Human exposure assessment to potentially toxic elements (PTEs) from tofu consumption

Abstract

Potentially toxic elements (PTEs) (V, B, Ba, Li, Sr, Cr, Ni, Al, Pb, Cd) were determined in 130 samples of different tofu types (natural, flavored, smoked, and fresh made) by ICP-OES (inductively coupled plasma optical emission spectrometry). Al was the most notable element found with the highest concentration (6.71 mg/kg ww) found in flavored tofu. Ni level (0.38 mg/kg) stands out in smoked tofu. European tofu has higher PTE levels than Chinese tofu. Organic-produced tofu has higher PTE concentrations than conventional produced tofu. A total of 200 g/day of smoked tofu confers a contribution percentage of 39.6% of its TDI (tolerable daily intake). In addition, 200 g/day of flavored tofu would mean a high Pb contribution with a 23.2% of the BMDL (benchmark dose level) set in 0.63 μg/kg bw/day to the development of nephrotoxicity. Mean consumption would not pose a risk to adults’ health. Considering the obtained results, it would be advisable to establish limits for certain metals such as Pb, Al, and Ni in this type of product. Furthermore, it is recommendable to set consumer guidelines to some tofu types in order to avoid excessive intake of PTEs.

This is a preview of subscription content, access via your institution.

Fig. 1

Data Availability

All data generated or analyzed during this study are included in this published article

References

  1. Adams SV, Newcomb PA, Shafer MM, Atkinson C, Aiello Bowles EJ, Newton KM, Lampe JW (2011) Sources of cadmium exposure among healthy premenopausal women. Sci Total Environ 409(9):1632–1637. https://doi.org/10.1016/j.scitotenv.2011.01.037

    CAS  Article  Google Scholar 

  2. AESAN (Agencia Española de Seguridad Alimentaria y Nutrición) (2006) Modelo de dieta española para la determinación de la exposición del consumidor a sustancias químicas. Ministerio de Sanidad y Consumo, Madrid

    Google Scholar 

  3. Arvand M, Kermanian M (2012) Potentiometric determination of aluminum in foods, pharmaceuticals, and alloys by AlMCM-41-modified carbon paste electrode. Food Anal Methods 6:578–586

    Article  Google Scholar 

  4. Astutia RF (2020) Analysis Of Lead (Pb) Level in tofu in Nangewer Village, Garut Regency, Indonesia. J Xi’an Univ Architect Technol 12(7):323–330

    Google Scholar 

  5. Barbier O, Jacquillet G, Tauc M, Cougnon M, Poujeol P (2005) Effect of heavy metals on, and handling by, the kidney. Nephron Physiol 99:105–110

    Article  Google Scholar 

  6. Bocio A, Nadal M, Domingo JL (2005) Human exposure to metals through the diet in Tarragona, Spain. Biol Trace Elem Res 104:193–201. https://doi.org/10.1385/BTER:104:3:193

    CAS  Article  Google Scholar 

  7. Chaves ES, Santos EJ, Araujo RGO, Oliveira JV, Frescura VLA, Curtius AJ (2010) Metals and phosphorus determination in vegeta-ble seeds used in the production of biodiesel by ICP OES and ICP-MS. Microchem J 96:71–76. https://doi.org/10.1016/j.microc.2010.01.021

    CAS  Article  Google Scholar 

  8. Chen C, Wang X, Chen D, Li G, Ronnenberg A, Watanabe H, Wang X, Ryan L, Christiani DC, Xu X (2001) Tofu consumption and blood lead levels in young Chinese adults. Am J Epidemiol 153(12):1206–1212. https://doi.org/10.1093/aje/153.12.1206

    CAS  Article  Google Scholar 

  9. Das KK, Chandramouli RR, Bagoji IB, Das S, Bagali S, Mullur L, Khodnapur JP, Biradar MS (2018) Primary concept of nickel toxicity – an overview. J Basic Clin Physiol Pharmacol 30(2):141–152. https://doi.org/10.1515/jbcpp-2017-0171

    CAS  Article  Google Scholar 

  10. Di Bella C, Traina A, Giosuè C, Carpintieri D, Lo Dico GM, Bellante A, Del Core M, Falco F, Gherardi S, Uccello MM, Ferrantelli V (2020) Heavy metals and PAHs in meat, milk, and seafood from Augusta Area (Southern Italy): contamination levels, dietary intake, and human exposure assessment. Front Public Health 8:273. https://doi.org/10.3389/fpubh.2020.00273

    Article  Google Scholar 

  11. EFSA (European Food Safety Authority) (2010) Scientific opinion on lead in food. EFSA J 8(4):1570

    Google Scholar 

  12. EFSA (European Food Safety Authority) (2011a) Statement on the evaluation on a new study related to the bioavailability of aluminum in food. EFSA J 9(5):2157

    Article  Google Scholar 

  13. EFSA (European Food Safety Authority) (2011b) Panel on Contaminants in the Food Chain (CONTAM). Statement on tolerable weekly intake for cadmium. EFSA J 9(2):1975

    Google Scholar 

  14. EFSA (European Food Safety Authority) (2015) Scientific opinion on the risks to public health related to the presence of nickel in food and drinking water. EFSA J 13(2):4002–4204

    Google Scholar 

  15. González-Weller D, Rubio C, Gutiérrez AJ, Pérez B, Hernández-Sánchez C, Caballero JM, Revert C, Hardisson A (2015) Dietary content and evaluation of metals in four types of tea (white, black, red and green) consumed by the population of the Canary Islands. Pharmacol Anal Acta 6(10):428

    Google Scholar 

  16. Gu YG, Gao YP, Lin Q (2016) Contamination, bioaccessibility and human health risk of heavy metals in exposed-lawn soils from 28 urban parks in southern China’s largest city, Guangzhou. Appl Geochem 67:52–58

    CAS  Article  Google Scholar 

  17. Gutiérrez AJ, González-Weller D, González T, Burgos A, Lozano G, Hardisson A (2008) Content of trace metals (iron, zinc, manganese, chromium, copper, nikel) in canned variegated scallops (Chlamys varia). Int J Food Sci Nutr 59:535–543

    Article  Google Scholar 

  18. Hardisson A, Rubio C, Báez A, Martín MM, Álvarez R, Díaz E (2001) Mineral composition of the banana (Musa acuminata) from the island of Tenerife. Food Chem 73:153–161

    CAS  Article  Google Scholar 

  19. Hardisson A, Revert C, González-Weller D, Gutiérrez A, Paz S, Rubio C (2017) Aluminium exposure through the diet. HSOA J Food Sci Nutr 3:019

    Google Scholar 

  20. Heller MC, Willits-Smith A, Meyer R, Keoleian GA, Rose D (2018) Greenhouse gas emissions and energy use associated with production of individual self-selected US diets. Environ Res Lett 13(4):044004. https://doi.org/10.1088/1748-9326/aab0ac

    Article  Google Scholar 

  21. Hendrie GA, Baird D, Ridoutt B, Hadjikakou M, Noakes M (2016) Overconsumption of energy and excessive discretionary food intake inflates dietary greenhouse gas emissions in Australia. Nutrients 8(11):690. https://doi.org/10.3390/nu8110690

    CAS  Article  Google Scholar 

  22. Hornick SB (2009) Factors affecting the nutritional quality of crops. Am J Altern Agric 7:63–68

    Article  Google Scholar 

  23. IOM (Institute of Medicine) (2001) Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Food and Nutrition Board, Institute of Medicine, National Academies, Washington

    Google Scholar 

  24. IUPAC (1995) International Union of Pure and Applied Chemistry, nomenclature in evaluation of analytical methods including detection and quantification capabilities. Pure Appl Chem 67:1699–1723

    Article  Google Scholar 

  25. Karasakal A (2020) Determination of trace and major elements in vegan milk and oils by ICP-OES after microwave digestion. Biol Trace Elem Res 197:683–693. https://doi.org/10.1007/s12011-019-02024-7

    CAS  Article  Google Scholar 

  26. Kato, M., Ohgami, N., Ohnuma, S., Hashimoto, K., Tazaki, A., Xu, H., Kondo-Ida, L., Yuan, T., Tsuchiyama, T., He, T., Kurniasari, F., Gu, Y., Chen, W., Deng, Y., Komuro, K., Tong, K., Yajima, I., 2020. Multidisciplinary approach to assess the toxicities of arsenic and barium in drinking water. Environ Health Prevent Med 25(16). https://doi.org/10.1186/s12199-020-00855-8

  27. Khan N, Ryu KY, Choi JY, Nho EY, Habte G, Choi H, Kim MH, Park KS, Kim KS (2015) Determination of toxic metals and speciation of arsenic in seaweeds from South Korea. Food Chem 169:464–470

    CAS  Article  Google Scholar 

  28. Kosečková P, Zvěřina O, Pruša T, Coufalík P, Hrežová E (2020) Estimation of cadmium load from soybeans and soy-based foods for vegetarians. Environ Monit Assess 192:89. https://doi.org/10.1007/s10661-019-8034-7

    CAS  Article  Google Scholar 

  29. Krajčovičová-Kudláčková M, Ursínyová M, Mašánová V, Béderová A, Valachovičová M (2006) Cadmium blood concentrations in relation to nutrition. Cent Eur J Public Health 14(3):126–129

    Article  Google Scholar 

  30. Kumar S, Sharma A (2019) Cadmium toxicity: effects on human reproduction and fertility. Rev Environ Health 34(4):327–338

    CAS  Article  Google Scholar 

  31. Liu Z, Li W, Sun J, Liu C, Zeng Q, Huang J, Yu B, Huo J (2004) Intake of soy foods and soy isoflavones by rural adult women in China. Asia Pac J Clin Nutr 13(2):204–209

    Google Scholar 

  32. Marini M, Angouria-Tsorochidou E, Caro D, Thomsen M (2021) Daily intake of heavy metals and minerals in food – a case study of four Danish dietary profiles. J Clean Prod 280:124279. https://doi.org/10.1016/j.jclepro.2020.124279

    CAS  Article  Google Scholar 

  33. Mejia A, Harwatt H, Jaceldo-Siegl K, Sranacharoenpong K, Soret S, Sabaté J (2017) Greenhouse gas emissions generated by tofu production: a case study. J Hunger Environ Nutr 13(1):131–142. https://doi.org/10.1080/19320248.2017.1315323

    Article  Google Scholar 

  34. Meng S, Chang S, Gillen AM, Zhang Y (2016) Protein and quality analyses of accessions from the USDA soybean germplasm collection for tofu production. Food Chem 213:31–39

    CAS  Article  Google Scholar 

  35. Nordberg GF, Fowler BA, Nordberg M, Friberg L (2007) Handbook on the toxicology of metals, 3rd edn. Academic Press, Amsterdam

    Google Scholar 

  36. Ogimoto M, Suzuki K, Haneishi N, Kikuchi Y, Takanashi M, Tomioka N, Uematsu Y, Monma K (2016) Aluminium content of foods originating from aluminium-containing food additives. Food Addit Contam: B 9(3):185–190. https://doi.org/10.1080/19393210.2016.1158210

    CAS  Article  Google Scholar 

  37. Oliveira VM, Rodrigo Dias Assis C, Silva Costa HM, Pereira Freitas Silva R, Ferreira Santos J, Bezerra Carvalho L Jr, Souza Bezerra R (2017) Aluminium sulfate exposure: a set of effects on hydrolases from brain, muscle and digestive tract of juvenile Nile tilapia (Oreochromis niloticus). Comp Biochem Physiol C: Toxicol Pharmacol 191:101–108. https://doi.org/10.1016/j.cbpc.2016.10.002

    CAS  Article  Google Scholar 

  38. Padrón P, Paz S, Rubio C, Gutiérrez ÁJ, González-Weller D, Hardisson A (2020) Trace element levels in vegetable sausages and burgers determined by ICP-OES. Biol Trace Elem Res 194(2):616–626

    Article  Google Scholar 

  39. Pastircakova K (2004) Determination of trace metal concentrations in ashes from various biomass materials. Energy Educ Sci Technol A: Energy Sci Res 13(2):97–104

    CAS  Google Scholar 

  40. Pathak P, Gupta DK (2020) Strontium contamination in the environment. The Handbook of Environmental Chemistry. Springer, Switzerland. https://doi.org/10.1007/978-3-030-15314-4

    Google Scholar 

  41. Paz S, Rubio C, Gutiérrez AJ, González-Weller D, Hardisson A (2020) Dietary intake of essential elements (Na, K, Mg, Ca, Mn, Zn, Fe, Cu, Mo, Co) from tofu consumption. Biol Trace Elem Res 199:382–388. https://doi.org/10.1007/s12011-020-02151-6

    Article  Google Scholar 

  42. Queirolo F, Valenta P, Stegen S, Breckle SW (1990) Heavy metal concentrations in oak wood growth rings from the Taunus (Federal Repubic of Germany) and the Valdivia (Chile) regions. Trees 4(2):81–87

    Article  Google Scholar 

  43. Rödl MB (2019) What’s new?: a history of meat alternatives in the UK. In: Environmental, health, and business opportunities in the new meat alternatives market. IGI Global, United Kingdom, pp 202–2017

    Google Scholar 

  44. Rubio C, González-Iglesias T, Revert C, Reguera JI, Gutiérrez AJ, Hardisson A (2005) Lead dietary intake in a Spanish population (Canary Islands). J Agric Food Chem 53:6543–6549

    CAS  Article  Google Scholar 

  45. Rubio C, Paz S, Ojeda I, Gutiérrez AJ, González-Weller D, Hardisson A, Revert C (2017a) Dietary intake of metals from fresh cage-reared hens’ eggs in Tenerife, Canary Islands. J Food Qual 2017:1–11. https://doi.org/10.1155/2017/5972153

    CAS  Article  Google Scholar 

  46. Rubio C, Napoleone G, Luis-González G, Gutiérrez AJ, González-Weller D, Hardisson A, Revert C (2017b) Metals in edible seaweed. Chemosphere 173:572–579

    CAS  Article  Google Scholar 

  47. SCHER (Scientific Committee on Health and Environmental Risk) (2012) Assessment of the tolerable daily intake of barium. European Commiss. https://doi.org/10.2772/49651

  48. Serrazanetti DI, Ndagijimana M, Miserochi C, Perillo L, Guerzoni ME (2013) Fermented tofu: enhancement of keeping quality and sensorial properties. Food Control 34:336–346

    CAS  Article  Google Scholar 

  49. Shaheen N, Irfan NM, Khan IN, Islam S, Ahmed MK (2016) Presence of heavy metal in fruits and vegetables: health risk implications in Bangladesh. Chemosphere 152:431–438

    CAS  Article  Google Scholar 

  50. Tóth G, Hermann T, Da Silva MR, Montanarella L (2016) Heavy metals in agricultural soils of the European Union with implications for food safety. Environ Int 88:299–309

    Article  Google Scholar 

  51. WHO (World Health Organization) (2010) Strontium and strontium compound. Concise Int Chem Assess Doc 77:1–63

    Google Scholar 

  52. Xu L, Du B, Xu B (2015) A systematic, comparative study on the beneficial health components and antioxidant activities of commercially fermented soy products marketed in China. Food Chem 174:202–213

    CAS  Article  Google Scholar 

  53. Yu Z, Rahman MRT, Lou Z (2019) Chinese Traditional Foods: Preparation and Processing. In: Al-Khusaibi M, Al-Habsi N, Shafiur RM (eds) Traditional Foods. Food Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-030-24620-4_5

    Google Scholar 

  54. Zhu J, Deng H, Yang A, Wu Z, Li X, Tong P, Chen H (2019) Effect of microbial transglutaminase cross-linking on the quality characteristics and potential allergenicity of tofu. Food Funct 10(9):5485–5497

Download references

Author information

Affiliations

Authors

Contributions

All authors contributed to the study conception. Design of the study was performed by CR and AH. Material preparation, data collection, and analysis were performed by SP, ÁJG, and DGW. The first draft of the manuscript was written by SP and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Soraya Paz.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Chemical compounds

Nitric acid (PubChem: CID 944)

Responsible Editor: Lotfi Aleya

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Paz, S., Rubio, C., Gutiérrez, Á.J. et al. Human exposure assessment to potentially toxic elements (PTEs) from tofu consumption. Environ Sci Pollut Res (2021). https://doi.org/10.1007/s11356-021-13076-5

Download citation

Keywords

  • Tofu
  • Potentially toxic elements
  • Risk assessment
  • Food safety
  • Organic crop
  • Toxic risk