Coupling relationship between construction land expansion and PM2.5 in China

Abstract

Urban air pollution with PM2.5 as the main pollutant has become increasingly prominent in China since 2010. Scholars have conducted many studies on how urbanization affects PM2.5, but few concerns about the relationship between construction land (CL) expansion and PM2.5 at different scales from the perspective of expansion rate. Therefore, this study takes CL and PM2.5 data in China to describe the spatiotemporal progress of atmospheric environmental pollution and then adopts the overall and spatial coupling models to quantitatively reveal the dynamic relationship between them. The results indicate that the growth rate of PM2.5-polluted area in China was found to increase rapidly for 2000–2010 time period, followed by a continuous decline afterward. The annual average growth rates of CL area and PM2.5-polluted area within 15 years were 4.43% and 2.46%, respectively. Moreover, the barycenter distance between PM2.5 concentration and CL decreased gradually, and the two barycenters approached closer. Also, the spatial coupling coordination of CL and PM2.5 enhanced in Central, West, and East China but weakened in Northeast. Cities with a “very strong” coupling type are mainly located in the “Chongqing-Beijing” belt and the lower-middle reaches of the Yangtze River. Finally, the spatial coupling model results show that a low PM2.5 concentration is closely related to CL expansion. This study will provide a basis for cross-regional joint air pollution control and the management of heavily polluted areas in China.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data Availability

The datasets used during the current study are available from the corresponding author on reasonable request.

References

  1. Beloconi A, Kamarianakis Y, Chrysoulakis N (2016) Estimating urban PM10 and PM2.5 concentrations, based on synergistic MERIS/AATSR aerosol observations, land cover and morphology data. Remote Sens Environ 172:148–164. https://doi.org/10.1016/j.rse.2015.10.017

    Article  Google Scholar 

  2. Boys BL, Martin RV, Van Donkelaar A et al (2014) Fifteen-year global time series of satellite-derived fine particulate matter. Environ Sci Technol 48:11109–11118. https://doi.org/10.1021/es502113p

    CAS  Article  Google Scholar 

  3. Cárdenas Rodríguez M, Dupont-Courtade L, Oueslati W (2016) Air pollution and urban structure linkages: evidence from European cities. Renew Sustain Energy Rev 53:1–9. https://doi.org/10.1016/j.rser.2015.07.190

    CAS  Article  Google Scholar 

  4. Cui S, Song Z, Zhang L, Shen Z, Hough R, Zhang Z, An L, Fu Q, Zhao Y, Jia Z (2021) Spatial and temporal variations of open straw burning based on fire spots in northeast China from 2013 to 2017. Atmos Environ 244:117962. https://doi.org/10.1016/j.atmosenv.2020.117962

    CAS  Article  Google Scholar 

  5. Ding M, Cao W, Zhang D et al (2018) Study on the measurement and coordination of road traffic and economic development in Anhui Province. Resour Environ Yangtze Basin 27:503–513. https://doi.org/10.1051/matecconf/201712107005

    Article  Google Scholar 

  6. Du Y, Wan Q, Liu H et al (2019) How does urbanization influence PM 2.5 concentrations? Perspective of spillover effect of multi-dimensional urbanization impact. J Clean Prod 220:974–983. https://doi.org/10.1016/j.jclepro.2019.02.222

    CAS  Article  Google Scholar 

  7. Ewing R, Cervero R (2010) Travel and the built environment. J Am Plan Assoc 76:265–294. https://doi.org/10.1080/01944361003766766

    Article  Google Scholar 

  8. Fan J, Tao A, Lv C (2010) The coupling mechanism of the centroids of economic gravity and population gravity and its effect on the regional gap in China. Prof Geogr 29:087–095

    CAS  Google Scholar 

  9. Fang K, Wang T, He J, Wang T, Xie X, Tang Y, Shen Y, Xu A (2020) The distribution and drivers of PM2.5 in a rapidly urbanizing region: the belt and road initiative in focus. Sci Total Environ 716:137010. https://doi.org/10.1016/j.scitotenv.2020.137010

    CAS  Article  Google Scholar 

  10. Feng T, Du H, Lin Z, Zuo J (2020) Spatial spillover effects of environmental regulations on air pollution: evidence from urban agglomerations in China. J Environ Manage 272:110998. https://doi.org/10.1016/j.jenvman.2020.110998

    CAS  Article  Google Scholar 

  11. Flörke M, Schneider C, McDonald RI (2018) Water competition between cities and agriculture driven by climate change and urban growth. Nat Sustain 1:51–58. https://doi.org/10.1038/s41893-017-0006-8

    Article  Google Scholar 

  12. Fu M, Kelly JA, Clinch JP (2020) Prediction of PM2.5 daily concentrations for grid points throughout a vast area using remote sensing data and an improved dynamic spatial panel model. Atmos Environ 237:117667. https://doi.org/10.1016/j.atmosenv.2020.117667

    CAS  Article  Google Scholar 

  13. Guo D, Wang R, Zhao P (2020) Spatial distribution and source contributions of PM2.5 concentrations in Jincheng, China. Atmos Pollut Res 11:1281–1289. https://doi.org/10.1016/j.apr.2020.05.004

    CAS  Article  Google Scholar 

  14. Hong C, Zhang Q, Zhang Y, Davis SJ, Zhang X, Tong D, Guan D, Liu Z, He K (2020) Weakening aerosol direct radiative effects mitigate climate penalty on Chinese air quality. Nat Clim Chang 10:845–850. https://doi.org/10.1038/s41558-020-0840-y

    CAS  Article  Google Scholar 

  15. Hong Y, Chen J, Deng J, Tong L, Xu L, Niu Z, Yin L, Chen Y, Hong Z (2016) Pattern of atmospheric mercury speciation during episodes of elevated PM2.5 levels in a coastal city in the Yangtze River Delta, China. Environ Pollut 218:259–268. https://doi.org/10.1016/j.envpol.2016.06.073

    CAS  Article  Google Scholar 

  16. Jiang P, Yang J, Huang C, Liu H (2018) The contribution of socioeconomic factors to PM2.5 pollution in urban China. Environ Pollut 233:977–985. https://doi.org/10.1016/j.envpol.2017.09.090

    CAS  Article  Google Scholar 

  17. Leonard RJ, McArthur C, Hochuli DF (2016) Particulate matter deposition on roadside plants and the importance of leaf trait combinations. Urban For Urban Green 20:249–253. https://doi.org/10.1016/j.ufug.2016.09.008

    Article  Google Scholar 

  18. Li G, Sun S, Fang C (2018) The varying driving forces of urban expansion in China: insights from a spatial-temporal analysis. Landsc Urban Plan 174:63–77. https://doi.org/10.1016/j.landurbplan.2018.03.004

    Article  Google Scholar 

  19. Li L, Wang K, Chen W, Zhao Q, Liu L, Liu W, Liu Y, Jiang J, Liu J, Zhang M (2020a) Atmospheric pollution of agriculture-oriented cities in Northeast China: a case in Suihua. J Environ Sci 97:85–95. https://doi.org/10.1016/j.jes.2020.04.038

    Article  Google Scholar 

  20. Li X, Zhang Q, Zhang Y, Zheng B, Wang K, Chen Y, Wallington TJ, Han W, Shen W, Zhang X, He K (2015) Source contributions of urban PM2.5 in the Beijing–Tianjin–Hebei region: changes between 2006 and 2013 and relative impacts of emissions and meteorology. Atmos Environ 123:229–239. https://doi.org/10.1016/j.atmosenv.2015.10.048

    CAS  Article  Google Scholar 

  21. Li Y, Liu M, Li R, Sun P, Xia H, He T (2020b) Polycyclic aromatic hydrocarbons in the soils of the Yangtze River Delta Urban Agglomeration, China: influence of land cover types and urbanization. Sci Total Environ 715:137011. https://doi.org/10.1016/j.scitotenv.2020.137011

    CAS  Article  Google Scholar 

  22. Liang L, Wang Z, Li J (2019) The effect of urbanization on environmental pollution in rapidly developing urban agglomerations. J Clean Prod 237:117649. https://doi.org/10.1016/j.jclepro.2019.117649

    Article  Google Scholar 

  23. Lim C-H, Ryu J, Choi Y, Jeon SW, Lee WK (2020) Understanding global PM2.5 concentrations and their drivers in recent decades (1998–2016). Environ Int 144:106011. https://doi.org/10.1016/j.envint.2020.106011

    CAS  Article  Google Scholar 

  24. Lin B, Zhu J (2018) Changes in urban air quality during urbanization in China. J Clean Prod 188:312–321. https://doi.org/10.1016/j.jclepro.2018.03.293

    CAS  Article  Google Scholar 

  25. Lin Y, Yuan X, Zhai T, Wang J (2020) Effects of land-use patterns on PM2.5 in China’s developed coastal region: exploration and solutions. Sci Total Environ 703:135602. https://doi.org/10.1016/j.scitotenv.2019.135602

    CAS  Article  Google Scholar 

  26. Liu XJ, Xia SY, Yang Y, Wu JF, Zhou YN, Ren YW (2020) Spatiotemporal dynamics and impacts of socioeconomic and natural conditions on PM2.5 in the Yangtze River Economic Belt. Environ Pollut 263:114569. https://doi.org/10.1016/j.envpol.2020.114569

    CAS  Article  Google Scholar 

  27. Lu X, Lin C, Li W, Chen Y, Huang Y, Fung JCH, Lau AKH (2019) Analysis of the adverse health effects of PM2.5 from 2001 to 2017 in China and the role of urbanization in aggravating the health burden. Sci Total Environ 652:683–695. https://doi.org/10.1016/j.scitotenv.2018.10.140

    CAS  Article  Google Scholar 

  28. Luo J, Du P, Samat A et al (2017) Spatiotemporal pattern of PM 2.5 concentrations in mainland China and analysis of its influencing factors using geographically weighted regression. Sci Rep 7:1–14. https://doi.org/10.1038/srep40607

    CAS  Article  Google Scholar 

  29. Ma Z, Liu R, Liu Y, Bi J (2019) Effects of air pollution control policies on PM2.5 pollution improvement in China from 2005 to 2017: a satellite-based perspective. Atmos Chem Phys 19:6861–6877. https://doi.org/10.5194/acp-19-6861-2019

    CAS  Article  Google Scholar 

  30. Maji KJ, Li VO, Lam JC (2020) Effects of China’s current Air Pollution Prevention and Control Action Plan on air pollution patterns, health risks and mortalities in Beijing 2014–2018. Chemosphere 260:127572. https://doi.org/10.1016/j.chemosphere.2020.127572

    CAS  Article  Google Scholar 

  31. Mcdonald RI, Kareiva P, Forman RTT (2008) The implications of current and future urbanization for global protected areas and biodiversity conservation. Biol Conserv 141:1695–1703. https://doi.org/10.1016/j.biocon.2008.04.025

    Article  Google Scholar 

  32. Pinault L, Tjepkema M, Crouse DL, Weichenthal S, van Donkelaar A, Martin RV, Brauer M, Chen H, Burnett RT (2016) Risk estimates of mortality attributed to low concentrations of ambient fine particulate matter in the Canadian community health survey cohort. Environ Heal 15:18. https://doi.org/10.1186/s12940-016-0111-6

    CAS  Article  Google Scholar 

  33. Seto KC, Sánchez-Rodríguez R, Fragkias M (2010) The new geography of contemporary urbanization and the environment. Annu Rev Environ Resour 35:167–194. https://doi.org/10.1146/annurev-environ-100809-125336

    Article  Google Scholar 

  34. Sgrigna G, Sæbø A, Gawronski S, Popek R, Calfapietra C (2015) Particulate matter deposition on Quercus ilex leaves in an industrial city of central Italy. Environ Pollut 197:187–194. https://doi.org/10.1016/j.envpol.2014.11.030

    CAS  Article  Google Scholar 

  35. Shi C, Yuan R, Wu B, Meng Y, Zhang H, Zhang H, Gong Z (2018) Meteorological conditions conducive to PM2.5 pollution in winter 2016/2017 in the Western Yangtze River Delta, China. Sci Total Environ 642:1221–1232. https://doi.org/10.1016/j.scitotenv.2018.06.137

    CAS  Article  Google Scholar 

  36. Shi K, Li Y, Chen Y, Li L, Huang C (2019a) How does the urban form-PM2.5 concentration relationship change seasonally in Chinese cities? A comparative analysis between national and urban agglomeration scales. J Clean Prod 239:118088. https://doi.org/10.1016/j.jclepro.2019.118088

    Article  Google Scholar 

  37. Shi Y, Ren C, Lau KKL, Ng E (2019b) Investigating the influence of urban land use and landscape pattern on PM2.5 spatial variation using mobile monitoring and WUDAPT. Landsc Urban Plan 189:15–26. https://doi.org/10.1016/j.landurbplan.2019.04.004

    Article  Google Scholar 

  38. Siddique HMA, Kiani AK (2020) Industrial pollution and human health: evidence from middle-income countries. Environ Sci Pollut Res 27:12439–12448. https://doi.org/10.1007/s11356-020-07657-z

    Article  Google Scholar 

  39. Song Y, Zhang X, Zhang M (2020) Research on the strategic interaction of China’s regional air pollution regulation: spatial interpretation of “incomplete implementation” of regulatory policies. Environ Sci Pollut Res 27:42557–42570. https://doi.org/10.1007/s11356-020-10180-w

    CAS  Article  Google Scholar 

  40. Tobler A, Bhattu D, Canonaco F, Lalchandani V, Shukla A, Thamban NM, Mishra S, Srivastava AK, Bisht DS, Tiwari S, Singh S, Močnik G, Baltensperger U, Tripathi SN, Slowik JG, Prévôt ASH (2020) Chemical characterization of PM2.5 and source apportionment of organic aerosol in New Delhi, India. Sci Total Environ 745:140924. https://doi.org/10.1016/j.scitotenv.2020.140924

    CAS  Article  Google Scholar 

  41. Tran PTM, Nguyen T, Balasubramanian R (2020) Personal exposure to airborne particles in transport micro-environments and potential health impacts: a tale of two cities. Sustain Cities Soc 63:102470. https://doi.org/10.1016/j.scs.2020.102470

    Article  Google Scholar 

  42. van Donkelaar A, Martin RV, Li C, Burnett RT (2019) Regional estimates of chemical composition of fine particulate matter using a combined geoscience-statistical method with information from satellites, models, and monitors. Environ Sci Technol 53:2595–2611. https://doi.org/10.1021/acs.est.8b06392

    CAS  Article  Google Scholar 

  43. Wang H, Li J, Peng Y, Zhang M, Che H, Zhang X (2019) The impacts of the meteorology features on PM2.5 levels during a severe haze episode in central-east China. Atmos Environ 197:177–189. https://doi.org/10.1016/j.atmosenv.2018.10.001

    CAS  Article  Google Scholar 

  44. Wang S, Zhou C, Wang Z, Feng K, Hubacek K (2017) The characteristics and drivers of fine particulate matter (PM2.5) distribution in China. J Clean Prod 142:1800–1809. https://doi.org/10.1016/j.jclepro.2016.11.104

    CAS  Article  Google Scholar 

  45. Wang ZB, Fang CL (2016) Spatial-temporal characteristics and determinants of PM2.5 in the Bohai Rim Urban Agglomeration. Chemosphere 148:148–162. https://doi.org/10.1016/j.chemosphere.2015.12.118

    CAS  Article  Google Scholar 

  46. Wu W, Zhang M, Ding Y (2020) Exploring the effect of economic and environment factors on PM2.5 concentration: a case study of the Beijing-Tianjin-Hebei region. J Environ Manage 268:110703. https://doi.org/10.1016/j.jenvman.2020.110703

    CAS  Article  Google Scholar 

  47. Xiao Y, Zhao J, Liu H et al (2020) Dynamic prediction of PM2.5 diffusion in urban residential areas in severely cold regions based on an improved urban canopy model. Sustain Cities Soc 62:102352. https://doi.org/10.1016/j.scs.2020.102352

    Article  Google Scholar 

  48. Xie H, Zhu Z, Wang B, Liu G, Zhai Q (2018) Does the expansion of urban construction land promote regional economic growth in China? Evidence from 108 cities in the Yangtze River Economic Belt. Sustainability 10:4073. https://doi.org/10.3390/su10114073

    Article  Google Scholar 

  49. Xu G, Ren X, Xiong K et al (2020) Analysis of the driving factors of PM2.5 concentration in the air: a case study of the Yangtze River Delta, China. Ecol Indic 110:105889. https://doi.org/10.1016/j.ecolind.2019.105889

    CAS  Article  Google Scholar 

  50. Yang D, Chen Y, Miao C, Liu D (2020a) Spatiotemporal variation of PM2.5 concentrations and its relationship to urbanization in the Yangtze river delta region, China. Atmos Pollut Res 11:491–498. https://doi.org/10.1016/j.apr.2019.11.021

    CAS  Article  Google Scholar 

  51. Yang J, Kang S, Ji Z, Tripathee L, Yin X, Yang R (2020b) Investigation of variations, causes and component distributions of PM2.5 mass in China using a coupled regional climate-chemistry model. Atmos Pollut Res 11:319–331. https://doi.org/10.1016/j.apr.2019.11.005

    CAS  Article  Google Scholar 

  52. Yang Z, Chen Y, Qian Q, Wu Z, Zheng Z, Huang Q (2019) The coupling relationship between construction land expansion and high-temperature area expansion in China’s three major urban agglomerations. Int J Remote Sens 40:6680–6699. https://doi.org/10.1080/01431161.2019.1590877

    Article  Google Scholar 

  53. Yuan M, Song Y, Hong S, Huang Y (2017) Evaluating the effects of compact growth on air quality in already-high-density cities with an integrated land use-transport-emission model: a case study of Xiamen, China. Habitat Int 69:37–47. https://doi.org/10.1016/j.habitatint.2017.08.007

    Article  Google Scholar 

  54. Yuan M, Song Y, Huang Y, Shen H, Li T (2019) Exploring the association between the built environment and remotely sensed PM2.5 concentrations in urban areas. J Clean Prod 220:1014–1023. https://doi.org/10.1016/j.jclepro.2019.02.236

    CAS  Article  Google Scholar 

  55. Yue W, Fan P, Wei YD, Qi J (2014) Economic development, urban expansion, and sustainable development in Shanghai. Stoch Environ Res Risk Assess 28:783–799. https://doi.org/10.1007/s00477-012-0623-8

    Article  Google Scholar 

  56. Zhang H, Wang Z, Zhang W (2016) Exploring spatiotemporal patterns of PM2.5 in China based on ground-level observations for 190 cities. Environ Pollut 216:559–567. https://doi.org/10.1016/j.envpol.2016.06.009

    CAS  Article  Google Scholar 

  57. Zhang Y, Cao W, Liang SB, Li Y (2017) A comparative study on the evolution process of urbanization and industrialization in the underdeveloped areas of Western China: a case study of Qinghai Province. Econ Geogr 37:61–67

    CAS  Google Scholar 

  58. Zhang Y, Song Y, Zou H (2020) Transformation of pollution control and green development: evidence from China’s chemical industry. J Environ Manage 275:111246. https://doi.org/10.1016/j.jenvman.2020.111246

    CAS  Article  Google Scholar 

  59. Zhou Y, Guo L, Liu Y (2019) Land consolidation boosting poverty alleviation in China: theory and practice. Land Use Policy 82:339–348. https://doi.org/10.1016/j.landusepol.2018.12.024

    Article  Google Scholar 

Download references

Acknowledgements

We would like to express our respects and gratitude to the anonymous reviewers and editors for their professional comments and suggestions.

Funding

This research has been supported by the National Natural Science Foundation of China (Grant No. 41701173, Grant No. 41961027), Science Foundation for the Excellent Youth Scholars of Ministry of Education of China (Grant No. 17YJCZH268), and LZJTU EP (Grant No.201806).

Author information

Affiliations

Authors

Contributions

Liang Zhou: conceptualization and writing-original draft. Bo Yuan: methodology, writing-review and editing, and supervision. Haowei Mu: resources and visualization. Xuewei Dang: software. Shaohua Wang: polishing the manuscript. The author(s) read and approved the final manuscript.

Corresponding author

Correspondence to Bo Yuan.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

1. Spatiotemporal features of PM2.5 and construction land were revealed through area growth rate.

2. Overall and spatial coupling models were employed to explore the coupling relationship between PM2.5 and construction land.

3. Spatial coupling coordination of construction land and PM2.5 enhanced in northeast but weakened in other regions.

Responsible editor: Eyup Dogan

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Yuan, B., Mu, H. et al. Coupling relationship between construction land expansion and PM2.5 in China. Environ Sci Pollut Res (2021). https://doi.org/10.1007/s11356-021-13160-w

Download citation

Keywords

  • Urbanization
  • PM2.5
  • Coupling model
  • Urban agglomerations