Does the adsorbent capacity of orange and banana peels toward silver nanoparticles improve the biochemical status of Oreochromis niloticus?

Abstract

Silver nanoparticles (Ag NPs) have wide medical and industrial applications; therefore, their release into aquatic environments is a problematic issue. The present study aims to evaluate the removal efficiency of Ag NPs from water using orange peel (OP) and banana peel (BP) to moderate their toxicity on Oreochromis niloticus. Fish were divided into 4 groups: control group (dechlorinated tap water), Ag NPs (4 mg/L) exposed group, Ag NPs (4 mg/L) + OP (40 mg/L) group, and Ag NPs (4 mg/L) + BP (40 mg/L) group for 24 h, 48 h, and 96 h. The adsorptive ability of both peels was confirmed by scanning electron microscope and energy-dispersive X-ray spectroscopy after the exposure processes. The biochemical results revealed a gradual elevation in plasma glucose, total proteins, globulin, liver enzymes (AST, ALT, and ALP), creatinine, and uric acid after Ag NPs exposure, while albumin and total lipid concentrations were significantly decreased. The recorded antioxidant biomarkers in gills, and liver tissues after Ag NPs exposure showed severe oxidative damages (maximally after 96 h) as indicated by marked elevations in thiobarbituric acid reactive substances, glutathione peroxidase, catalase, and superoxide dismutase values, and decreased glutathione reduced content. All studied parameters restored more or less to that of control groups after OP and BP water treatment. The adsorbent abilities of both peels could reduce Ag NPs bioavailability and moderate their toxicological impacts.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Abdel-Khalek AA (2015) Antioxidant responses and nuclear deformations in freshwater fish, Oreochromis niloticus, facing degraded environmental conditions. Bull Environ Contam Toxicol 94:701–708. https://doi.org/10.1007/s00128-015-1509-5

    CAS  Article  Google Scholar 

  2. Abdel-Khalek AA (2016) Comparative evaluation of genotoxic effects induced by CuO bulk and nano-particles in Nile tilapia, Oreochromis niloticus. Water Air Soil Pollut 227:35. https://doi.org/10.1007/s11270-015-2737-3

    CAS  Article  Google Scholar 

  3. Abdel-Khalek AA, Badran SR, Marie M-AS (2020a) The efficient role of rice husk in reducing the toxicity of iron and aluminum oxides nanoparticles in Oreochromis niloticus: hematological, bioaccumulation, and histological endpoints. Water Air Soil Pollut 231:53. https://doi.org/10.1007/s11270-020-4424-2

    CAS  Article  Google Scholar 

  4. Abdel-Khalek AA, Badran SR, Marie M-AS (2020b) The effective adsorbent capacity of rice husk to iron and aluminum oxides nanoparticles using Oreochromis niloticus as a bioindicator: biochemical and oxidative stress biomarkers. Environ Sci Pollut Res 27:23159–23171. https://doi.org/10.1007/s11356-020-08906-x

    CAS  Article  Google Scholar 

  5. Abdel-Khalek AA, Elhaddad E, Mamdouh S, Marie M-AS (2018) The chronic exposure to discharges of Sabal drain induces oxidative stress and histopathological alterations in Oreochromis niloticus. Bull Environ Contam Toxicol 101:92–98. https://doi.org/10.1007/s00128-018-2366-9

    CAS  Article  Google Scholar 

  6. Abdel-Khalek AA, Hamed A, Marie M-AS (2016) The accumulation potency of bulk and nano zinc metal and their impacts on the hematological and histological perturbations of Oreochromis niloticus. Water Air Soil Pollut 227:206. https://doi.org/10.1007/s11270-016-2908-x

    CAS  Article  Google Scholar 

  7. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126. https://doi.org/10.1016/S0076-6879(84)05016-3

    CAS  Article  Google Scholar 

  8. Afifi M, Saddick S, Abu Zinada OA (2016) Toxicity of silver nanoparticles on the brain of Oreochromis niloticus and Tilapia zillii. Saudi J Biol Sci 23(6):754–760. https://doi.org/10.1016/j.sjbs.2016.06.008

    CAS  Article  Google Scholar 

  9. Ahmad T, Danish M (2018) Prospects of banana waste utilization in wastewater treatment: a review. J Environ Man 206:330–348. https://doi.org/10.1016/j.jenvman.2017.10.061

    CAS  Article  Google Scholar 

  10. Akpomie KG, Conradie J (2020) Banana peel as a biosorbent for the decontamination of water pollutants. A review. Environ Chem Lett 18:1085–1112. https://doi.org/10.1007/s10311-020-00995-x

    CAS  Article  Google Scholar 

  11. Ale A, Rossi AS, Bacchetta C, Gervasio S, de la Torre FR, Cazenave J (2018) Integrative assessment of silver nanoparticles toxicity in Prochilodus lineatus fish. Ecol Indic 93:1190–1198. https://doi.org/10.1016/j.ecolind.2018.06.023

    CAS  Article  Google Scholar 

  12. Anastopoulos I, Kyzas GZ (2014) Agricultural peels for dye adsorption: a review of recent literature. J Mol Liq 200:381–389. https://doi.org/10.1016/j.molliq.2014.11.006

    CAS  Article  Google Scholar 

  13. Annadurai G, Juang RS, Lee DJ (2003) Adsorption of heavy metals from water using banana and orange peels. Water Sci Technol 47:185–190. https://doi.org/10.2166/wst.2003.0049

    CAS  Article  Google Scholar 

  14. APHA (2005) American Water Works Association. Standard methods for the examination of water and wastewater. American Public Health Association, New York

    Google Scholar 

  15. Bacchetta C, Ale A, Simoniello MF, Gervasio S, Davico C, Rossi AS, Desimone MF, Poletta G, Lopez G, Monserrat JM, Cazenave J (2017) Genotoxicity and oxidative stress in fish after a short-term exposure to silver nanoparticles. Ecol Indic 76:230–239. https://doi.org/10.1016/j.ecolind.2017.01.018

    CAS  Article  Google Scholar 

  16. Banaee M (2020) Alkaline phosphatase activity as a biochemical biomarker in aqua-toxicological studies. Int J Aquat Biol 8(2):143–147. https://doi.org/10.22034/ijab.v8i2.880

    Article  Google Scholar 

  17. Banaee M, Akhlaghi M, Soltanian S, Sureda A, Gholamhosseini A, Rakhshaninejad M (2020) Combined effects of exposure to sub-lethal concentration of the insecticide chlorpyrifos and the herbicide glyphosate on the biochemical changes in the freshwater crayfish Pontastacus leptodactylus. Ecotoxicology 29(9):1500–1515. https://doi.org/10.1007/s10646-020-02233-0

    CAS  Article  Google Scholar 

  18. Banaee M, Tahery S, Nematdoost Haghi B, Shahafve S, Vaziriyan M (2019) Blood biochemical changes in common carp (Cyprinus carpio) upon co-exposure to titanium dioxide nanoparticles and paraquat. Iran J Fish Sci 18(2):242–255 http://jifro.ir/article-1-3844-en.html

    Google Scholar 

  19. Banan A, Kalbassi MR, Bahmani M, Sotoudeh E, Johari SA, Ali JM, Kolok AS (2020) Salinity modulates biochemical and histopathological changes caused by silver nanoparticles in juvenile Persian sturgeon (Acipenser persicus). Environ Sci Pollut Res 27:10658–10671. https://doi.org/10.1007/s11356-020-07687-7

    CAS  Article  Google Scholar 

  20. Bartles H, Bohmer M, Heirli C (1972) Serum creatinine determination without protein precipitation. Clin Chim Acta 37:193–197. https://doi.org/10.1016/0009-8981(72)90432-9

    Article  Google Scholar 

  21. Belfield A, Goldberg DM (1971) Revised assay for serum phenyl phosphatase activity using 4-amino-antipyrine. Enzyme 12:561–573. https://doi.org/10.1159/000459586

    CAS  Article  Google Scholar 

  22. Benavides M, Fernández-Lodeiro J, Coelho P, Lodeiro C, Diniz MS (2016) Single and combined effects of aluminum (Al2O3) and zinc (ZnO) oxide nanoparticles in a freshwater fish, Carassius auratus. Environ Sci Pollut Res 23:24578–24591. https://doi.org/10.1007/s11356-016-7915-3

    CAS  Article  Google Scholar 

  23. Besnaci S, Bensoltane S, Zerari L, Samia C, Hamlet SA, Berrebbah H (2016) Impact of nanometric iron oxide in the hepatopancreas of terrestrial gastropod Helix Aspersa: histological changes and biochemical parameters. Int J Pharm Sci Rev Res 36:234–241. https://doi.org/10.13140/RG.2.2.10749.92644

    CAS  Article  Google Scholar 

  24. Beutler E, Duron O, Kelly MB (1963) Improved method for the determination of blood glutathione. J Lab Clin Med 61:882–888

    CAS  Google Scholar 

  25. Chae YJ, Pham CH, Lee J, Bae E, Yi J, Gu MB (2009) Evaluation of the toxic impact of silver nanoparticles on Japanese medaka (Oryzias latipes). Aquat Toxicol 94:320–327. https://doi.org/10.1016/j.aquatox.2009.07.019

    CAS  Article  Google Scholar 

  26. Doumas BT, Watson WA, Biggs HG (1971) Albumin standards and the measurement of serum albumin with bromocresol green. Clin Chim Acta 31:87–96. https://doi.org/10.1016/0009-8981(71)90365-2

    CAS  Article  Google Scholar 

  27. Eslamloo K, Akhavan SR, Fallah FJ, Henry MA (2014) Variations of physiological and innate immunological responses in goldfish (Carassius auratus) subjected to recurrent acute stress. Fish Shellfish Immunol 37:147–153. https://doi.org/10.1016/j.fsi.2014.01.014

    CAS  Article  Google Scholar 

  28. Farmen E, Mikkelsen HN, Evensen Ø, Einset J, Heier LS, Rosseland BO, Salbu B, Tollefsen KE, Oughton DH (2012) Acute and sub-lethal effects in juvenile Atlantic salmon exposed to low μg/L concentrations of Ag nanoparticles. Aquat Toxicol 108:78–84. https://doi.org/10.1016/j.aquatox.2011.07.007

    CAS  Article  Google Scholar 

  29. Gornal AC, Bardawill CJ, David MM (1949) Determination of serum proteins by means of the Biuret reaction. J Biol Chem 177:751–766

    Article  Google Scholar 

  30. Govindasamy R, Rahuman AA (2012) Histopathological studies and oxidative stress of synthesized silver nanoparticles in Mozambique tilapia (Oreochromis mossambicus). J Environ Sci 24:1091–1098. https://doi.org/10.1016/S1001-0742(11)60845-0

    CAS  Article  Google Scholar 

  31. Hajirezaee S, Mohammadi G, Naserabad SS (2020) The protective effects of vitamin C on common carp (Cyprinus carpio) exposed to titanium oxide nanoparticles (TiO2-NPs). Aquaculture 518:734734. https://doi.org/10.1016/j.aquaculture.2019.734734

    CAS  Article  Google Scholar 

  32. Hao L, Chen L (2012) Oxidative stress responses in different organs of carp (Cyprinus carpio) with exposure to ZnO nanoparticles. Ecotoxicol Environ Saf 80:103–110. https://doi.org/10.1016/j.ecoenv.2012.02.017

    CAS  Article  Google Scholar 

  33. Ibrahim ATA, Banaee M, Sureda A (2021) Genotoxicity, oxidative stress, and biochemical biomarkers of exposure to green synthesized cadmium nanoparticles in Oreochromis niloticus (L.). Comp Biochem Physiol C Toxicol Pharmacol 242:108942. https://doi.org/10.1016/j.cbpc.2020.108942

    CAS  Article  Google Scholar 

  34. Javed M, Ahmad MI, Usmani N, Ahmad M (2017) Multiple biomarker responses (serum biochemistry, oxidative stress, genotoxicity and histopathology) in Channa punctatus exposed to heavy metal loaded waste water. Sci Rep 7:1675–1685. https://doi.org/10.1038/s41598-017-01749-6

    CAS  Article  Google Scholar 

  35. Jozefczak M, Remans T, Vangronsveld J, Cuypers A (2012) Glutathione is a key player in metal-induced oxidative stress defenses. Int J Mol Sci 13:3145–3175. https://doi.org/10.3390/ijms13033145

    CAS  Article  Google Scholar 

  36. Kanwal Z, Raza MA, Manzoor F, Riaz S, Jabeen G, Fatima S, Naseem S (2019) A comparative assessment of nanotoxicity induced by metal (Silver, Nickel) and metal oxide (Cobalt, Chromium) nanoparticles in Labeo rohita. Nanomaterials 9:309–328. https://doi.org/10.3390/nano9020309

    CAS  Article  Google Scholar 

  37. Khan MS, Qureshi NA, Jabeen F, Shakeel M, Asghar MS (2018) Assessment of waterborne amine-coated silver nanoparticle (Ag-NP)-induced toxicity in labeo rohita by histological and hematological profiles. Biol Trace Elem Res 182:130–139. https://doi.org/10.1007/s12011-017-1080-5

    CAS  Article  Google Scholar 

  38. Khosravi-Katuli K, Shabani A, Paknejad H, Imanpoor MR (2018) Comparative toxicity of silver nanoparticle and ionic silver in juvenile common carp (Cyprinus carpio): accumulation, physiology and histopathology. J Hazard Mater 359:373–381. https://doi.org/10.1016/j.jhazmat.2018.07.064

    CAS  Article  Google Scholar 

  39. Kittler S, Greulich C, Diendorf J, Kӧller M, Epple M (2010) Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chem Mater 22:4548–4554. https://doi.org/10.1021/cm100023p

    CAS  Article  Google Scholar 

  40. Knight JA, Rawle JM, Anderson S (1972) Chemical basis of sulfo-phospho-vanillin reaction for estimating total serum lipids. Clin Chem 18:199–202

    CAS  Article  Google Scholar 

  41. Liang S, Guo X, Feng N, Tian Q (2010) Isotherms, kinetics and thermodynamic studies of adsorption of Cu2+ from aqueous solutions by Mg2+/K+ type orange peel adsorbents. J Hazard Mater 174:756–762. https://doi.org/10.1016/j.jhazmat.2009.09.116

    CAS  Article  Google Scholar 

  42. Mahmoud UM, Mekkawy IAA, Naguib M, Sayed AE-DH (2019) Silver nanoparticle–induced nephrotoxicity in Clarias gariepinus: physio-histological biomarkers. Fish Physiol Biochem 45:1895–1905. https://doi.org/10.1007/s10695-019-00686-7

    CAS  Article  Google Scholar 

  43. Naguib M, Mahmoud UM, Mekkawy IA, Sayed AE-DH (2020) Hepatotoxic effects of silver nanoparticles on Clarias gariepinus; biochemical, histopathological, and histochemical studies. Toxicol Rep 7:133–141. https://doi.org/10.1016/j.toxrep.2020.01.002

    CAS  Article  Google Scholar 

  44. Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, Sigg L, Behra R (2008) Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42:8959–8964. https://doi.org/10.1021/es801785m

    CAS  Article  Google Scholar 

  45. Neugebauer EA, Sans Cartier GL, Wakeford BJ (2000) Methods for the determination of metals in wildlife tissues using various atomic absorption spectrophotometry techniques. Technical Report Series No. 337E. Canadian Wildlife Service, Headquarters, Hull http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.578.2937&rep=rep1&type=pdf

    Google Scholar 

  46. Nishikimi M, Appaji N, Yagi K (1972) The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem. Biophys Res Common 46:849–854. https://doi.org/10.1016/S0006-291X(72)80218-3

    CAS  Article  Google Scholar 

  47. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358. https://doi.org/10.1016/0003-2697(79)90738-3

    CAS  Article  Google Scholar 

  48. Oyewo OA, Onyango MS, Wolkersdorfer C (2018) Lanthanides removal from mine water using banana peels nanosorbent. Int J Environ Sci Technol 15:1265–1274. https://doi.org/10.1007/s13762-017-1494-9

    CAS  Article  Google Scholar 

  49. Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70:158–169

    CAS  Google Scholar 

  50. Prætorius E, Poulsen H (1953) Enzymatic determination of uric acid with detailed directions. Scand J Clin Lab Inv 5:273–280. https://doi.org/10.3109/00365515309094197

    Article  Google Scholar 

  51. Pulit-Prociak J, Banach M (2016) Silver nanoparticles - a material of the future...? Open Chem 14:76–91. https://doi.org/10.1515/chem-2016-0005

    CAS  Article  Google Scholar 

  52. Reitman S, Frankel S (1957) A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clin Pathol 28:56–63. https://doi.org/10.1093/ajcp/28.1.56

    CAS  Article  Google Scholar 

  53. Safa Y, Bhatti HN (2011) Adsorptive removal of direct textile dyes by low cost agricultural waste: application of factorial design analysis. Chem Eng J 167:35–41. https://doi.org/10.1016/j.cej.2010.11.103

    CAS  Article  Google Scholar 

  54. Sarkar B, Jaisai M, Mahanty A, Panda P, Sadique M, Nayak BB, Gallardo G, Thakur D, Bhattacharjee S, Dutta J (2015) Optimization of the sublethal dose of silver nanoparticle through evaluating its effect on intestinal physiology of Nile tilapia (Oreochromis niloticus L.). J Environ Sci Health 50:814–823. https://doi.org/10.1080/10934529.2015.1019800

    CAS  Article  Google Scholar 

  55. Singh NB, Nagpal G, Agrawal S, Rachna (2018) Water purification by using adsorbents: a review. Environ Technol Innovat 11:187–240. https://doi.org/10.1016/j.eti.2018.05.006

    Article  Google Scholar 

  56. Taju G, Abdul Majeed S, Nambi KSN, Sahul Hameed AS (2014) In vitro assay for the toxicity of silver nanoparticles using heart and gill cell lines of Catla catla and gill cell line of Labeo rohita. Comp Biochem Physiol – part C: Toxicol Pharmacol 161:41–52. https://doi.org/10.1016/j.cbpc.2014.01.007

    CAS  Article  Google Scholar 

  57. Tortella GR, Rubilar O, Durán N, Diez MC, Martínez M, Parada J, Seabra AB (2020) Silver nanoparticles: toxicity in model organisms as an overview of its hazard for human health and the environment. J Hazard Mater 390:121974. https://doi.org/10.1016/j.jhazmat.2019.121974

    CAS  Article  Google Scholar 

  58. Trinder P (1969) Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Ann Clin Biochem 6:24–27 https://journals.sagepub.com/doi/pdf/10.1177/000456326900600108

    CAS  Article  Google Scholar 

  59. Zeumer R, Galhano V, Monteiro MS, Kuehr S, Knopf B, Meisterjahna B, Soares AMVM, Loureiro S, Lopes I, Schlechtriem C (2020) Chronic effects of wastewater-borne silver and titanium dioxide nanoparticles on the rainbow trout (Oncorhynchus mykiss). Sci Tot Environ 723:137974. https://doi.org/10.1016/j.scitotenv.2020.137974

    CAS  Article  Google Scholar 

  60. Zhu R, Chen Q, Zhou Q, Xi Y, Zhu J, He H (2016) Adsorbents based on montmorillonite for contaminant removal from water: a review. Appl Clay Sci 123:239–258. https://doi.org/10.1016/j.clay.2015.12.024

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Zoology department, Faculty of Science, Cairo University, Egypt for supporting the present study.

Funding

Faculty of Science, Cairo University funded the present study through the analysis and interpretation of data.

Author information

Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Amr Adel Abdel-Khalek, Aliaa Hamed, and Wafaa S.F. Hasheesh. The first draft of the manuscript was written by Amr Adel Abdel-Khalek and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Amr Adel Abdel-Khalek.

Ethics declarations

Ethics approval

All procedures performed in the current work involving fish were approved with approval no. CU I F 2019 and were following the ethical standards of the Faculty of Science, Cairo University, Institutional Animal Care and Use Committee (IACUC) at which the studies were conducted.

Consent to participate

All authors read and approved the final manuscript.

Code availability

Not applicable

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Bruno Nunes

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abdel-Khalek, A.A., Hamed, A. & Hasheesh, W.S. Does the adsorbent capacity of orange and banana peels toward silver nanoparticles improve the biochemical status of Oreochromis niloticus?. Environ Sci Pollut Res (2021). https://doi.org/10.1007/s11356-021-13145-9

Download citation

Keywords

  • Silver nanoparticles
  • Biosorption
  • Metal toxicity
  • Bioremediation
  • Oreochromis niloticus