Exposure to common pesticides utilized in northern rice fields of Iran affects survival of non-target species, Pelophylax ridibundus (Amphibia: Ranidae)

Abstract

Amphibians are the most important vulnerable non-target vertebrate group that are affected by pesticides. Most previous studies have confirmed the destructive effects of pesticides. But, so far, no comprehensive studies have been carried out in Iran. Therefore, to estimate the mortality rate of frogs during the growing season in different cultivating systems, we examined the presence of pesticides in water and substrate as indicators of habitat quality and in the liver tissue of Marsh frog Pelophylax ridibundus (Pallas, 1771), enclosed in the prepared cages at five rice paddy fields in Mazandaran province, Iran. The measurement of pollution was done using mass gas chromatography method and statistical analyses by Minitab software. Furthermore, the probable movement pattern of free frogs was analyzed using capture-mark-recapture method. Thirteen pesticides were detected both in the habitat and in frogs’ liver tissue. Among them ß-Mevinphos, Fenitrothion, Bromofos, and Trifluralin had the most frequent occurrence in liver tissue, and Diazinon with concentrations up to 517.8 μg/Kg had the highest concentration. Furthermore, there is a significant correlation (R2 > 0.96) between water quality and frogs’ contamination, whereas, no correlation was observed between substrate pollution and frogs’ contamination. Pesticide concentrations were higher in two stations but lower than lethal doses to frogs, so that no mortality was observed at any of the stations. However, some specimens had a considerable muscle atrophy. Despite no significant movement pattern was detected, we can expect that if this trend continues, in a long term, they will face a reduction in the survival rate.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Akerblom N (2004) Agricultural pesticide toxicity to aquatic organisms: a literature review. Research report no. 16 of Department of Environmental Assessmen, Swedish University of Agricultural Sciences, Sweden

  2. Albanis TA, Hela DG, Sakellarides TM, Konstantinou IK (1998) Monitoring of pesticide residues and their metabolites in surface and underground waters of Imathia (N. Greece) by means of solid-phase extraction disks and gas chromatography. J Chromatogr A 823(1–2):59–71. https://doi.org/10.1016/S0021-9673(98)00304-5

    CAS  Article  Google Scholar 

  3. Amstrup SC, McDonald TL, Manly BFJ (2010) Handbook of capture-recapture analysis. Princeton University Press

  4. Bannikov AG, Darevskii IS, Ishtenko VG, Rustamov AK, Shterbak NN (1977) A guide to the amphibians and reptiles of the USSR. Prosveshtenie, Moscow (In Russian)

    Google Scholar 

  5. Benton TG, Vickery JA, Wilson JD (2003) Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol Evol 18(4):182–188. https://doi.org/10.1016/S0169-5347(03)00011-9

    Article  Google Scholar 

  6. Blaustein AR, Romansic JM, Kiesecker JM, Hatch AC (2003) Ultraviolet radiation, toxic chemicals and amphibian population declines. Divers Distrib 9(2):123–140. https://doi.org/10.1046/j.1472-4642.2003.00015.x

    Article  Google Scholar 

  7. Bridges C, Semlitsch R (2000) Variation in pesticide tolerance of tadpoles among and within species of Ranidae and patterns of amphibian decline. Conserv Biol 14(5):1490–1499. https://doi.org/10.1046/j.1523-1739.2000.99343.x

    Article  Google Scholar 

  8. Bridges CM, Semlitsch RD, Price A (2001) Genetic variation in insecticide tolerance in a population of southern leopard frogs (Rana sphenocephala): implications for amphibian conservation. Copeia 2001(1):7–13. https://doi.org/10.1643/0045-8511

  9. Brodeur JC, Jimena DM, Candioti JV, Poliserpi MB, D'Andrea MF, Bahl MF (2020) Frog body condition: basic assumptions, comparison of methods and characterization of natural variability with field data from Leptodactylus latrans. Ecol Indic 112:106098. https://doi.org/10.1016/j.ecolind.2020.106098

    Article  Google Scholar 

  10. Brühl CA, Schmidt T, Pieper S, Alscher A (2013) Terrestrial pesticide exposure of amphibians: an underestimated cause of global decline? Sci Rep 3:1135. https://doi.org/10.1038/srep01135

    CAS  Article  Google Scholar 

  11. Burraco P, Gomez-Mestre I (2016) Physiological stress responses in amphibian larvae to multiple stressors reveal marked anthropogenic effects even below lethal levels. Physiol Biochem Zool 89(6):462–472. https://doi.org/10.1086/688737

    Article  Google Scholar 

  12. Carey C, Alexander MA (2003) Climate change and amphibian declines: is there a link? Divers Distrib 9(2):111–121. https://doi.org/10.1046/j.1472-4642.2003.00011.x

    Article  Google Scholar 

  13. Chapman DG (1951) Some properties of the hypergeometric distribution with applications to zoological sample census. Univ Calif Publ Stat 1:131–159

    Google Scholar 

  14. Christin MS, Ménard L, Giroux I, Marcogliese DJ, Ruby S, Cyr D, Fournier M, Brousseau P (2013) Effects of agricultural pesticides on the health of Rana pipiens frogs sampled from the field. Environ Sci Pollut Res 20:601–661. https://doi.org/10.1007/s11356-012-1160-1

  15. Collins JP, Crump ML (2009) Extinction in our times: global amphibian decline. Oxford University Press, New York

    Google Scholar 

  16. Collins JP, Storfer A (2003) Global amphibian declines: sorting the hypotheses. Divers Distrib 9(2):89–98. https://doi.org/10.1046/j.1472-4642.2003.00012.x

    Article  Google Scholar 

  17. Coronado GD, Thompson B, Strong L, Griffith WC, Islas I (2004) Agricultural task and exposure to organophosphate pesticides among farmworkers. Environ Health Perspect 112(2):142–147. https://doi.org/10.1289/2Fehp.6412

    CAS  Article  Google Scholar 

  18. Cothran RD, Brown JM, Relyea RA (2013) Proximity to agriculture is correlated with pesticide tolerance: evidence for the evolution of amphibian resistance to modern pesticides. Evol Appl 6(5):832–841. https://doi.org/10.1111/eva.12069

    CAS  Article  Google Scholar 

  19. Davidson C (2004) Declining downwind: amphibian population declines in California and historical pesticide use. Ecol Appl 14(6):1892–1902. https://doi.org/10.1890/03-5224

    Article  Google Scholar 

  20. Davidson C, Knapp RA (2007) Multiple stressors and amphibian declines: dual impacts of pesticides and fish on yellow-legged frogs. Ecol Appl 17(2):587–597. https://doi.org/10.1890/06-0181

    Article  Google Scholar 

  21. Davis CL, DAW M, Walls SC, Barichivich WJ, Riley JW, Brown ME (2017) Species interactions and the effects of climate variability on a wetland amphibian metacommunity. Ecol Appl 27(1):285–296. https://doi.org/10.1002/eap.1442

    Article  Google Scholar 

  22. Dehghani R, Moosavi SG, Eslami H, Mohammadi M, Jalali Z, Zamini N (2011) Surveying of pesticides commonly on the markets of Iran in 2009. J Environ 2(8):1113–1117. https://doi.org/10.4236/jep.2011.28129

    CAS  Article  Google Scholar 

  23. Dehghani MH, Niasar ZS, Mehrnia MR, Shayeghi M, al-Ghouti MA, Heibati B, McKay G, Yetilmezsoy K (2017) Optimizing the removal of organophosphorus pesticide Malathion from water using multi-walled carbon nanotubes. Chem Eng 310(1):22–32. https://doi.org/10.1016/j.cej.2016.10.057

    CAS  Article  Google Scholar 

  24. Dirzo R, Raven PH (2003) Global state of biodiversity and loss. Annu Rev Environ Resour 28:137–167. https://doi.org/10.1146/annurev.energy.28.050302.105532

    Article  Google Scholar 

  25. Dodd CK (2010) Amphibian ecology and conservation: a handbook of techniques. Oxford University Press, London

    Google Scholar 

  26. Donnelly MA, Guyer C, Juterbock EJ, Alford RA (1994) Techniques for marking amphibians. In: Heyer WR, Donnelly MA, McDiarmid RW, Hayek LC, Foster MS (eds) Measuring and monitoring biological diversity: standard methods for amphibians. Smithsonian Institution Press, Washington, DC, pp 275–284

    Google Scholar 

  27. Edgell K, Wesselman R (1989) USEPA method study 36 - Sw-846 methods 8270/3510 GC/MS method for semivolatile organics: capillary column technique separatory funnel liquid-liquid extraction. U.S. Environmental Protection Agency, Washington, D.C. EPA/600/4-89/010 (NTIS Pb89190581)

  28. Elbaz A, Clavel J, Rathouz PJ, Moisan F, Galanaud JP, Delemotte B, Alpérovitch A, Tzourio C (2009) Professional exposure to pesticides and Parkinson disease. Ann Neurol 66(4):494–504. https://doi.org/10.1002/ana.21717

    Article  Google Scholar 

  29. Ezemonye L, Tongo I (2010) Sublethal effects of Endosulfan and Diazinon pesticides on glutathione-S-transferase (GST) in various tissues of adult amphibians (Bufo regularis). Chemosphere 81(2):214–217. https://doi.org/10.1016/j.chemosphere.2010.06.039

  30. Fellers GM, McConnell LL, Pratt D, Datta S (2004) Pesticides in mountain yellow-legged frogs (Rana muscosa) from the Sierra Nevada Mountains of California, USA. Environ Toxicol Chem 23(9):2170–2177. https://doi.org/10.1897/03-491

  31. Forbes VE, Sibly RM, Calow P (2001) Toxicant impacts on density-limited populations: a critical review of theory, practice, and results. Ecol Appl 11(4):1249–1257. https://doi.org/10.1890/1051-0761

    Article  Google Scholar 

  32. Fryday S, Thompson H (2012) Toxicity of pesticides to aquatic and terrestrial life stages of amphibians and occurrence, habitat use and exposure of amphibian species in agricultural environments. EFSA Supporting Publications 9(9):343E. https://doi.org/10.2903/sp.efsa.2012.EN-343

    Article  Google Scholar 

  33. Gardner T (2001) Declining amphibian populations: a global phenomenon in conservation biology. Anim Biodivers Conserv 24(2):25–44

    Google Scholar 

  34. Ghasemzadeh L, Mohajereani H, Nasri S, Rostami A (2015) The effect of Diazinon exposure on hepatic tissue and enzymes in male frog Rana ridibunda. Progress in Biological Sciences 5(2):223–232. https://doi.org/10.22059/pbs.2015.56040

  35. Gonçalves MW, de Campos CBM, Godoy FR, Gambale PG, Nunes HF, Nomura F, Bastos RP, da Cruz AD, Silva DME (2019) Assessing genotoxicity and mutagenicity of three common amphibian species inhabiting agroecosystem environment. Arch Environ Contam Toxicol 77(3):409–420. https://doi.org/10.1007/s00244-019-00647-4

    CAS  Article  Google Scholar 

  36. Green RE, Cornell SJ, Scharlemann JPW, Balmford A (2005) Farming and the fate of wild nature. Science 307(5709):550–555. https://doi.org/10.1126/science.1106049

    CAS  Article  Google Scholar 

  37. Greulich K, Pflugmacher S (2003) Differences in susceptibility of various life stages of amphibians to pesticide exposure. Aquat Toxicol 65(3):329–336. https://doi.org/10.1016/s0166-445x(03)00153-x

    CAS  Article  Google Scholar 

  38. Hachtel M, Ortmann D, Kupfer A, Sander U, Schmidt P, Weddeling K (2005) Return rates and long-term capture history of amphibians in an agricultural landscape near Bonn (Germany). Russ J Herpetol 12(supplement):146–149

  39. Hassan J, Farahani A, Shamsipur M, Damerchili F (2010) Rapid and simple low density miniaturized homogeneous liquid–liquid extraction and gas chromatography/mass spectrometric determination of pesticide residues in sediment. J Hazard Mater 184(1–3):869–871

    CAS  Article  Google Scholar 

  40. Hegde G, Krishnamurthy SV (2014) Analysis of health status of the frog Fejervarya limnocharis (Anura: Ranidae) living in rice paddy fields of Western Ghats, using body condition factor and AChE content. Ecotoxicol Environ Contam 9(1):69–76

  41. Hollen RM, Beugelsdijk TJ (1992) A standard laboratory module for automating the EPA 3550 sonication method. In abstracts of papers of the American Chemical Society (Vol. 203, P. 167–Iec). Amer chemical Soc, 1155 16th St, Nw, Washington, dc 20036

  42. Isworo S, Purwanto I, Sabdono A (2015) Impact of pesticide use on organophosphorus and organochlorine concentration in water and sediment of Rawa Pening lake, Indonesia. Res J Environ Sci 9(5):233–240. https://doi.org/10.3923/rjes.2015.233.240

    CAS  Article  Google Scholar 

  43. Jensen JB, Camp CD (2003) Human exploitation of amphibians: direct and indirect impacts. In: Semlitsch RD (ed) Amphibian conservation. Smithsonian Institution Press, Washington, DC, pp 199–213

    Google Scholar 

  44. Kappers WA, Edwards RJ, Murray S, Boobis AR (2001) Diazinon is activated by CYP2C19 in human liver. Toxicol Appl Pharmacol 177(1):68–76. https://doi.org/10.1006/taap.2001.9294

    CAS  Article  Google Scholar 

  45. Khan MZ, Zaheer M, Fatima F (2003) Effect of lambda cyhalothrin (pyrethroid) and monocrotophos (organophosphate) on cholinesterase activity in liver, kidney and brain of Rana cyanophlyctis. Korean J Biol Sci 7(2):165–168. https://doi.org/10.1080/12265071.2003.9647700

  46. Kittusamy G, Kandaswamy C, Kandan N, Subramanian M (2014) Pesticide residues in two frog species in a paddy agroecosystem in Palakkad district, Kerala, India. Bull Environ Contam Toxicol 93(6):728–734. https://doi.org/10.1007/s00128-014-1351-1

    CAS  Article  Google Scholar 

  47. Knapp RA (2005) Effects of nonnative fish and habitat characteristics on lentic herpetofauna in Yosemite National Park, USA. Biol Conserv 121(2):265–279. https://doi.org/10.1016/j.biocon.2004.05.003

    Article  Google Scholar 

  48. Konstantinou IK, Hela DG, Albanis TA (2006) The status of pesticide pollution in surface waters (rivers and lakes) of Greece. Environ Pollut 141(3):555–570. https://doi.org/10.1016/j.envpol.2005.07.024

    CAS  Article  Google Scholar 

  49. Kovar R, Brabec M, Vita R, Bocek R (2009) Spring migration distances of some central European amphibian species. Amphibia-Reptilia 30(3):367–378. https://doi.org/10.1163/156853809788795236

    Article  Google Scholar 

  50. Kreuger J (1999) Pesticides in the environment: atmospheric deposition and transport to surface waters. Swedish University of Agricultural Sciences, Dissertation

    Google Scholar 

  51. Lichtenberg E (2013) Economics of pesticide use and regulation. In: Shogren JF (ed) Natural resource, and environmental economics, 3rd edn. Elsevier, Waltham, pp 86–97. https://doi.org/10.1016/B978-0-12-375067-9.00092-9

    Google Scholar 

  52. Mann RM, Hyne RV, Choung CB, Wilson SP (2009) Amphibians and agricultural chemicals: review of the risks in a complex environment. Environ Pollut 157(11):2903–2927. https://doi.org/10.1016/j.envpol.2009.05.015

    CAS  Article  Google Scholar 

  53. Martin D, Hong H (1991) The use of Bactine® in the treatment of open wounds and other lesions in captive anurans. Herpetol Rev 22(21):462

    CAS  Google Scholar 

  54. Matson PA, Parton WJ, Power AG, Swift MJ (1997) Agricultural intensification and ecosystem properties. Science 277(5325):504–509. https://doi.org/10.1126/science.277.5325.504

    CAS  Article  Google Scholar 

  55. Morehouse EA, James TY, Ganley ARD, Vilgalys R, Berger L, Murphy PJ, Longcore JE (2003) Multilocus sequence typing suggests the chytrid pathogen of amphibians is a recently emerged clone. Mol Ecol 12(2):395–403. https://doi.org/10.1046/j.1365-294x.2003.01732.x

    CAS  Article  Google Scholar 

  56. Müller K, Deurer M, Hartmann H, Bach M, Spiteller M, Frede HG (2003) Hydrological characterisation of pesticide loads using hydrograph separation at different scales in a German catchment. J Hydrol 273(1–4):1–17. https://doi.org/10.1016/S0022-1694(02)00315-3

    Article  Google Scholar 

  57. Pesticides O (2007) Method 8141b organophosphorus compounds by gas chromatography

  58. Pider AW, Storey KB, Ultsch GR (1992) Estivation and hibernation. In: Feder ME, Burggren WW (eds) Environmental physiology of the amphibians. The University of Chicago Press, Chicago, pp 250–274

    Google Scholar 

  59. Piha H (2006) Impacts of agriculture on amphibians at multiple scales

  60. Pishgar-Komleh SH, Sefeedpari P, Rafiee S (2011) Energy and economic analysis of rice production under different farm levels in Guilan province of Iran. Energy 36(10):5824–5831. https://doi.org/10.1016/j.energy.2011.08.044

    Article  Google Scholar 

  61. R Development Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3–900051–07-0, URL http://www.Rproject.org

  62. Ramalho WP, Jorge RF, Baiocchi LB, Peña AP, Pires RAP (2013) Study on the population structure of the paradoxical frog, Pseudis bolbodactyla (Amphibia: Anura: Hylidae), using natural markings for individual identification. Zoologia (Curitiba) 30(6):623–629. https://doi.org/10.1590/S1984-46702013005000001

  63. Rezaeigolestani M, Hashemi M (2018) A review of pesticide residues in agricultural and food products of Iran. Journal of Nutrition, Fasting and Health 6(1):1–6. https://doi.org/10.22038/jnfh.2018.33593.1125

    Article  Google Scholar 

  64. Sala OE, Chapin FS, Armesto JJ (2000) Global biodiversity scenarios for the year 2100. Science 287(5459):1770–1774. https://doi.org/10.1126/science.287.5459.1770

    CAS  Article  Google Scholar 

  65. Sams C, Cocker J, Lennard MS (2003) 544 metabolism of chlorpyrifos and diazinon by human liver microsomes. Toxicol Lett 144(1):s146. https://doi.org/10.1016/S0378-4274(03)90543-1

    Article  Google Scholar 

  66. Schäfer RB, van den Brink PJ, Liess M (2011) Impacts of pesticides on freshwater ecosystems. In: Sánchez-Bayo F, van den Brink PJ, Mann R (eds) Ecological impacts of toxic chemicals. Bentham Science Publishers, Sharjah, pp 111–137

    Google Scholar 

  67. Schmidt BR (2004) Pesticides, mortality and population growth rate. Trends Ecol Evol 19(9):459–460. https://doi.org/10.1016/j.tree.2004.06.006

    Article  Google Scholar 

  68. Seber GAF, Schwarz CJ (2002) Capture-recapture: before and after EURING 2000. J Appl Stat 29(1–4):5–18. https://doi.org/10.1080/02664760120108700

    Article  Google Scholar 

  69. Seitz A, Faller-Doepner U, Reh W (1992) Radio-tracking of the common frog (Rana temporaria). In: Priede IG, Swift SM (eds) Wildlife telemetry: remote monitoring and tracking of animals. Ellis Horwood, London, pp 484–489

  70. Semlitsch RD, Bridges CM, Welch AM (2000) Genetic variation and a fitness tradeoff in the tolerance of gray treefrog (Hyla versicolor) tadpoles to the insecticide carbaryl. Oecologia 125(2):179–185. https://doi.org/10.1007/s004420000443

  71. Sharifzadeh MS, Abdollahzadeh G, Damalas CA, Rezaei R (2018) Farmers’ criteria for pesticide selection and use in the pest control process. Agriculture 8(2):24. https://doi.org/10.3390/agriculture8020024

    Article  Google Scholar 

  72. Snegin EA, Barkhatov AS (2019) Morphogenetic structure of marsh frog populations of Pelophylax ridibundus (Amphibia, Anura) under conditions of urban environment. Theoret Appl Ecol 1:47–53. https://doi.org/10.25750/1995-4301-2019-1-047-053

  73. Sparling DW, Fellers GM, McConnell LL (2001) Pesticides and amphibian population declines in California, USA. Environ Toxicol Chem 20(7):1591–1595. https://doi.org/10.1897/1551-5028(2001)020%3C1591:paapdi%3E2.0.co;2

    CAS  Article  Google Scholar 

  74. Stakh VO, Khamar IS, Reshetylo OS, Zabytivskyi YМ (2017) Phenes of water frogs (Pelophylax) as the indicators of water bodies' contamination in pre-Carpathians, roztochia, lesser and western Polissia. Stud Biol 11(1):161–168

    Article  Google Scholar 

  75. Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ASL, Fischman DL, Waller RW (2004) Status and trends of amphibian declines and extinctions worldwide. Science 306(5702):1783–1786. https://doi.org/10.1126/science.1103538

    CAS  Article  Google Scholar 

  76. Subrero E, Sforzini S, Viarengo A, Cucco M (2019) Exposure to anti-mosquito insecticides utilized in rice fields affects survival of two non-target species, Ischnura elegans and Daphnia magna. Paddy Water Environ 17:1–11. https://doi.org/10.1007/s10333-018-0678-3

    Article  Google Scholar 

  77. Taylor SK, Williams ES, Mills KW (1999) Effects of Malathion on disease susceptibility in Woodhouse’s toads. J Wildl Dis 35(3):536–541. https://doi.org/10.7589/0090-3558-35.3.536

    CAS  Article  Google Scholar 

  78. Taylor B, Skelly D, Demarchis LK, Slade MD, Galusha D, Rabinowitz PM (2005) Proximity to pollution sources and risk of amphibian limb malformation. Environ Health Perspect 113(11):1497–1501. https://doi.org/10.1289/2Fehp.7585

    Article  Google Scholar 

  79. Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418(6898):671–677. https://doi.org/10.1038/nature01014

    CAS  Article  Google Scholar 

  80. Tongo I, Ezemonye L, Ochei U (2012) Diazinon mediated biochemical changes in the African toad (Bufo regularis). J Xenobiot 2(1):e4. https://doi.org/10.4081/xeno.2012.e4

  81. Tramontano R (1997) Continuous radio tracking of the common frog, Rana temporaria. In: Böhme W, Bischoff W, Ziegler T (eds) Herpetologia Bonnensis. SEH, Bonn, pp 359–365

    Google Scholar 

  82. Vo A (1992) Use of a centrifugal evaporator to reduce emissions of solvents used in EPA method 3510 prior to GC-MS analysis. J High Resolut Chromatogr 15(8):552–555. https://doi.org/10.1002/jhrc.1240150814

    CAS  Article  Google Scholar 

  83. Vogiatzis AK, Loumbourdis NS (1997) Uptake, tissue distribution, and depuration of cadmium (Cd) in the frog Rana ridibunda. Bull Environ Contam Toxicol 59(5):770–776. https://doi.org/10.1007/s001289900547

  84. Williams BK, Nichols JD, Conroy MJ (2002) Analysis and Management of Animal Populations. Academic Press, San Francisco

    Google Scholar 

  85. Zaripova FF, Fayzulin AI (2012) Characteristic of morphophysiological parameters of population of the marsh frog Rana ridibunda (Anura, Amphibia) in urban areas in the republic of Bashkotorstan. Proc Samara Sci Center Russ Acad Sci 14(5):145–149 (in Russian)

  86. Zhelev Z, Tsonev CV, Arnaudova DN (2017) Health status of Pelophylax ridibundus (Pallas, 1771) (Amphibia: Ranidae) in a rice paddy ecosystem in southern Bulgaria: body condition factor and fluctuating asymmetry. Acta Zool Bulg 69(Suppl 8):169–177

  87. Zhelev Z, Tsonev S, Georgieva K, Arnaudova D (2018) Health status of Pelophylax ridibundus (Amphibia: Ranidae) in a rice paddy ecosystem in southern Bulgaria and its importance in assessing environmental state: haematological parameters. Environ Sci Pollut Res 25:7884–7895. https://doi.org/10.1007/s11356-017-1109-5

  88. Zhelev Zh, Tsonev SV, Angelov MV (2019) Fluctuating asymmetry in Pelophylax ridibundus meristic morphological traits and their importance in assessing environmental health. Ecol Indic 107:105589. https://doi.org/10.1016/j.scolind.2019.105589

  89. Zhelev Zh, Arnaudova DN, Popgeorgiev GS, Tsonev SV (2020) In situ assessment of health status and heavy metal bioaccumulation of adult Pelophylax ridibundus (Anura: Ranidae) individuals inhabiting polluted area in southern Bulgaria. Ecol Indic 115:106413. https://doi.org/10.1016/j.ecolind.2020.106413

Download references

Acknowledgments

We acknowledge Dr. Nader Bahramifar, Natural Resources and Marin Science faculty member at Tarbiat Modares University, Noor branch, Mazandaran, and Dr. Sedigheh Safaei, curators of Danesh Pazhoohan Payesh Amin Co. for collaborating in extracting and measuring pesticides. Our special thanks is dedicated to A. Sharifi for validation of statistical analyzes, and P. Azizi, E. Esmaeili, and M. Hasanpour for helpful information about pesticide consumption in Iran. Also, the authors are grateful for the kind cooperation of farmers: S. Shokrollah-Pour and Jalali brothers.

Data and material availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Author information

Affiliations

Authors

Contributions

The experiment was planned by Nadimeh Shojaei, Saeid Naderi, and Esmaeil Yasari. Nadimeh Shojaei, Saeid Naderi, and Naeim Moradi planned and conducted the sample preparations, method development, and analyses. The manuscript was drafted by N. Shojaei and N. Moradi. S. Naderi and E. Yasari critically examined and revised the manuscript.

Corresponding author

Correspondence to Saeid Naderi.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

The publisher has authors consent.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shojaei, N., Naderi, S., Yasari, E. et al. Exposure to common pesticides utilized in northern rice fields of Iran affects survival of non-target species, Pelophylax ridibundus (Amphibia: Ranidae). Environ Sci Pollut Res (2021). https://doi.org/10.1007/s11356-021-13168-2

Download citation

Keywords

  • Chloroacetamide
  • Dinitroaniline
  • Ecotoxicity
  • Marsh frog
  • Organoclorine
  • Organophosphate
  • Paddy field