Colocasia esculenta stem as novel biosorbent for potentially toxic metals removal from aqueous system

Abstract

Biosorption is an ingenious technique that uses biological materials to acquire trace metal ions from wastewater. In the present study, the ability of Colocasia esculenta stem biomass was explored for the biosorption of toxic trace metals. The maximum removal was observed for arsenate (As5+) with 58.63%, followed by chromium (Cr6+) with 56.56%, and cadmium (Cd2+) with 41.2%. However, for copper (Cu2+), nickel (Ni2+), and zinc (Zn2+), low adsorption was observed. Batch sorption tests revealed that adsorbent dosage of 0.5g, 0.5g, and 0.3g; time of 10 h, 4 h, and 10 h; room temperature range of 25–30°C; pH range of 7.0–4.5; and initial concentration of 30 μg/L, 20 mg/L, and 30 mg/L were the optimum conditions for the removal of As5+, Cr6+, and Cd2+, respectively. Scanning electron microscope and energy-dispersive X-ray spectroscopy (SEM-EDX) analysis of Colocasia esculenta stem biomass before and after adsorption revealed that the trace metals successfully get adsorbed on the surface of the biosorbent. The equilibrium data fitted well with the adsorption isotherm model of Langmuir (for As5+, Cr6+, and Cd2+), Dubinin-Radushkevich (for As5+ and Cr6+), and Flory-Huggins (for Cd2+), and the kinetic data of As5+, Cr6+, and Cd2+ biosorption were best described by pseudo-second-order kinetic model. Thermodynamic studies revealed that the adsorption process for all concerned trace metals acts in a spontaneous manner and is endothermic in nature. Thus, the use of Colocasia esculenta stem biomass proved to be an efficient and economical alternative for the treatment of effluents contaminated with these trace metals.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data availability

All data generated or analyzed during this study are included in this research article (and also its supplementary informatory files).

References

  1. Abdelwahab O, Fouad YO, Amin NK, Mandor H (2015) Kinetic and thermodynamic aspects of cadmium adsorption onto raw and activated guava (Psidium guajava) leaves. Environ Prog Sustain Energy 34(2):351–358. https://doi.org/10.1002/ep.11991

    CAS  Article  Google Scholar 

  2. Aditya GVV, Pujitha BP, Babu NC, Venkateswarlu P (2012) Biosorption of chromium onto Erythrina variegata orientalis leaf powder. Korean J Chem Eng 29(1):64–71. https://doi.org/10.1007/s11814-011-0139-9

    CAS  Article  Google Scholar 

  3. Alomá IDLC, Rodriguez I, Calero M, Blazquez G (2014) Biosorption of Cr6+ from aqueous solution by sugarcane bagasse. Desalin Water Treat 52(31-33):5912–5922. https://doi.org/10.1080/19443994.2013.812521

    CAS  Article  Google Scholar 

  4. Alves DC, Gonçalves JO, Coseglio BB, Burgo TA, Dotto GL, Pinto LA, Cadaval TR Jr (2019) Adsorption of phenol onto chitosan hydrogel scaffold modified with carbon nanotubes. J Environ Chem Eng 7(6):103460. https://doi.org/10.1016/j.jece.2019.103460

    CAS  Article  Google Scholar 

  5. Azhar, M. D., Abd Hashib, S., Ibrahim, U. K., Md Zaki, N. A., Ahmad Zamanhuri, N., & Abd Rahman, N. (2020). Moisture sorption isotherm and thermodynamic properties of Centella asiatica L. (CAL) powder. Chem Eng Commun, 1-10. https://doi.org/10.1080/00986445.2020.1780213

  6. Banerjee S, Mukherjee S, LaminKa-ot A, Joshi SR, Mandal T, Halder G (2016) Biosorptive uptake of Fe2+, Cu2+ and As5+ by activated biochar derived from Colocasia esculenta: isotherm, kinetics, thermodynamics, and cost estimation. J Adv Res 7(5):597–610. https://doi.org/10.1016/j.jare.2016.06.002

    CAS  Article  Google Scholar 

  7. Baral A, Engelken RD (2002) Chromium-based regulations and greening in metal finishing industries in the USA. Environ Sci Pol 5(2):121–133. https://doi.org/10.1016/S1462-9011(02)00028-X

    CAS  Article  Google Scholar 

  8. Baral SS, Das SN, Rath P (2006) Hexavalent chromium removal from aqueous solution by adsorption on treated sawdust. Biochem Eng J 31(3):216–222. https://doi.org/10.1016/j.bej.2006.08.003

    CAS  Article  Google Scholar 

  9. Baral SS, Das SN, Chaudhury GR, Rath P (2008) Adsorption of Cr (VI) by treated weed Salvinia cucullata: kinetics and mechanism. Adsorption 14(1):111–121. https://doi.org/10.1007/s10450-007-9076-7

    CAS  Article  Google Scholar 

  10. Batool S, Idrees M, Hussain Q, Kong J (2017) Adsorption of copper (II) by using derived-farmyard and poultry manure biochars: efficiency and mechanism. Chem Phys Lett 689:190–198. https://doi.org/10.1016/j.cplett.2017.10.016

    CAS  Article  Google Scholar 

  11. Batool S, Idrees M, Al-Wabel MI, Ahmad M, Hina K, Ullah H, Cui L, Hussain Q (2019) Sorption of Cr (III) from aqueous media via naturally functionalized microporous biochar: mechanistic study. Microchem J 144:242–253. https://doi.org/10.1016/j.microc.2018.09.012

    CAS  Article  Google Scholar 

  12. Batool S, Idrees M, Ahmad M, Ahmad M, Hussain Q, Iqbal A, Kong J (2020) Design and characterization of a biomass template/SnO2 nanocomposite for enhanced adsorption of 2, 4-dichlorophenol. Environ Res 181:108955. https://doi.org/10.1016/j.envres.2019.108955

    CAS  Article  Google Scholar 

  13. Budinova T, Petrov N, Razvigorova M, Parra J, Galiatsatou P (2006) Removal of arsenic (III) from aqueous solution by activated carbons prepared from solvent extracted olive pulp and olive stones. Ind Eng Chem Res 45(6):1896–1901. https://doi.org/10.1021/ie051217a

    CAS  Article  Google Scholar 

  14. Cheraghi E, Ameri E, Moheb A (2015) Adsorption of cadmium ions from aqueous solutions using sesame as a low-cost biosorbent: kinetics and equilibrium studies. Int J Environ Sci Technol 12(8):2579–2592. https://doi.org/10.1007/s13762-015-0812-3

    CAS  Article  Google Scholar 

  15. Chubar N, Carvalho JR, Correia MJN (2004) Trace metals biosorption on cork biomass: effect of the pre-treatment. Colloids Surf A Physicochem Eng Asp 238(1-3):51–58. https://doi.org/10.1016/j.colsurfa.2004.01.039

    CAS  Article  Google Scholar 

  16. Dastkhoon M, Ghaedi M, Asfaram A, Azqhandi MHA, Purkait MK (2017) Simultaneous removal of dyes onto nanowires adsorbent use of ultrasound assisted adsorption to clean waste water: chemometrics for modeling and optimization, multicomponent adsorption and kinetic study. Chem Eng Res Des 124:222–237. https://doi.org/10.1016/j.cherd.2017.06.011

    CAS  Article  Google Scholar 

  17. Dil EA, Ghaedi M, Asfaram A, Mehrabi F, Bazrafshan AA, Tayebi L (2019) Synthesis and application of Ce-doped TiO2 nanoparticles loaded on activated carbon for ultrasound-assisted adsorption of Basic Red 46 dye. Ultrason Sonochem 58:104702. https://doi.org/10.1016/j.ultsonch.2019.104702

    CAS  Article  Google Scholar 

  18. Dotto GL, Vieira MLG, Gonçalves JO, Pinto LA d A (2011) Removal of bright blue, dusk yellow and tartrazine yellow dyes from aqueous solutions using activated carbon, activated earth, diatomaceous earth, chitin and chitosan: equilibrium and thermodynamic studies. Química Nova 34(7):1193–1199 https://doi.org/10.1590/S0100-40422011000700017

    CAS  Article  Google Scholar 

  19. Dotto GL, Rodrigues FK, Tanabe EH, Fröhlich R, Bertuol DA, Martins TR, Foletto EL (2016) Development of chitosan/bentonite hybrid composite to remove hazardous anionic and cationic dyes from colored effluents. J Environ Chem Eng 4(3):3230–3239. https://doi.org/10.1016/j.jece.2016.07.004

    CAS  Article  Google Scholar 

  20. Eftekhari M, Akrami M, Gheibi M, Azizi-Toupkanloo H, Fathollahi-Fard AM, Tian G (2020) Cadmium and copper heavy metal treatment from water resources by high-performance folic acid-graphene oxide nanocomposite adsorbent and evaluation of adsorptive mechanism using computational intelligence, isotherm, kinetic, and thermodynamic analyses. Environ Sci Pollut Res 27(35):43999–44021. https://doi.org/10.1007/s11356-020-10175-7

    CAS  Article  Google Scholar 

  21. Elovich SY, Larionov OG (1962) Theory of adsorption from nonelectrolyte solutions on solid adsorbents. Bullet Acad Sci USSR Division Chem Sci 11(2):191–197. https://doi.org/10.1007/BF00908016

    Article  Google Scholar 

  22. Gebrehawaria G, Hussen A, Rao VM (2015) Removal of hexavalent chromium from aqueous solutions using barks of Acacia albida and leaves of Euclea schimperi. Int J Environ Sci Technol 12(5):1569–1580. https://doi.org/10.1007/s13762-014-0530-2

    CAS  Article  Google Scholar 

  23. Gupta VK, Pathania D, Agarwal S, Sharma S (2013) Removal of Cr (VI) onto Ficus carica biosorbent from water. Environ Sci Pollut Res 20(4):2632–2644. https://doi.org/10.1007/s11356-012-1176-6

    CAS  Article  Google Scholar 

  24. Gupta N, Poddar K, Sarkar D, Kumari N, Padhan B, Sarkar A (2019) Fruit waste management by pigment production and utilization of residual as bioadsorbent. J Environ Manag 244:138–143. https://doi.org/10.1016/j.jenvman.2019.05.055

    CAS  Article  Google Scholar 

  25. Halsey G (1948) Physical adsorption on non-uniform surfaces. J Chem Phys 16(10):931–937. https://doi.org/10.1063/1.1746689

    CAS  Article  Google Scholar 

  26. Jain M, Garg VK, Kadirvelu K (2009) Chromium (VI) removal from aqueous system using Helianthus annuus (sunflower) stem waste. J Hazard Mater 162(1):365–372. https://doi.org/10.1016/j.jhazmat.2008.05.048

    CAS  Article  Google Scholar 

  27. Jorgetto ADO, da Silva AC, Wondracek MH, Silva RI, Velini ED, Saeki MJ et al (2015) Multilayer adsorption of Cu (II) and Cd (II) over Brazilian Orchid Tree (Pata-de-vaca) and its adsorptive properties. Appl Surf Sci 345:81–89. https://doi.org/10.1016/j.apsusc.2015.03.142

    CAS  Article  Google Scholar 

  28. Jovanovic DS (1969) Physical adsorption of gases. Kolloid-Zeitschrift und Zeitschrift für Polymere 235(1):1214–1225. https://doi.org/10.1007/BF01542531

    CAS  Article  Google Scholar 

  29. Kadimpati KK, Mondithoka KP, Bheemaraju S, Challa VRM (2013) Entrapment of marine microalga, Isochrysis galbana, for biosorption of Cr (III) from aqueous solution: isotherms and spectroscopic characterization. Appl Water Sci 3(1):85–92. https://doi.org/10.1007/s13201-012-0062-1

    CAS  Article  Google Scholar 

  30. Kamar FH, Nechifor AC, Nechifor G, Al-Musawi TJ, Mohammed AH (2017) Aqueous phase biosorption of Pb (II), Cu (II), and Cd (II) onto cabbage leaves powder. Int J Chem React Eng 15(2). https://doi.org/10.1515/ijcre-2015-0178

  31. Kebede TG, Dube S, Nindi MM (2019) Characterisation of water-soluble protein powder and optimisation of process parameters for the removal of sulphonamides from wastewater. Environ Sci Pollut Res 26(21):21450–21462. https://doi.org/10.1007/s11356-019-05272-1

    CAS  Article  Google Scholar 

  32. Khosravi R, Fazlzadehdavil M, Barikbin B, Taghizadeh AA (2014) Removal of hexavalent chromium from aqueous solution by granular and powdered Peganum Harmala. Appl Surf Sci 292:670–677. https://doi.org/10.1016/j.apsusc.2013.12.031

    CAS  Article  Google Scholar 

  33. Kumar U, Bandyopadhyay M (2006) Sorption of cadmium from aqueous solution using pretreated rice husk. Bioresour Technol 97(1):104–109. https://doi.org/10.1016/j.biortech.2005.02.027

    CAS  Article  Google Scholar 

  34. Kuppusamy S, Thavamani P, Megharaj M, Venkateswarlu K, Lee YB, Naidu R (2016) Potential of Melaleuca diosmifolia leaf as a low-cost adsorbent for hexavalent chromium removal from contaminated water bodies. Process Saf Environ Prot 100:173–182. https://doi.org/10.1016/j.psep.2016.01.009

    CAS  Article  Google Scholar 

  35. Li XG, Liao Y, Huang MR, Kaner RB (2015) Interfacial chemical oxidative synthesis of multifunctional polyfluoranthene. Chem Sci 6(3):2087–2101. https://doi.org/10.1039/C4SC03890H

    CAS  Article  Google Scholar 

  36. Loffredo E, Scarcia Y, Parlavecchia M (2020) Removal of ochratoxin A from liquid media using novel low-cost biosorbents. Environ Sci Pollut Res 27(27):34484–34494. https://doi.org/10.1007/s11356-020-09544-z

    CAS  Article  Google Scholar 

  37. Mahvi AH, Naghipour D, Vaezi F, Nazmara S (2005) Teawaste as an adsorbent for trace metal removal from industrial wastewaters. Am J Appl Sci 2(1):372–375

    CAS  Article  Google Scholar 

  38. Maity S, Biswas R, Sarkar A (2020a) Comparative valuation of groundwater quality parameters in Bhojpur, Bihar for arsenic risk assessment. Chemosphere 259:127398. https://doi.org/10.1016/j.chemosphere.2020.127398

    CAS  Article  Google Scholar 

  39. Maity, S., Sinha, D., & Sarkar, A. (2020b). Wastewater and industrial effluent treatment by using nanotechnology. In Nanomaterials and Environmental Biotechnology. Springer, Cham, 299-313

  40. Maity, S., Biswas, R., Verma, S.K. and Sarkar, A., (2021). Natural polysaccharides as potential biosorbents for heavy metal removal. In Food, Medical, and Environmental Applications of Polysaccharides. Elsevier, 627-665. https://doi.org/10.1016/B978-0-12-819239-9.00012-9

  41. Nag S, Mondal A, Mishra U, Bar N, Das SK (2016) Removal of chromium (VI) from aqueous solutions using rubber leaf powder: batch and column studies. Desalin Water Treat 57(36):16927–16942. https://doi.org/10.1080/19443994.2015.1083893

    CAS  Article  Google Scholar 

  42. Nakkeeran E, Saranya N, Giri Nandagopal MS, Santhiagu A, Selvaraju N (2016) Hexavalent chromium removal from aqueous solutions by a novel powder prepared from Colocasia esculenta leaves. Int J Phytoremediation 18(8):812–821. https://doi.org/10.1080/15226514.2016.1146229

    CAS  Article  Google Scholar 

  43. Nejadshafiee V, Islami MR (2020) Intelligent-activated carbon prepared from pistachio shells precursor for effective adsorption of trace metals from industrial waste of copper mine. Environ Sci Pollut Res 27(2):1625–1639. https://doi.org/10.1007/s11356-019-06732-4

    CAS  Article  Google Scholar 

  44. Niu CH, Volesky B, Cleiman D (2007) Biosorption of arsenic (V) with acid-washed crab shells. Water Res 41(11):2473–2478. https://doi.org/10.1016/j.watres.2007.03.013

    CAS  Article  Google Scholar 

  45. Oliveira EA, Montanher SF, Andrade AD, Nobrega JA, Rollemberg MC (2005) Equilibrium studies for the sorption of chromium and nickel from aqueous solutions using raw rice bran. Process Biochem 40(11):3485–3490. https://doi.org/10.1016/j.procbio.2005.02.026

    CAS  Article  Google Scholar 

  46. Özer A, Pirincci HB (2006) The adsorption of Cd (II) ions on sulphuric acid-treated wheat bran. J Hazard Mater 137(2):849–855. https://doi.org/10.1016/j.jhazmat.2006.03.009

    CAS  Article  Google Scholar 

  47. Pahan S, Sengupta A, Yadav AK, Jha SN, Bhattacharyya D, Ali SM et al (2020) Exploring functionalized titania for task specific application of efficient separation of trivalent f-block elements. New J Chem 44(16):6151–6162. https://doi.org/10.1039/D0NJ01014F

    CAS  Article  Google Scholar 

  48. Rangabhashiyam S, Selvaraju N (2015) Evaluation of the biosorption potential of a novel Caryota urens inflorescence waste biomass for the removal of hexavalent chromium from aqueous solutions. J Taiwan Inst Chem Eng 47:59–70. https://doi.org/10.1016/j.jtice.2014.09.034

    CAS  Article  Google Scholar 

  49. Rangabhashiyam S, Anu N, Nandagopal MG, Selvaraju N (2014) Relevance of isotherm models in biosorption of pollutants by agricultural byproducts. J Environ Chem Eng 2(1):398–414. https://doi.org/10.1016/j.jece.2014.01.014

    CAS  Article  Google Scholar 

  50. Rangabhashiyam S, Nakkeeran E, Anu N, Selvaraju N (2015) Biosorption potential of a novel powder, prepared from Ficus auriculata leaves, for sequestration of hexavalent chromium from aqueous solutions. Res Chem Intermed 41(11):8405–8424. https://doi.org/10.1007/s11164-014-1900-6

    CAS  Article  Google Scholar 

  51. Rangabhashiyam S, Nandagopal MG, Nakkeeran E, Selvaraju N (2016) Adsorption of hexavalent chromium from synthetic and electroplating effluent on chemically modified Swietenia mahagoni shell in a packed bed column. Environ Monit Assess 188(7):411. https://doi.org/10.1007/s10661-016-5415-z

    CAS  Article  Google Scholar 

  52. Rao KS, Anand S, Venkateswarlu P (2011) Adsorption of cadmium from aqueous solution by Ficus religiosa leaf powder and characterization of loaded biosorbent. Clean Soil Air Water 39(4):384–391. https://doi.org/10.1002/clen.201000098

    CAS  Article  Google Scholar 

  53. Rosales E, Ferreira L, Sanromán MÁ, Tavares T, Pazos M (2015) Enhanced selective metal adsorption on optimised agroforestry waste mixtures. Bioresour Technol 182:41–49. https://doi.org/10.1016/j.biortech.2015.01.094

    CAS  Article  Google Scholar 

  54. Sarin V, Singh TS, Pant KK (2006) Thermodynamic and breakthrough column studies for the selective sorption of chromium from industrial effluent on activated eucalyptus bark. Bioresour Technol 97(16):1986–1993. https://doi.org/10.1016/j.biortech.2005.10.001

    CAS  Article  Google Scholar 

  55. Sathish T, Vinithkumar NV, Dharani G, Kirubagaran R (2015) Efficacy of mangrove leaf powder for bioremediation of chromium (VI) from aqueous solutions: kinetic and thermodynamic evaluation. Appl Water Sci 5(2):153–160. https://doi.org/10.1007/s13201-014-0174-x

    CAS  Article  Google Scholar 

  56. Sharma A, Bhattacharyya KG (2005) Adsorption of chromium (VI) on Azadirachta indica (Neem) leaf powder. Adsorption 10(4):327–338. https://doi.org/10.1007/s10450-005-4818-x

    Article  Google Scholar 

  57. Silva JM, Farias BS, Gründmann DDR, Cadaval TRS Jr, Moura JM, Dotto GL, Pinto LAA (2017) Development of chitosan/Spirulina bio-blend films and its biosorption potential for dyes. J Appl Polym Sci 134(11). https://doi.org/10.1002/APP.44580

  58. Vieira MLG, Esquerdo VM, Nobre LR, Dotto GL, Pinto LAA (2014) Glass beads coated with chitosan for the food azo dyes adsorption in a fixed bed column. J Ind Eng Chem 20(5):3387–3393. https://doi.org/10.1016/j.jiec.2013.12.024

    CAS  Article  Google Scholar 

  59. Yirankinyuki FF, Lamayi DW, Sadiq BA, Yakubu MU (2013) Proximate and some minerals analysis of Colocasia esculenta (TARO) leaves. J Med Biol Sci 3(2)

  60. Zhao T, Tang Z, Zhao X, Zhang H, Wang J, Wu F, Giesy JP, Shi J (2019) Efficient removal of both antimonite (Sb (III)) and antimonate (Sb (V)) from environmental water using titanate nanotubes and nanoparticles. Environ Sci 6(3):834–850. https://doi.org/10.1039/C8EN00869H

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Department of Science and Technology, Government of India for providing financial support to the research work (DST/TM/WTI/2K16/264). We would also like to express our appreciation to National Institute of Technology Rourkela for providing the infrastructure and instrumental support to proceed with the work.

Funding

This research work was financially supported by the Department of Science and Technology, Government of India (DST/TM/WTI/2K16/264) and the National Institute of Technology, Rourkela, for providing the infrastructure and instrumental support to proceed with the work.

Author information

Affiliations

Authors

Contributions

Sourav Maity conceptualized, analyzed, and interpreted the data regarding the adsorption isotherm models, kinetics, and thermodynamics and was the major contributor in writing the manuscript, reviewing, and editing. Soumyashree Nanda performed the basic experiments and was a contributor in writing the basic backbone of the manuscript. Dr. Angana Sarkar read and approved the manuscript.

Corresponding author

Correspondence to Angana Sarkar.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Tito Roberto Cadaval Jr

Supplementary information

ESM 1

(DOCX 197 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maity, S., Nanda, S. & Sarkar, A. Colocasia esculenta stem as novel biosorbent for potentially toxic metals removal from aqueous system. Environ Sci Pollut Res (2021). https://doi.org/10.1007/s11356-021-13026-1

Download citation

Keywords

  • Colocasia esculenta
  • Biosorption
  • Trace metals
  • Isotherm
  • Kinetics
  • Thermodynamics