Assessing and building climate change resilience of farming systems in Tunisian semi-arid areas

Abstract

The agricultural sector plays a strategic role in the Tunisian economy, particularly in rural areas. Resilience and adaptation to climate change are the main challenges facing this sector. This paper aims to analyze climate change resilience of agricultural production systems in Tunisian semi-arid areas and to propose options for policy interventions. A path Structural Equation Model (SEM) was used to predict the resilience of these systems using the partial least squares method (PLS). Results show that farming systems in Tunisian semi-arid areas remain threatened against negative impact of climate change since 80% of farms in the sample have shown low resilience levels. The most important determinants of agricultural systems’ resilience are farmers’ income and access to food, adaptive capacity, and access to productive and non-productive assets. Results indicate also that integrated systems, income diversification, along with cooperation and collective action are the key options to enhance resilience of rural households and farming systems. It is recommended to raise awareness of stakeholders and decision-makers about climate change challenges and to develop integrated approaches to better engaging with local stakeholders and institutions in adaptation programs and strategies development.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Adger WN (2000) Social and ecological resilience: are they related? Prog Hum Geogr 24(3):347–364. https://doi.org/10.1191/030913200701540465

    Article  Google Scholar 

  2. Adger WN (2006) Vulnerability. Glob Environ Chang 16:268–281. https://doi.org/10.1016/j.gloenvcha.2006.02.006

    Article  Google Scholar 

  3. Adger WN, Brooks N, Bentham G, Agnew M and Eriksen S (2004) New indicators of vulnerability and adaptive capacity, Tyndall Centre for Climate Change Research. Technical Report 7, Norwich

  4. AGRA (2014) Africa agriculture status report: climate change and small holder agriculture in sub-Saharan Africa. Alliance for a Green Revolution in Africa, Nairobi, Kenya. (AGRA)

  5. Alinovi L, Mane E, Romano D (2010) Measuring household resilience to food insecurity: Application to Palestinian Households. In: Benedetti R, Bee M, Espa G, Piersimoni F (eds) Agricultural survey methods. Wiley, Chichester. https://doi.org/10.1002/9780470665480.ch21

    Google Scholar 

  6. Altieri MA, Nicholls CI, Henao A, Lana MA (2015) Agroecology and the design of climate change-resilient farming systems. Agron Sustain Dev 35(3):869–890. https://doi.org/10.1007/s13593-015-0285-2

    Article  Google Scholar 

  7. Anwar MA, Zhou R, Sajjad A, Asmi F (2019) Climate change communication as political agenda and voters’ behavior. Environ Sci Pollut Res 26:29946–29961. https://doi.org/10.1007/s11356-019-06134-

    Article  Google Scholar 

  8. Belyaeva M and Bokusheva R (2017) Will climate change benefit or hurt Russian grain production? A statistical evidence from a panel approach, Discussion Paper, No. 161, Leibniz Institute of Agricultural Development in Transition Economies (IAMO), Halle (Saale), http://nbn-resolving.de/urn:nbn:de:gbv:3:2-69113.

  9. Bentler PM, Chou CP (1987) Practical issues in structural modeling. Sociol Methods Res 16(1):78–117. https://doi.org/10.1177/0049124187016001004

    Article  Google Scholar 

  10. Birkmann J (2006) Measuring vulnerability to promote disaster-resilient societies: conceptual frameworks and definitions. In J. (Ed.) Measuring vulnerability to natural hazards – towards disaster resilient societies. United Nations University Press. Hong-Kong. New York. 9-54 pp.

  11. Bombi P (2018) Potential impacts of climate change on Welwitschia mirabilis populations in the Namib Desert Southern Africa. Journal of Arid Land 10(5):663–672. https://doi.org/10.1007/s40333-018-0067-1

    Article  Google Scholar 

  12. CCAFS and FAO (2012) Training guide - gender and climate change research in agriculture and food security for rural development. www.fao.org/climatechange/micca/gender/en

  13. Chatelin YM, Vinzi VE, Tenenhaus M (2002) State-of-art on PLS modelling through the available software. HEC Business School. Jouy-en-Josas

  14. Chin WW (1998) The partial least squares approach to structural equation modeling. In: Marcoulides GA (ed) Modern methods for business research. Lawrence Erlbaum Associates, Mahwah, pp 295–358

    Google Scholar 

  15. Chin WW, Marcolin BL, Newsted PR (2003) A partial least squares latent variable modeling approach for measuring interaction effects: results from a Monte Carlo simulation study and an electronic-mail emotion/adoption study. Inf Syst Res 14(2):189–218

    Article  Google Scholar 

  16. CIHEAM (2016) Avec le changement climatique. quel avenir de l’agriculture en Tunisie?. Centre International de Hautes Etudes Agronomiques Méditerranéennes. Lettre n°37. Septembre 2016. 1.4 pp.

  17. Cutter SL, Barnes L, Berry M, Burton C, Evans E, Tate E, Webb J (2008) A place-based model for understanding community resilience to natural disasters. Glob Environ Chang 18(2008):598–606

    Article  Google Scholar 

  18. Dang HL, Li E, Nuberg I, Bruwer J (2018) Vulnerability to climate change and the variations in factors affecting farmers’ adaptation: a multi-group structural equation modelling study. Clim Dev 10(6):509–519. https://doi.org/10.1080/17565529.2017.1304885

    Article  Google Scholar 

  19. Edmonds HK, Lovell JE, Lovell CAK (2020) A new composite climate change vulnerability index. Ecol Indic 117:106529. https://doi.org/10.1016/j.ecolind.2020.106529

    Article  Google Scholar 

  20. Fahad S, Wang J (2020) Climate change, vulnerability, and its impacts in rural Pakistan: a review. Environ Sci Pollut Res 27:1334–1338. https://doi.org/10.1007/s11356-019-06878-1

    Article  Google Scholar 

  21. Fan Y, Chen J, Shirkey G, John R, Wu SR, Park H, Shao C (2016) Applications of structural equation modeling (SEM) in ecological studies: an updated review. Ecol Process 5:19. https://doi.org/10.1186/s13717-016-0063-3

    Article  Google Scholar 

  22. FAO (2007) Adaptation to climate change in agriculture. forestry and fisheries: perspective. framework and priorities. Inter-Departmental Working Group On Climate Change. Food and Agriculture Organization of the United Nations (Rome. 2007)

  23. FAO (2010) Measuring resilience: a concept note on the resilience tool. Available at http://www.fao.org/3/al920e/al920e00.pdf

  24. FAO (2015) Analyzing resilience for better targeting and action. Resilience analysis in Senegal 2005. By Resilience Analysis and Policies team. Agricultural Development Economics Division Food and Agriculture Organization of the United Nations. available in http://www.fao.org/3/a-i4456e.pdf

  25. FAO (2016) Analysing resilience for better targeting and action. Resilience Index Measurement and Analysis II RIMA-II. Resilience Analysis and Policies team. Agricultural Development Economics Division Food and Agriculture Organization of the United Nations. available in http://www.fao.org/3/a-i5665e.pdf

  26. Folke C (2006) Resilience: the emergence of a perspective for social-ecological systems analyses. Glob Environ Chang 16:253–267

    Article  Google Scholar 

  27. Folke C, Carpenter SR, Elmqvist T et al (2002) Resilience and sustainable development: building adaptive capacity in a world of transformation. Ambio. 31(5):437–440

    Article  Google Scholar 

  28. Füssel HM (2007) Vulnerability: a generally applicable conceptual framework for climate change research. Glob Environ Chang 17(2):155–167

    Article  Google Scholar 

  29. Galderisi A, Ferrara F, Ceudech A (2010) Resilience and/or vulnerability? Relationships and roles in risk mitigation strategies. In Ache P. Ilmonen M. Space Is Luxury. Selected Proceedings 24th Annual AESOP Conference.

  30. Gallopin GC (2006) Linkages between vulnerability. resilience. and adaptive capacity. Glob Environ Chang 16(3):293–303

    Article  Google Scholar 

  31. Gil JDB, Cohn AS, Duncan J et al. (2017) The resilience of integrated agricultural systems to climate change. Wiley Periodicals. Inc. Volume 8. July/August 2017. WIREs Clim Change 2017. 8:e461. https://doi.org/10.1002/wcc.461.

  32. Hair JF, Ringle CM, Sarstedt M (2011) PLS-SEM: indeed a silver bullet. J Mark Theory Pract 19(2):139–151

    Article  Google Scholar 

  33. Hair JF, Hollingsworth CL, Randolph AB, Chong AYL (2017) An updated and expanded assessment of PLS-SEM in information systems research. Ind Manag Data Syst 117(3):442–458

    Article  Google Scholar 

  34. Hair JF, Sarstedt M, Ringle CM, Gudergan SP (2018). Advanced issues in partial least squares structural equation modeling (PLS-SEM). Thousand Oaks: Sage

  35. Hoterova K (2020) Comparative analysis of the resilience and vulnerability of the railway infrastructure. MEST Journal 8(2):100–106. https://doi.org/10.12709/mest.08.08.02.10

    Article  Google Scholar 

  36. Hox J and Bechger T (1999) An introduction to structural equation modeling. Family Science Review 11:354–373. http://joophox.net/publist/semfamre.pdf

  37. IPCC (2007) Climate change 2007: synthesis report. Contribution of Working Groups I. II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team. Pachauri. R.K and Reisinger. A. (eds.)]. IPCC. Geneva. Switzerland. 104 pp

  38. Janssen MA, Ostrom E (2006) Resilience vulnerability and adaptation: a cross-cutting theme of the International Human Dimensions Programme on Global Environmental Change. Glob Environ Chang 16(3):237–239

    Article  Google Scholar 

  39. Kais SM, Islam MS (2016) Factors influencing farmer’s choice of crop production response strategies to climate change and variability in Narok East Sub Community capitals as community resilience to climate change: conceptual connections. Int J Environ Res Public Health 13(12):E1211

    Article  Google Scholar 

  40. Kalungu W, Filho WL, Harris D (2013) Smallholder farmers perception of the impacts of climate change and variability on rain-fed agricultural practices in semi-arid and sub-humid regions of Kenya. J Environ Earth Sci 3(7):129–141

    Google Scholar 

  41. Kansiime MK, Mastenbroek A (2016) Enhancing resilience of farmer seed system to climate-induced stresses: Insights from a case study in West Nile region. Uganda. J Rural Stud Volume 47:–230. https://doi.org/10.1016/j.jrurstud.2016.08.004

  42. Kelvin J, Kinuthia S, Inoti K et al (2018) Factors influencing farmer’s choice of crop production response strategies to climate change and variability in Narok East Sub-county. Kenya. J Nat Resour Dev 08:69–77

    Google Scholar 

  43. Klein RJT, Nicholls RJ, Thomalla F (2003) Resilience to natural hazards: how useful is the concept? Environ Hazards 5:35–45

    Article  Google Scholar 

  44. Lee Y-J (2018) Relationships among environmental attitudes, risk perceptions, and coping behavior: a case study of four environmentally sensitive townships in Yunlin county, Taiwan. Sustainability 2018(10):2663

    Article  Google Scholar 

  45. Lee Y, Lin S (2019) Vulnerability and ecological footprint: a comparison between urban Taipei and rural Yunlin Taiwan. Environ Sci Pollut Res 27:34624–34637. https://doi.org/10.1007/s11356-019-05251-6

    Article  Google Scholar 

  46. Lee Y, Tung C, Lin S (2019) Attitudes to climate change, perceptions of disaster risk, and mitigation and adaptation behavior in Yunlin County, Taiwan. Environ Sci Pollut Res 26:30603–30613. https://doi.org/10.1007/s11356-018-1358-y

    Article  Google Scholar 

  47. Lindoso D P (2017) Vulnerability and resilience: potentials, convergences and limitations in interdisciplinary research. Ambient. soc. [online]. 2017, vol.20, n.4 [cited 2020-12-01], pp.127-144. Available from: <http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1414-753X2017000400127&lng=en&nrm=iso>. ISSN 1809-4422. https://doi.org/10.1590/1809-4422asoc0248r1v2042017.

  48. Lohmöller J B (1984) LVPLS Program Manual, Version 1.6, Zentralarchiv für Empirische Sozialforschung, Universität zu Köln, Köln

  49. Lohmöller J B (1987) PLS-PC. Latent Variables Path Analysis with Partial Least Squares. Version 1.8 for PCs under MS-Dos.

  50. Lohmöller JB (1989) Latent variable path modeling with partial least squares. Heildelberg: Physica-Verlag.

  51. Malthouse EC (2001) Checking assumptions of normality before conducting factor analyses. J Consum Psychol 10:81

    Google Scholar 

  52. MARHP (2011) Atelier régional forets. parcours et changement climatique dans la région du moyen orient”. Rapport national: Tunisie. Ministère de l’Agriculture et de l’environnement : Direction Générale des Forêts-Tunisie. 22 septembre 2011.

  53. MARHP (2018) Ministère de l’agriculture des ressources hydrauliques et de la pêche. Les statistiques de l’Onagri. Tunisia.

  54. MARHP and GIZ (2007) Stratégie nationale d’adaptation de l’agriculture tunisienne et des écosystèmes aux changements climatique. Tunisia

  55. MARHP and GIZ (2012) Stratégie Nationale sur le Changement Climatique SNCC : Rapport de la stratégie. Rapport final. Octobre 2012.

  56. Markkanen S, Anger-Kraavi A (2019) Social impacts of climate change mitigation policies and their implications for inequality. Clim Pol 19(7):827–844. https://doi.org/10.1080/14693062.2019.1596873

    Article  Google Scholar 

  57. Martin G, Moraine M, Ryschawy J, et al. (2016) Crop–livestock integration beyond the farm level: a review. Agronomy for Sustainable Development, Springer Verlag/EDP Sciences/INRA, 2016, 36 (3), pp.53. 53 https://doi.org/10.1007/s13593-016-0390-x

  58. McEntire DA (2001) Triggering agents vulnerabilities and disaster reduction: towards a holistic paradigm. Disaster Prev Manag Vol. 10(Issue: 3):189–196

    Article  Google Scholar 

  59. NapiWouapi HA, Sanni M (2018) Enhancing resilience of livelihoods and production systems to climate variability and other related risks in Africa. In: Leal FW (ed) Handbook of Climate Change Resilience. Springer, Cham

    Google Scholar 

  60. Nefzi A (2012). Evaluation économique de l’impact du changement climatique sur l’agriculture : étude théorique et application au cas de la Tunisie. Thèse de doctorat en Economie de l’environnement et des ressources naturelles. Soutenue le 29-03-2012 à Paris. AgroParisTech . Dans le cadre de Ecole Doctorale Agriculture. Alimentation. Biologie. Environnement. Santé (2000-2015 ; Paris)

  61. Novikova SI, Richman DM, Supekar K, Barnard-Brak L, Hall D (2013) Chapter three - NDAR: a model federal system for secondary analysis in developmental disabilities research. In: Urbano RC (ed) International Review of Research in Developmental Disabilities, vol Vol. 45. Academic Press, Cambridge, pp 123–153. https://doi.org/10.1016/B978-0-12-407760-7.00003-7

    Google Scholar 

  62. O’Brien K L, Eriksen S, Schjolden A and Lygaard L (2005) What’s in a word? Interpretations of vulnerability in climate change research. Climate Policy.

  63. ONAGRI, (n.d.)several years. Observatoire National de l’Agriculture. Statistical directory « Annuaire Statistique ». Available in http://www.onagri.nat.tn/statistiques.

  64. Opiyo FE, Wasonga OV and Nyangito MM (2014) Measuring household vulnerability to climate-induced stresses in pastoral rangelands of Kenya: Implications for resilience programming. Pastoralism Springer Berlin Heidelberg. https://doi.org/10.1186/s13570-014-0010-9

  65. Osbahr H (2008) Building resilience: adaptation mechanisms and mainstreaming for the Poor. UNDP; New York. NY. USA: 2008. Background Paper for UNDP Human Development Report.

  66. Pelling M (2003) The vulnerability of cities: natural disasters and social resilience. Earthscan. London. UK.

  67. Proag V (2014) The concept of vulnerability and resilience. Procedia Econ Finance 18:369–337

    Article  Google Scholar 

  68. Ringle CM, Wende S and Becker J-M (2015) SmartPLS 3. Boenningstedt: SmartPLS GmbH, http://www.smartpls.com.

  69. Roger A and Pielke J (2004) What is climate change?. Issues in Science and Technology. VOL. XX. NO. 4.

  70. Safonov G and Sfonova Y (2013) Economic analysis of the impact of climate change on agriculture in Russia, National and Regional Aspects. Oxfam Research Reports. Available at https://www.oxfam.org/en/research/economic-analysis-impact-climate-change-agriculture-russia.

  71. Seo SN (2010) Is an integrated farm more resilient against climate change? A micro-econometric analysis of portfolio diversification in African agriculture. Food Policy Vol.35(1):32–40. https://doi.org/10.1016/j.foodpol.2009.06.004

    Article  Google Scholar 

  72. Sha Z, Xie Y, Tan X, Bai Y, Li J, Liu X (2017) Assessing the impacts of human activities and climate variations on grassland productivity by partial least squares structural equation modeling (PLS-SEM). J Arid Land 9:473–488. https://doi.org/10.1007/s40333-017-0022-6

    Article  Google Scholar 

  73. Shah AA, Ye J, Abid M, Khan J, Amir SM (2018) Flood hazards: household vulnerability and resilience in disaster-prone districts of Khyber Pakhtunkhwa province, Pakistan. Nat Hazards 93(1):147–165

    Article  Google Scholar 

  74. Tambwe M, Mbise ERC (2020) Determinants of farmers’ entrepreneurial intention in Tanzanian agricultural sector: a structural modelling approach. Adv Soc Sci Res J 7:376–396. https://doi.org/10.14738/assrj.710.9256

    Article  Google Scholar 

  75. Tarka P (2018) An overview of structural equation modeling: its beginnings, historical development, usefulness and controversies in the social sciences. Qual Quant 52:313–354. https://doi.org/10.1007/s11135-017-0469-8

    Article  Google Scholar 

  76. Tatwangire A (2011) Access to productive assets and impact on household welfare in rural uganda. Thesis number 2011: 27 ISBN: 978-82-575-0933-0. Norwegian University of Life Sciences, Ås. Available at: http://hdl.handle.net/11250/2434107

  77. Thomas K, Hardy RD, Lazrus H et al (2019) Explaining differential vulnerability to climate change: a social science review. Wiley Interdiscip Rev. Clim Chang 10(2):e565. https://doi.org/10.1002/wcc.565

    Article  Google Scholar 

  78. Touzi S and Ben Zakour M (2015) Expérience tunisienne pour faire face à la Variabilité et au Changement Climatique en Zones Côtières. Rapport national dans le cadre du projet ClimVar (Med Partnership). Available in https://planbleu.org/sites/default/files/publications/rapport_national_tunisie_october_2015.pdf

  79. Turner BL, Kasperson RE, Matson PA et al (2003) A framework for vulnerability analysis in sustainability science. Proc Natl Acad Sci 100(14):8074–8079

    CAS  Article  Google Scholar 

  80. UNDP (2010) Gender. Climate Change and Community-Based Adaptation. New York. New York. United States. (Also available at: www.beta.undp.org/undp/en/home/librarypage/environment-energy/climate_change/gender/gender-climate-change-and-community-based-adaptation-guidebook-.html

  81. UNFCCC (2011) Report of the global environment facility to the conference of the parties. Framework Convention on Climate Change. Also available at: https://unfccc.int/resource/docs/2011/cop17/eng/07.pdf

  82. Villagràn de Leòn J.C. (2006) Vulnerability: a methodological and conceptual review. Source, n° 4, UNU-EHS.

  83. Vincent K (2007) Uncertainty in adaptive capacity and the importance of scale. Glob Environ Chang 17(1):12–24. https://doi.org/10.1016/j.gloenvcha.2006.11.009

    Article  Google Scholar 

  84. Wold H (1985) Partial least squares. In: Kotz S, Johnson NL (eds) Encyclopedia of Statistical Sciences, vol 6. Wiley, New York, pp 581–591

    Google Scholar 

  85. World Bank (2019) https://donnees.banquemondiale.org/indicateur/NV.AGR.TOTL.ZS?locations=TN. The reference was last accessed on 06/03/2019

  86. Yavuz C, Kentel E, Aral MM (2020) Tsunami risk assessment: economic, environmental and social dimensions. Nat Hazards 104:1413–1442. https://doi.org/10.1007/s11069-020-04226-y

    Article  Google Scholar 

  87. Yu Y, Pi Y, Yu X, Ta Z, Sun L, Disse M, Zeng F, Li Y, Chen X, Yu R (2018) Climate change. Water resources and sustainable development in the arid and semi-arid lands of Central Asia in the past 30 years. J Arid Land 11(1):1–14. https://doi.org/10.1007/s40333-018-0073-3

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

Conceptualization and methodology: Jamel BEN NASR., Hatem CHAAR and Fadoua BOUCHIBA.

Investigation and data collection were performed by Jamel BEN NASR and Fadoua BOUCHIBA

Analysis and visualization were performed by Jamel BEN NASR, Hatem CHAAR and Lokman Zaibet.

The first draft of the manuscript was written by Jamel BEN NASR.

All the authors commented on previous versions of the manuscript especially Hatem CHAAR and Lokman Zaibet.

All the authors contributed to review and editing according to reviewer’s comments.

All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Jamel Ben Nasr.

Ethics declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Philippe Garrigues

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ben Nasr, J., Chaar, H., Bouchiba, F. et al. Assessing and building climate change resilience of farming systems in Tunisian semi-arid areas. Environ Sci Pollut Res (2021). https://doi.org/10.1007/s11356-021-13089-0

Download citation

Keywords

  • Climate change
  • Resilience
  • Adaptive capacity
  • Farming systems
  • PLS-SEM