2019) Performance of a field-scale biological permeable reactive barrier for in-situ remediation of nitrate-contaminated groundwater. Sci Total Environ 659:211–220

    CAS  Google Scholar 

  • Gibert O, Pomierny S, Rowe I, Kalin RM (2008) Selection of organic substrates as potential reactive materials for use in a denitrification permeable reactive barrier (PRB). Bioresour Technol 99:7587–7596

    CAS  Google Scholar 

  • Grau-Martínez A, Torrentó C, Carrey R, Soler A, Otero N (2019) Isotopic evidence of nitrate degradation by a zero-valent iron permeable reactive barrier: batch experiments and a field scale study. J Hydrol 570:69–79

    Google Scholar 

  • Greenan CM, Moorman TB, Kaspar TC, Parkin TB, Jaynes DB (2006) Comparing carbon substrates for denitrification of subsurface drainage water. J Environ Qual 35:824–829

    CAS  Google Scholar 

  • Gu B, Watson DB, Phillips DH, & Liang L (2003). Biogeochemical, mineralogical, and hydrological characteristics of an iron reactive barrier used for treatment of uranium and nitrate. In Handbook of groundwater remediation using permeable reactive barriers (pp. 305-342). Academic Press.

  • Guo X, Yang Z, Liu H, Lv X, Tu Q, Ren Q, Xia X, Jing C (2015) Common oxidants activate the reactivity of zero-valent iron (ZVI) and hence remarkably enhance nitrate reduction from water. Sep Purif Technol 146:227–234

    CAS  Google Scholar 

  • Halaburka BJ, LeFevre GH, Luthy RG (2017) Evaluation of mechanistic models for nitrate removal in woodchip bioreactors. Environ Sci Technol 51:5156–5164

    CAS  Google Scholar 

  • Hashemi SE, Heidarpour M, Mostafazadeh-Fard B (2011) Nitrate removal using different carbon substrates in a laboratory model. Water Sci Technol 63:2700–2706

    CAS  Google Scholar 

  • He Q, Feng C, Hu Q, Li R, Chen N (2016) Biological denitrification using rice washing drainage (RWD) as carbon source for removing nitrate from groundwater. Desalin Water Treat 57:21990–21999

    CAS  Google Scholar 

  • He Z, Geng S, Pan Y, Cai C, Wang J, Wang L, Liu S, Zheng P, Xu X, Hu B (2015) Improvement of the trace metal composition of medium for nitrite dependent anaerobic methane oxidation bacteria: iron (II) and copper (II) make a difference. Water Res 85:235–243

    CAS  Google Scholar 

  • Healy MG, Ibrahim TG, Lanigan GJ, Serrenho AJ, Fenton O (2012) Nitrate removal rate, efficiency and pollution swapping potential of different organic carbon media in laboratory denitrification bioreactors. Ecol Eng 40:198–209

    Google Scholar 

  • Hiller KA, Foreman KH, Weisman D, Bowen JL (2015) Permeable reactive barriers designed to mitigate eutrophication alter bacterial community composition and aquifer redox conditions. Appl Environ Microbiol 81:7114–7124

    CAS  Google Scholar 

  • Hoover NL, Bhandari A, Soupir ML, Moorman TB (2016) Woodchip denitrification bioreactors: impact of temperature and hydraulic retention time on nitrate removal. J Environ Qual 45:803–812

    CAS  Google Scholar 

  • Hosseini SM, Tosco T (2015) Integrating NZVI and carbon substrates in a non-pumping reactive wells array for the remediation of a nitrate contaminated aquifer. J Contam Hydrol 179:182–195

    CAS  Google Scholar 

  • Hosseini SM, Ataie-Ashtiani B, Kholghi M (2011) Nitrate reduction by nano-Fe/Cu particles in packed column. Desalination 276:214–221

    Google Scholar 

  • Hosseini SM, Tosco T, Ataie-Ashtiani B, Simmons CT (2018) Non-pumping reactive wells filled with mixing nano and micro zero-valent iron for nitrate removal from groundwater: vertical, horizontal, and slanted wells. J Contam Hydrol 210:50–64

    CAS  Google Scholar 

  • Howarth RW, Sharpley A, Walker D (2002) Sources of nutrient pollution to coastal waters in the United States: implications for achieving coastal water quality goals. Estuaries 25:656–676

    CAS  Google Scholar 

  • Huang G, Huang Y, Hu H, Liu F, Zhang Y, Deng R (2015) Remediation of nitrate–nitrogen contaminated groundwater using a pilot-scale two-layer heterotrophic–autotrophic denitrification permeable reactive barrier with spongy iron/pine bark. Chemosphere 130:8–16

    CAS  Google Scholar 

  • Huang YH, Zhang TC (2004) Effects of low pH on nitrate reduction by iron powder. Water Res 38:2631–2642

    CAS  Google Scholar 

  • Huang YH, Zhang TC (2005) Effects of dissolved oxygen on formation of corrosion products and concomitant oxygen and nitrate reduction in zero-valent iron systems with or without aqueous Fe2+. Water Res 39:1751–1760

    CAS  Google Scholar 

  • Hunter WJ (2003) Accumulation of nitrite in denitrifying barriers when phosphate is limiting. J Contam Hydrol 66:79–91

    CAS  Google Scholar 

  • Hwang Y-H, Kim D-G, Shin H-S (2011) Mechanism study of nitrate reduction by nano zero valent iron. J Hazard Mater 185(2–3):1513–1521

    CAS  Google Scholar 

  • Hwang YH, Kim DG, Ahn YT, Moon CM, Shin HS (2010) Fate of nitrogen species in nitrate reduction by nanoscale zero valent iron and characterization of the reaction kinetics. Water Sci Technol 61:705–712

    CAS  Google Scholar 

  • Jang J, Anderson EL, Venterea RT, Sadowsky MJ, Rosen CJ, Feyereisen GW, Ishii S (2019) Denitrifying bacteria active in woodchip bioreactors at low-temperature conditions. Front Microbiol 10:635

    Google Scholar 

  • Jansen S, Stuurman R, Chardon W, Ball S, Rozemeijer J, Gerritse J (2019) Passive dosing of organic substrates for nitrate-removing bioreactors applied in field margins. J Environ Qual 48:394–402

    CAS  Google Scholar 

  • Jaynes DB, Moorman TB, Parkin TB, Kaspar TC (2016) Simulating woodchip bioreactor performance using a dual-porosity model. J Environ Qual 45:830–838

    CAS  Google Scholar 

  • Ji M-K, Ahn Y-T, Khan MA, Abou-Shanab RAI, Cho Y, Choi J-Y, Kim YJ, Song H, Jeon B-H (2011) Removal of nitrate and ammonium ions from livestock wastewater by hybrid systems composed of zero-valent iron and adsorbents. Environ Technol 32:1851–1857

    Google Scholar 

  • Ji X, Xie R, Hao Y, Lu J (2017) Quantitative identification of nitrate pollution sources and uncertainty analysis based on dual isotope approach in an agricultural watershed. Environ Pollut 229:586–594

    CAS  Google Scholar 

  • Jia Z, Liu T, Xia X, Xia N (2016) Effect of particle size and composition of suspended sediment on denitrification in river water. Sci Total Environ 541:934–940

    CAS  Google Scholar 

  • Jiang Z, Lv L, Zhang W, Du Q, Pan B, Yang L, Zhang Q (2011) Nitrate reduction using nanosized zero-valent iron supported by polystyrene resins: role of surface functional groups. Water Res 45:2191–2198

    CAS  Google Scholar 

  • Jiang Z, Zhou H, Chen C, Wei S, Zhang W (2015) The enhancement of nitrate reduction by supported Pd–Fe nanoscale particle. Sci Adv Mater 7:1734–1740

    CAS  Google Scholar 

  • Jurado A, Borges AV, Brouyère S (2017) Dynamics and emissions of N2O in groundwater: a review. Sci Total Environ 584-585:207–218

    CAS  Google Scholar 

  • Karanasios KA, Vasiliadou IA, Pavlou S, Vayenas DV (2010) Hydrogenotrophic denitrification of potable water: a review. J Hazard Mater 180:20–37

    CAS  Google Scholar 

  • Khalil AM, Eljamal O, Jribi S, Matsunaga N (2016) Promoting nitrate reduction kinetics by nanoscale zero valent iron in water via copper salt addition. Chem Eng J 287:367–380

    CAS  Google Scholar 

  • Kijjanapanich P, Yaowakun Y (2019) Enhancement of nitrate-removal efficiency using a combination of organic substrates and zero-valent iron as electron donors. J Environ Eng 145:04019006

    Google Scholar 

  • Kim HS, Kim T, Ahn JY, Hwang KY, Park JY, Lim TT, Hwang I (2012) Aging characteristics and reactivity of two types of nanoscale zero-valent iron particles (FeBH and FeH2) in nitrate reduction. Chem Eng J 197:16–23

    CAS  Google Scholar 

  • Kraft B, Strous M, Tegetmeyer HE (2011) Microbial nitrate respiration–genes, enzymes and environmental distribution. J Biotechnol 155:104–117

    CAS  Google Scholar 

  • Li N, Jin ZH, Li TL, Mei-ying D, Hong-cai X, Zhao-hui J (2011) Effect of biofilm on nanoscale zero-valent iron-microorganism removing NO3-N in groundwater. Environ Sci 32:1620–1626

    CAS  Google Scholar 

  • Li P, Zuo J, Wang Y, Zhao J, Tang L, Li Z (2016) Tertiary nitrogen removal for municipal wastewater using a solid-phase denitrifying biofilter with polycaprolactone as the carbon source and filtration medium. Water Res 93:74–83

    CAS  Google Scholar 

  • Li P, Zuo J, Xing W, Tang L, Ye X, Li Z, Yuan L, Wang K, Zhang H (2013) Starch/polyvinyl alcohol blended materials used as solid carbon source for tertiary denitrification of secondary effluent. J Environ Sci 25:1972–1979

    CAS  Google Scholar 

  • Li R, Feng C, Xi B, Chen N, Jiang Y, Zhao Y, Li M, Dang Q, Zhao B (2017) Nitrate removal efficiency of a mixotrophic denitrification wall for nitrate-polluted groundwater in situ remediation. Ecol Eng 106:523–531

    Google Scholar 

  • Liou YH, Lin CJ, Weng SC, Ou HH, Lo SL (2009) Selective decomposition of aqueous nitrate into nitrogen using iron deposited bimetals. Environ Sci Technol 43:2482–2488

    CAS  Google Scholar 

  • Liu B, Zhan H, Lu X, Liu Y, Huang L, Wei Z (2020) Biodegradation of carbon tetrachloride from groundwater in an upflow solid-phase biofilm system. RSC Adv 10:7500–7508

    CAS  Google Scholar 

  • Liu HB, Chen TH, Chang DY, Chen D, Liu Y, He HP, Yuan P, Frost R (2012) Nitrate reduction over nanoscale zero-valent iron prepared by hydrogen reduction of goethite. Mater Chem Phys 133:205–211

    CAS  Google Scholar 

  • Liu SJ, Zhao ZY, Li J, Wang J, Qi Y (2013) An anaerobic two-layer permeable reactive biobarrier for the remediation of nitrate-contaminated groundwater. Water Res 47:5977–5985

    CAS  Google Scholar 

  • Liu Y, Wang J (2019) Reduction of nitrate by zero valent iron (ZVI)-based materials: a review. Sci Total Environ 671:388–403

    CAS  Google Scholar 

  • Long LM, Schipper LA, Bruesewitz DA (2011) Long-term nitrate removal in a denitrification wall. Agric Ecosyst Environ 140:514–520

    CAS  Google Scholar 

  • Lopes DV, Sillanpää M, Wolkersdorfer C (2020) Nitrate reduction of the Siilinjärvi/Finland mine water with zero-valent iron and iron waste as alternative iron sources. Mine Water Environ 39:280–290 1-11

    CAS  Google Scholar 

  • Lubphoo Y, Chyan JM, Grisdanurak N, Liao CH (2015) Nitrogen gas selectivity enhancement on nitrate denitrification using nanoscale zero-valent iron supported palladium/copper catalysts. J Taiwan Inst Chem Eng 57:143–153

    CAS  Google Scholar 

  • Lubphoo Y, Chyan JM, Grisdanurak N, Liao CH (2016) Influence of Pd–Cu on nanoscale zero–valent iron supported for selective reduction of nitrate. J Taiwan Inst Chem Eng 59:285–294

    CAS  Google Scholar 

  • Luo J, Song G, Liu J, Qian G, Xu ZP (2014) Mechanism of enhanced nitrate reduction via micro-electrolysis at the powdered zero-valent iron/activated carbon interface. J Colloid Interface Sci 435:21–25

    CAS  Google Scholar 

  • Mohseni-Bandpi A, Elliott DJ, Zazouli MA (2013) Biological nitrate removal processes from drinking water supply-a review. J Environ Health Sci Eng 11:35

    Google Scholar 

  • Mokete R, Eljamal O, Sugihara Y (2020) Exploration of the reactivity of nanoscale zero-valent iron (NZVI) associated nanoparticles in diverse experimental conditions. Chem Eng Process-Process Intensif 150:9

    Google Scholar 

  • Moorman TB, Parkin TB, Kaspar TC, Jaynes DB (2010) Denitrification activity, wood loss, and N2O emissions over 9 years from a wood chip bioreactor. Ecol Eng 36:1567–1574

    Google Scholar 

  • Nalcaci OO, Böke N, Ovez B (2011) Potential of the bacterial strain acidovorax avenae subsp. avenae LMG 17238 and macro algae Gracilaria verrucosa for denitrification. Desalination 274:44–53

    CAS  Google Scholar 

  • Obaja D, Mace S, Mata-Alvarez J (2005) Biological nutrient removal by a sequencing batch reactor (SBR) using an internal organic carbon source in digested piggery wastewater. Bioresour Technol 96:7–14

    CAS  Google Scholar 

  • Obiri-Nyarko F, Grajales-Mesa SJ, Malina G (2014) An overview of permeable reactive barriers for in situ sustainable groundwater remediation. Chemosphere 111:243–259

    CAS  Google Scholar 

  • Ovez B (2006) Batch biological denitrification using Arundo donax, Glycyrrhiza glabra, and Gracilaria verrucosa as carbon source. Process Biochem 41:1289–1295

    CAS  Google Scholar 

  • Pullin H, Crane RA, Morgan DJ, Scott TB (2017) The effect of common groundwater anions on the aqueous corrosion of zero-valent iron nanoparticles and associated removal of aqueous copper and zinc. J Environ Chem Eng 5:1166–1173

    CAS  Google Scholar 

  • Qi W, Taherzadeh MJ, Ruan Y, Deng Y, Chen JS, Lu HF, Xu XY (2020) Denitrification performance and microbial communities of solid-phase denitrifying reactors using poly (butylene succinate)/bamboo powder composite. Bioresour Technol 305:3

    Google Scholar 

  • Rad PR, Fazlali A (2020) Optimization of permeable reactive barrier dimensions and location in groundwater remediation contaminated by landfill pollution. J Water Process Eng 35:6

    Google Scholar 

  • Ramavandi B, Mortazavi SB, Moussavi G, Khoshgard A, Jahangiri M (2011) Experimental investigation of the chemical reduction of nitrate ion in aqueous solution by Mg/Cu bimetallic particles. React Kinet Mech Catal 102:313–329

    CAS  Google Scholar 

  • Rivett MO, Buss SR, Morgan P, Smith JW, Bemment CD (2008) Nitrate attenuation in groundwater: a review of biogeochemical controlling processes. Water Res 42:4215–4232

    CAS  Google Scholar 

  • Robertson WD (2010) Nitrate removal rates in woodchip media of varying age. Ecol Eng 36:1581–1587

    Google Scholar 

  • Robertson WD, Blowes DW, Ptacek CJ, Cherry JA (2000) Long-term performance of in situ reactive barriers for nitrate remediation. Groundwater 38:689–695

    CAS  Google Scholar 

  • Robertson WD, Cherry JA (1995) In situ denitrification of septic-system nitrate using reactive porous media barriers: field trials. Groundwater 33:99–111

    CAS  Google Scholar 

  • Robertson WD, Ptacek CJ, Brown SJ (2007) Geochemical and hydrogeological impacts of a wood particle barrier treating nitrate and perchlorate in ground water. Groundwr Monit Remediat 27:85–95

    CAS  Google Scholar 

  • Robertson WD, Vogan JL, Lombardo PS (2008) Nitrate removal rates in a 15-year-old permeable reactive barrier treating septic system nitrate. Groundwr Monit Remediat 28:65–72

    CAS  Google Scholar 

  • Rodríguez-Maroto JM, García-Herruzo F, García-Rubio A, Gómez-Lahoz C, Vereda-Alonso C (2009) Kinetics of the chemical reduction of nitrate by zero-valent iron. Chemosphere 74:804–809

    Google Scholar 

  • Rout PR, Bhunia P, Dash RR (2017) Simultaneous removal of nitrogen and phosphorous from domestic wastewater using Bacillus cereus GS-5 strain exhibiting heterotrophic nitrification, aerobic denitrification and denitrifying phosphorous removal. Bioresour Technol 244:484–495

    CAS  Google Scholar 

  • Sanderson K (2011) Lignocellulose: a chewy problem. Nature 474:S12–S14

    CAS  Google Scholar 

  • Santisukkasaem U, Olawuyi F, Oye P, Das DB (2015) Artificial neural network (ANN) for evaluating permeability decline in permeable reactive barrier (PRB). Environ Processes 2:291–307

    Google Scholar 

  • Sawyer AH (2015) Enhanced removal of groundwater-borne nitrate in heterogeneous aquatic sediments. Geophys Res Lett 42:403–410

    CAS  Google Scholar 

  • Schipper LA, Robertson WD, Gold AJ, Jaynes DB, Cameron SC (2010) Denitrifying bioreactors—an approach for reducing nitrate loads to receiving waters. Ecol Eng 36(11):1532–1543

    Google Scholar 

  • Schipper LA, Vojvodić-Vuković M (2000) Nitrate removal from groundwater and denitrification rates in a porous treatment wall amended with sawdust. Ecol Eng 14:269–278

    Google Scholar 

  • Schipper LA, Vojvodić-Vuković M (2001) Five years of nitrate removal, denitrification and carbon dynamics in a denitrification wall. Water Res 35:3473–3477

    CAS  Google Scholar 

  • Schmidt CA, Clark MW (2012) Efficacy of a denitrification wall to treat continuously high nitrate loads. Ecol Eng 42:203–211

    Google Scholar 

  • Schwientek M, Einsiedl F, Stichler W, Stögbauer A, Strauss H, Maloszewski P (2008) Evidence for denitrification regulated by pyrite oxidation in a heterogeneous porous groundwater system. Chem Geol 255:60–67

    CAS  Google Scholar 

  • Shen Z, Hu J, Wang J, Zhou Y (2015) Biological denitrification using starch/polycaprolactone blends as carbon source and biofilm support. Desalin Water Treat 54:609–615

    CAS  Google Scholar 

  • Shen Z, Wang J (2011) Biological denitrification using cross-linked starch/PCL blends as solid carbon source and biofilm carrier. Bioresour Technol 102:8835–8838

    CAS  Google Scholar 

  • Shen Z, Yin Y, Wang J (2016) Biological denitrification using poly (butanediol succinate) as electron donor. Appl Microbiol Biotechnol 100:6047–6053

    CAS  Google Scholar 

  • Shen Z, Zhou Y, Hu J, Wang J (2013) Denitrification performance and microbial diversity in a packed-bed bioreactor using biodegradable polymer as carbon source and biofilm support. J Hazard Mater 250:431–438

    Google Scholar 

  • Shin KH, Cha D (2008) Microbial reduction of nitrate in the presence of nanoscale zero-valent iron. Chemosphere 72:257–262

    CAS  Google Scholar 

  • Shubair T, Eljamal O, Khalil AM, Matsunaga N (2018) Multilayer system of nanoscale zero valent iron and Nano-Fe/Cu particles for nitrate removal in porous media. Sep Purif Technol 193:242–254

    CAS  Google Scholar 

  • Song N, Xu J, Cao Y, Xia F, Zhai J, Ai H, Shi D, Gu L, He Q (2020) Chemical removal and selectivity reduction of nitrate from water by (nano) zero-valent iron/activated carbon micro-electrolysis. Chemosphere 248:125986

    CAS  Google Scholar 

  • Sparis D, Mystrioti C, Xenidis A, Papassiopi N (2013) Reduction of nitrate by copper-coated ZVI nanoparticles. Desalin Water Treat 51(13–15):2926–2933

    CAS  Google Scholar 

  • Su C, Puls RW (2007) Removal of added nitrate in cotton burr compost, mulch compost, and peat: mechanisms and potential use for groundwater nitrate remediation. Chemosphere 66:91–98

    CAS  Google Scholar 

  • Su Y, Adeleye AS, Huang Y, Sun X, Dai C, Zhou X, Zhang Y, Keller AA (2014) Simultaneous removal of cadmium and nitrate in aqueous media by nanoscale zerovalent iron (nZVI) and Au doped nZVI particles. Water Res 63:102–111

    CAS  Google Scholar 

  • Sun H, Yang Z, Yang F, Wu W, Wang J (2020) Enhanced simultaneous nitrification and denitrification performance in a fixed-bed system packed with PHBV/PLA blends. Int Biodeterior Biodegradation 146:10481

    Google Scholar 

  • Suzuki T, Moribe M, Oyama Y, Niinae M (2012) Mechanism of nitrate reduction by zero-valent iron: equilibrium and kinetics studies. Chem Eng J 183:271–277

    CAS  Google Scholar 

  • Takahashi M, Yamada T, Tanno M, Tsuji H, Hiraishi A (2011) Nitrate removal efficiency and bacterial community dynamics in denitrification processes using poly (l-lactic acid) as the solid substrate. Microbes Environ 26(3):212–219

    Google Scholar 

  • Tang F, Xin J, Zheng T, Zheng X, Yang X, Kolditz O (2017) Individual and combined effects of humic acid, bicarbonate and calcium on TCE removal kinetics, aging behavior and electron efficiency of mZVI particles. Chem Eng J 324:324–335

    CAS  Google Scholar 

  • Tang S, Wang XM, Mao YQ, Zhao Y, Yang HW, Xie YF (2015) Effect of dissolved oxygen concentration on iron efficiency: removal of three chloroacetic acids. Water Res 73:342–352

    CAS  Google Scholar 

  • Torrentó C, Cama J, Urmeneta J, Otero N, Soler A (2010) Denitrification of groundwater with pyrite and Thiobacillus denitrificans. Chem Geol 278:80–91

    Google Scholar 

  • Torrentó C, Urmeneta J, Otero N, Soler A, Viñas M, Cama J (2011) Enhanced denitrification in groundwater and sediments from a nitrate-contaminated aquifer after addition of pyrite. Chem Geol 287:90–101

    Google Scholar 

  • USEPA (US Environmental Protection Agency) (2008) National primary and secondary drinking water regulations. Electron Code Fed Regul Title 40(Part 141.54):425

    Google Scholar 

  • Van Rijn J, Tal Y, Schreier HJ (2006) Denitrification in recirculating systems: theory and applications. Aquac Eng 34:364–376

    Google Scholar 

  • Velimirovic M, Auffan M, Carniato L, Batka VM, Schmid D, Wagner S, Borschneck D, Proux O, Von Der Kammer F, Hofmann T (2018) Effect of field site hydrogeochemical conditions on the corrosion of milled zerovalent iron particles and their dechlorination efficiency. Sci Total Environ 618:1619–1627

    CAS  Google Scholar 

  • Wang C, Xu Y, Hou J, Wang P, Zhang F, Zhou Q, You G (2019) Zero valent iron supported biological denitrification for farmland drainage treatments with low organic carbon: performance and potential mechanisms. Sci Total Environ 689:1044–1053

    CAS  Google Scholar 

  • Wang H, Chen N, Feng C, Deng Y, Gao Y (2020) Research on efficient denitrification system based on banana peel waste in sequencing batch reactors: performance, microbial behavior and dissolved organic matter evolution. Chemosphere 253:126693

    CAS  Google Scholar 

  • Wang J, Bai Z (2017) Fe-based catalysts for heterogeneous catalytic ozonation of emerging contaminants in water and wastewater. Chem Eng J 312:79–98

    CAS  Google Scholar 

  • Wang J, Chu L (2016) Biological nitrate removal from water and wastewater by solid-phase denitrification process. Biotechnol Adv 34:1103–1112

    CAS  Google Scholar 

  • Wang R, Yang C, Zhang M, Xu SY, Dai CL, Liang LY, Zhao HP, Zheng P (2017) Chemoautotrophic denitrification based on ferrous iron oxidation: reactor performance and sludge characteristics. Chem Eng J 313:693–701

    CAS  Google Scholar 

  • Wang W, Jin ZH, Li TL, Zhang H, Gao S (2006) Preparation of spherical iron nanoclusters in ethanol–water solution for nitrate removal. Chemosphere 65:1396–1404

    CAS  Google Scholar 

  • Ward MH, DeKok TM, Levallois P, Brender J, Gulis G, Nolan BT, VanDerslice J (2005) Workgroup report: drinking-water nitrate and health—recent findings and research needs. Environ Health Perspect 113:1607–1614

    CAS  Google Scholar 

  • Ward MH, Jones RR, Brender JD, De Kok TM, Weyer PJ, Nolan BT, Villanueva CM, Van Breda SG (2018) Drinking water nitrate and human health: an updated review. Int J Environ Res Public Health 15(7):1557

    Google Scholar 

  • Warneke S, Schipper LA, Matiasek MG, Scow KM, Cameron S, Bruesewitz DA, McDonald IR (2011) Nitrate removal, communities of denitrifiers and adverse effects in different carbon substrates for use in denitrification beds. Water Res 45:5463–5475

    CAS  Google Scholar 

  • Westerhoff P, James J (2003) Nitrate removal in zero-valent iron packed columns. Water Res 37:1818–1830

    CAS  Google Scholar 

  • Weyer PJ, Cerhan JR, Kross BC, Hallberg GR, Kantamneni J, Breuer G, Jones MP, Zheng W, Lynch CF (2001) Municipal drinking water nitrate level and cancer risk in older women: the Iowa Women’s Health Study. Epidemiology 12:327–338

    CAS  Google Scholar 

  • WHO (World Health Organization) (2005) Guidelines for Drinking Water Quality. WHO, Geneva, pp 362–365

    Google Scholar 

  • Wu C, Tang D, Wang Q, Wang J, Liu J, Guo Y, Liu S (2015) Comparison of denitrification performances using PLA/starch with different mass ratios as carbon source. Water Sci Technol 71:1019–1025

    CAS  Google Scholar 

  • Wu W, Yang L, Wang J (2013a) Denitrification performance and microbial diversity in a packed-bed bioreactor using PCL as carbon source and biofilm carrier. Appl Microbiol Biotechnol 97:2725–2733

    CAS  Google Scholar 

  • Wu W, Yang L, Wang J (2013b) Denitrification using PBS as carbon source and biofilm support in a packed-bed bioreactor. Environ Sci Pollut Res 20:333–339

    CAS  Google Scholar 

  • Xu Y, Qiu TL, Han ML, Li J, Wang XM (2011) Heterotrophic denitrification of nitrate-contaminated water using different solid carbon sources. Procedia Environ Sci 10:72–77

    CAS  Google Scholar 

  • Xu Z, Chai X (2017) Effect of weight ratios of PHBV/PLA polymer blends on nitrate removal efficiency and microbial community during solid-phase denitrification. Int Biodeterior Biodegradation 116:175–183

    CAS  Google Scholar 

  • Xu Z, Dai X, Chai X (2018) Effect of different carbon sources on denitrification performance, microbial community structure and denitrification genes. Sci Total Environ 634:195–204

    CAS  Google Scholar 

  • Xu Z, Dai X, Chai X (2019) Effect of temperature on tertiary nitrogen removal from municipal wastewater in a PHBV/PLA-supported denitrification system. Environ Sci Pollut Res 26:26893–26899

    CAS  Google Scholar 

  • Xu ZX, Shao L, Yin HL, Chu HQ, Yao YJ (2009) Biological denitrification using corncobs as a carbon source and biofilm carrier. Water Environ Res 81:242–247

    CAS  Google Scholar 

  • Yang GC, Lee HL (2005) Chemical reduction of nitrate by nanosized iron: kinetics and pathways. Water Res 39:884–894

    CAS  Google Scholar 

  • Yang Z, Shan C, Mei Y, Jiang Z, Guan X, Pan B (2018) Improving reductive performance of zero valent iron by H2O2/HCl pretreatment: a case study on nitrate reduction. Chem Eng J 334:2255–2263

    CAS  Google Scholar 

  • Ye L, Yu G, Zhou S, Zuo S, Fang C (2017) Denitrification of nitrate-contaminated groundwater in columns packed with PHBV and ceramsites for application as a permeable reactive barrier. Water Sci Technol Water Supply 17:1241–1248

    CAS  Google Scholar 

  • Zeng Y, Walker H, Zhu Q (2017) Reduction of nitrate by NaY zeolite supported Fe, Cu/Fe and Mn/Fe nanoparticles. J Hazard Mater 324:605–616

    CAS  Google Scholar 

  • Zhang J, Feng C, Hong S, Hao H, Yang Y (2012) Behavior of solid carbon sources for biological denitrification in groundwater remediation. Water Sci Technol 65:1696–1704

    CAS  Google Scholar 

  • Zhang J, Hao Z, Zhang Z, Yang Y, Xu X (2010) Kinetics of nitrate reductive denitrification by nanoscale zero-valent iron. Process Saf Environ Prot 88:439–445

    CAS  Google Scholar 

  • Zhang Q, Chen X, Wu H, Luo W, Liu X, Feng L, Zhao T (2019) Comparison of clay ceramsite and biodegradable polymers as carriers in pack-bed biofilm reactor for nitrate removal. Int J Environ Res Public Health 16:4184

    CAS  Google Scholar 

  • Zhang Q, Ji F, Xu X (2016) Effects of physicochemical properties of poly-ε-caprolactone on nitrate removal efficiency during solid-phase denitrification. Chem Eng J 283:604–613

    CAS  Google Scholar 

  • Zhang X, Zhang J, 2018. Effect of dissolved oxygen on biological denitrification using biodegradable plastic as the carbon source. IOP Conf Series: Earth and Environmental Science 121.

  • Zhang ZZ, Xu JJ, Shi ZJ, Bai YH, Cheng YF, Hu HY, Jin RC (2017) Unraveling the impact of nanoscale zero-valent iron on the nitrogen removal performance and microbial community of anammox sludge. Bioresour Technol 243:883–892

    CAS  Google Scholar 

  • Zhou W, Sun Y, Wu B, Zhang Y, Huang M, Miyanaga T, Zhang Z (2011) Autotrophic denitrification for nitrate and nitrite removal using sulfur-limestone. J Environ Sci 23:1761–1769

    CAS  Google Scholar 

  • Zhu SM, Deng YL, Ruan YJ, Guo XS, Shi MM, Shen JZ (2015) Biological denitrification using poly (butylene succinate) as carbon source and biofilm carrier for recirculating aquaculture system effluent treatment. Bioresour Technol 192:603–610

    CAS  Google Scholar 

Download references

Funding

Liaoning Provincial Scholarship for International Postgraduates, Natural Science Foundation of China (grants: 41672248), Natural Science Foundation of Liaoning Province (Grant No.: 20180550040), and Liaoning Distinguished Professorship Program (Liaojiaohan (2018)-35).

Author information

Authors and Affiliations

Authors

Contributions

George Kwame Amoako-Nimako performed the literature search and data analysis and drafted the work; Xinyao Yang provided the idea, advised on the structure and scope of the review, performed data analysis, and critical revisal of the work; Fangmin Chen analyzed the data and revised the work.

Corresponding author

Correspondence to Xinyao Yang.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Angeles Blanco

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amoako-Nimako, G.K., Yang, X. & Chen, F. Denitrification using permeable reactive barriers with organic substrate or zero-valent iron fillers: controlling mechanisms, challenges, and future perspectives. Environ Sci Pollut Res 28, 21045–21064 (2021). https://doi.org/10.1007/s11356-021-13260-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-13260-7

Keywords

Navigation