Effects of the emulsifiable herbicide Dicamba on amphibian tadpoles: an underestimated toxicity risk?

Abstract

The effects of exposure to the herbicide Dicamba (DIC) on tadpoles of two amphibian species, Scinax nasicus and Elachistocleis bicolor, were assessed. Mortality and biochemical sublethal effects were evaluated using acetylcholinesterase (AChE), glutathione S-transferase (GST), glutathione reductase (GR), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) activities and thyroid hormone (T4) levels. The LC50 value at 48h was 0.859 mg L−1 for S. nasicus and 0.221 mg L−1 for E. bicolor tadpoles. After exposure to sublethal DIC concentrations for 48 h, GST activity increased in S. nasicus but significantly decreased in E. bicolor with respect to controls. GR activity decreased only in S. nasicus at all the tested DIC concentrations. AChE activity was significantly inhibited in both S. nasicus and E. bicolor tadpoles at 48 h. DIC also caused significant changes in transamination, as evidenced by an increase in AST and ALT activities in both amphibian species. T4 levels were higher in DIC-treated tadpoles of both species than in controls. The DIC-induced biochemical alterations in glutathione system enzymes and transaminases indicate lesions in liver tissues and cellular function. Moreover, the observed AChE inhibition could lead to the accumulation of acetylcholine, excessively stimulating postsynaptic receptors, and the increase in T4 levels in both species may indicate an overactive thyroid. The commercial DIC formulation showed a high biotoxicity in the two amphibian native species after short-term exposure, controversially differing from the toxicity level indicated in the official fact sheet data. This fact highlights the need for an urgent re-categorization and reevaluation of DIC toxicity in native species.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. APHA (1989) Standard methods for the examination of water and wastewater, 17th edn. American Public Health Association, Washington DC

    Google Scholar 

  2. ASIH-American Society of Ichthyologists and Herpetologists (2004) Guidelines for use of live amphibians and reptiles in field and laboratory research. Herpetological Animal Care and Use Committee (HACC), Washington DC

    Google Scholar 

  3. ASTM (2007) Standard guide for conducting acute toxicity tests with fishes, macroinvertebrates, and amphibians. Biological Effects and Environmental Fate. ASTM E, Pensilvania

    Google Scholar 

  4. Attademo AM, Peltzer PM, Lajmanovich RC, Cabagna-Zenklusen MC, Junges CM, Bassó A (2014) Biological endpoints, enzyme activities, and blood cell parameters in two anuran tadpole species in rice agroecosystems of mid-eastern Argentina. Environ Monit Assess 186(1):635–649. https://doi.org/10.1007/s10661-013-3404-z

    CAS  Article  Google Scholar 

  5. Attademo AM, Peltzer PM, Lajmanovich RC, Cabagna-Zenklusen MC, Junges CM, Lorenzatti E, Grenón P (2015) Biochemical changes in certain enzymes of Lysapsus limellium (Anura: Hylidae) exposed to chlorpyrifos. Ecotox Environ Safe 113:287–294

    CAS  Article  Google Scholar 

  6. Attademo AM, Lajmanovich RC, Peltzer PM, Junges CM (2016) Acute toxicity of metaldehyde in the invasive rice snail Pomacea canaliculata and sublethal effects on tadpoles of a non-target species (Rhinella arenarum). Water Air Soil Poll 227(11):400. https://doi.org/10.1007/s11270-016-3083-9

    CAS  Article  Google Scholar 

  7. Ayalogu OE, Igboh NM, Dede EB (2001) Biochemical changes in the serum and liver of albino rat exposed to petroleum samples (gasoline, kerosene and crude petroleum). J Appl Sc Envir Magmt 5(1):97–100

    Google Scholar 

  8. Bishop PJ, Angulo A, Lewis JP, Moore RD, Rabb GB, Moreno JG (2012) The Amphibian Extinction Crisis-what will it take to put the action into the Amphibian Conservation Action Plan? S.A.P.I.EN.S. [Online] 5 (2). https://journals.openedition.org/sapiens/1406. Accessed 30 April 2020

  9. Bókony V, Üveges B, Ujhegyi N, Verebélyi V, Nemesházi E, Csíkvári O, Hettyey A (2018) Endocrine disruptors in breeding ponds and reproductive health of toads in agricultural, urban and natural landscapes. Sci Total Environ 634:1335–1345. https://doi.org/10.1016/j.scitotenv.2018.03.363

    CAS  Article  Google Scholar 

  10. Brodeur JC, Suarez RP, Natale GS, Ronco AE, Zaccagnini ME (2011) Reduced body condition and enzymatic alterations in frogs inhabiting intensive crop production areas. Ecotox Environ Safe 74(5):1370–1380. https://doi.org/10.1016/j.ecoenv.2011.04.024

    CAS  Article  Google Scholar 

  11. Bunch TR, Gervais JA, Buhl K, Stone D (2012) Dicamba technical fact sheet; National Pesticide Information Center, Oregon State University Extension Services. http://npic.orst.edu/factsheets/archive/dicamba_tech.html. Accessed 30 April 2020

  12. Cámara de Sanidad Agropecuaria y Fertilizantes (CASAFE) (2019) Guía de Productos Fitosanitarios para la República Argentina, 18th ed. CASAFE (ed). Buenos Aires, Argentina, pp 1200

  13. Cao C, Wang Q, Jiao F, Zhu G (2016) Impact of co-exposure with butachlor and triadimefon on thyroid endocrine system in larval zebrafish. Exp. Toxicol Pathol 68(8):463–469. https://doi.org/10.1016/j.etp.2016.07.004

    CAS  Article  Google Scholar 

  14. Chang J, Liu S, Zhou S, Wang M, Zhu G (2013) Effects of butachlor on reproduction and hormone levels in adult zebrafish (Danio rerio). Exp toxicol pathol 65(1-2):205–209. https://doi.org/10.1016/j.etp.2011.08.007

    CAS  Article  Google Scholar 

  15. Chanson J, Stuart S, Cox N, Young B, Hoffman M (2008) The global amphibian assessment (GAA): history, objectives and methodology. In: Stuart SN, Hoffmann M, Chanson JS, Cox NA, Berridge RJ, Ramani P, Young BE (eds) Threatened amphibians of the world. Lynx Edicions, Barcelona, pp 30–32

    Google Scholar 

  16. Colin N, Porte C, Fernandes D, Barata C, Padrós F, Carrassón M, Monroy M, Cano-Rocabayera O, de Sostoa A, Piña B, Maceda-Veiga A (2016) Ecological relevance of biomarkers in monitoring studies of macro-invertebrates and fish in Mediterranean rivers. Sci Total Environ 540:307–323

    CAS  Article  Google Scholar 

  17. Costa MJ, Monteiro DA, Oliveira-Neto AL, Rantin FT, Kalinin AL (2008) Oxidative stress biomarkers and heart function in bullfrog tadpoles exposed to Roundup Original®. Ecotoxicology 17(3):153–163. https://doi.org/10.1007/s10646-007-0178-5

    CAS  Article  Google Scholar 

  18. Curi LM, Peltzer PM, Sandoval MT, Lajmanovich RC (2019) Acute toxicity and sublethal effects caused by a commercial herbicide formulated with 2, 4-D on Physalaemus albonotatus tadpoles. Water Air Soil Pol 230(1):22. https://doi.org/10.1007/s11270-018-4073-x

    CAS  Article  Google Scholar 

  19. David M, Kartheek RM (2016) In vivo studies on hepato-renal impairments in freshwater fish Cyprinus carpio following exposure to sublethal concentrations of sodium cyanide. Environ Sci Pollut Res 23(1):722–733. https://doi.org/10.1007/s11356-015-5286-9

    CAS  Article  Google Scholar 

  20. Denver RJ (2009) Endocrinology of Complex Life Cycles: Amphibians. In: Plaff DW, Arnold AP, Etgen AM, Fahrbach SE, Rubin RT (eds) Hormones, brain and behavior, 2nd edition, Vol 2. Academic Press, San Diego, pp 707–744

    Google Scholar 

  21. Denver RJ, Glennemeier KA, Boorse GC (2002) Endocrinology of complex life cycles: amphibians. In: Plaff DW, Arnold AP, Etgen AM, Fahrbach SE, Rubin RT (eds) Hormones, brain and behavior. Academic press, San Diego, pp 469–4XI

    Google Scholar 

  22. Donald DB, Cessna AJ, Sverko E, Glozier NE (2007) Pesticides in surface drinking-water supplies of the northern Great Plains. Environ Health Perspect 115(8):1183–1191. https://doi.org/10.1289/ehp.9435

    CAS  Article  Google Scholar 

  23. Eddleston M, Street JM, Self I, Thompson A, King T, Williams N, John H (2012) A role for solvents in the toxicity of agricultural organophosphorus pesticides. Toxicology 294(2-3):94–103. https://doi.org/10.1016/j.tox.2012.02.005

    CAS  Article  Google Scholar 

  24. Egea-Serrano A, Relyea RA, Tejedo M, Torralva M (2012) Understanding of the impact of chemicals on amphibians: a meta-analytic review. Ecol Evol 2(7):1382–1397. https://doi.org/10.1002/ece3.249

    Article  Google Scholar 

  25. Ellman GL, Courtney KD, Andres JV, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7(2):88–95. https://doi.org/10.1016/0006-2952(61)90145-9

    CAS  Article  Google Scholar 

  26. Ensminger MP, Budd R, Kelley KC, Goh KS (2013) Pesticide occurrence and aquatic benchmark exceedances in urban surface waters and sediments in three urban areas of California, USA, 2008–2011. Environ Monit Assess 185(5):3697–3710. https://doi.org/10.1007/s10661-012-2821-8

    CAS  Article  Google Scholar 

  27. Flores Sturza P (2017) Toxidade aguda e crônica em girinos de Physalaemus gracilis (Anura: Leptodactylidae) expostos à atrazina e tebuconazole (In Portuguese). https://rd.uffs.edu.br/handle/prefix/1561. Accessed 4 May 2020

  28. Freitas JS, Felício AA, Teresa FB, Alves de Almeida E (2017) Combined effects of temperature and clomazone (Gamit®) on oxidative stress responses and B-esterase activity of Physalaemus nattereri (Leiuperidae) and Rhinella schneideri (Bufonidae) tadpoles. Chemosphere 185:58–562. https://doi.org/10.1016/j.chemosphere.2017.07.06

    Article  Google Scholar 

  29. Gabriel UU, Jack IR, Egobueze E, Edori OS (2011) Impact of cypermethrin on selected enzymes in tissues of Heterobranchus bidorsalis. West Afr J Appl Ecol 18(1):21–127. https://doi.org/10.4314/wajae.v18i1.70315

    Article  Google Scholar 

  30. Geiger F, Bengtsson J, Berendse F, Weisser WW, Emmerson M, Morales MB, Ceryngier P, Liira J, Tscharntke T, Winqvist C, Eggers S, Bommarco R, Pärt T, Bretagnolle V, Plantegenest M, Clement C, Dennis C, Palmer C, Oñate J, Guerrero I, Hawro V, Aavik T, Thies C, Flohre A, Hänke S, Fischer C, Goedhart P, Inchausti P (2011) Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl Ecol 12(4):386–387. https://doi.org/10.1016/j.baae.2009.12.001

    CAS  Article  Google Scholar 

  31. Geng BR, Yao D, Xue QQ (2005) Acute toxicity of the pesticide dichlorvos and the herbicide butachlor to tadpoles of four anuran species. Bull Environ Contam Toxicol 75(2):343–349. https://doi.org/10.1007/s00128-005-0759-z

    CAS  Article  Google Scholar 

  32. Gosner KL (1960) A simplified table for staging anuran embryos and larvae, with notes on identification. Herpetologica 16(3):183–190

    Google Scholar 

  33. Güngördü A, Uçkun M, Yoloğlu E (2016) Intgrated assessment of biochemical markers in premetamorphic tadpoles of three amphibian species exposed to glyphosate-and methidathion-based pesticides in single and combination forms. Chemosphere 144:2024–2035. https://doi.org/10.1016/j.chemosphere.2015.10.125

    CAS  Article  Google Scholar 

  34. Gupta PK (2018) Toxicity of herbicides. In: Gupta R (ed) Veterinary toxicology. Academic Press, San Diego

    Google Scholar 

  35. Habdous M, Vincent-Viry M, Visvikis S, Siest G (2002) Rapid spectrophotometric method for serum glutathione S-transferases activity. Clin Chim Acta 326(1-2):131–142. https://doi.org/10.1016/S0009-8981(02)00329-7

    CAS  Article  Google Scholar 

  36. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases the first enzymatic step in mercapturic acid formation. Int J Biol Chem 249(22):7130–7139

    CAS  Article  Google Scholar 

  37. Hamilton MA, Russo RC, Thurston RV (1977) Trimmed Spearman-Karber method for estimating median lethal concentrations in toxicity bioassays. Environ Sci Technol 11(7):714–719. https://doi.org/10.1021/es60130a004

    CAS  Article  Google Scholar 

  38. Jebali J, Khedher SB, Sabbagh M, Kamel N, Banni M, Boussetta H (2013) Cholinesterase activity as biomarker of neurotoxicity: utility in the assessment of aquatic environment contamination. Revista de Gestão Costeira Integrada-Journal of Integrated Coastal Zone Management 13(4):525–537

    Article  Google Scholar 

  39. Kingsley GR (1942) The direct biuret method for the determination of serum proteins as applied to photoelectric and visual colorimetry. J Lab Clin Med 27:840–845

    CAS  Google Scholar 

  40. Lajmanovich RC, Izaguirre MF, Casco VH (1998) Paraquat tolerance and alteration of internal gill structure of Scinax nasica tadpoles (Anura: Hylidae). Arch Environ Con Tox 34(4):364–369

    CAS  Article  Google Scholar 

  41. Lajmanovich RC, Attademo AM, Peltzer PM, Junges CM, Cabagna MC (2011) Toxicity of four herbicide formulations with glyphosate on Rhinella arenarum (Anura: Bufonidae) tadpoles: B-esterases and glutathione S-transferase inhibitors. Arch Environ Contam Toxicol 60:681–689. https://doi.org/10.1007/s00244-010-9578-2

    CAS  Article  Google Scholar 

  42. Lajmanovich RC, Peltzer PM, Attademo AM, Cabagna-Zenklusen MC, Junges CM (2012) Los agroquímicos y su impacto en los anfibios: un dilema de difícil solución. Química Viva 11(3):184–198

    CAS  Google Scholar 

  43. Lajmanovich RC, Junges CM, Attademo AM, Peltzer PM, Cabagna-Zenklusen MC, Bassó A (2013) Individual and mixture toxicity of commercial formulations containing glyphosate, metsulfuron-methyl, bispyribac-sodium, and picloram on Rhinella arenarum tadpoles. Water Air Soil Poll 224(3):1404. https://doi.org/10.1007/s11270-012-1404-1

    CAS  Article  Google Scholar 

  44. Lajmanovich RC, Cabagna-Zenklusen MC, Attademo AM, Junges CM, Peltzer PM, Bassó A, Lorenzatti E (2014) Induction of micronuclei and nuclear abnormalities in tadpoles of the common toad (Rhinella arenarum) treated with the herbicides Liberty® and glufosinate-ammonium. Mutat Res-Gen Tox En 769:7–12. https://doi.org/10.1016/j.mrgentox.2014.04.009

    CAS  Article  Google Scholar 

  45. Lajmanovich RC, Attademo AM, Simoniello MF, Poletta GL, Junges CM, Peltzer PM, Cabagna-Zenklusen MC (2015) Harmful effects of the dermal intake of commercial formulations containing chlorpyrifos, 2, 4-D, and glyphosate on the common toad Rhinella arenarum (Anura: Bufonidae). Water Air Soil Poll 226(12):427. https://doi.org/10.1007/s11270-015-2695-9

    CAS  Article  Google Scholar 

  46. Lajmanovich RC, Attademo AM, Peltzer PM, Junges CM, Martinuzzi CS (2016) Acute toxicity of apple snail Pomacea canaliculata’s eggs on Rhinella arenarum tadpoles. Toxin Rev 36(1):45–51. https://doi.org/10.1080/15569543.2016.1243561

    Article  Google Scholar 

  47. Lajmanovich RC, Peltzer PM, Martinuzzi C, Attademo AM, Bassó A, Colussi C (2019a) Insecticide pyriproxyfen (Dragón®) damage biotransformation, thyroid hormones, heart rate, and swimming performance of Odontophrynus americanus tadpoles. Chemophere 220:714–722. https://doi.org/10.1016/j.chemosphere.2018.12.181

    CAS  Article  Google Scholar 

  48. Lajmanovich RC, Peltzer PM, Attademo AM, Martinuzzi CS, Simoniello MF, Colussi CL, Cuzziol Boccioni AP, Sigrist M (2019b) First evaluation of novel potential synergistic effects of glyphosate and arsenic mixture on Rhinella arenarum (Anura: Bufonidae) tadpoles. Heliyon 5(10):e02601. https://doi.org/10.1016/j.heliyon.2019.e02601

    Article  Google Scholar 

  49. Li B, Hu R, Cheng Z, Cheng J, Xie Y, Gui S, Hong F (2012) Titanium dioxide nanoparticles relieve biochemical dysfunctions of fifth-instar larvae of silkworms following exposure to phoxim insecticide. Chemosphere 89(5):609–614. https://doi.org/10.1016/j.chemosphere.2012.05.061

    CAS  Article  Google Scholar 

  50. Li M, Li S, Yao T, Zhao R, Wang Q, Zhu G (2016) Waterborne exposure to triadimefon causes thyroid endocrine disruption and developmental delay in Xenopus laevis tadpoles. Aquat Toxicol 177:190–197. https://doi.org/10.1016/j.aquatox.2016.05.018

    CAS  Article  Google Scholar 

  51. Livingstone DR (2001) Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Mar Poll Bull 42(8):656–666

    CAS  Article  Google Scholar 

  52. Loteste A, Scagnetti J, Simoniello MF, Campana M, Parma MJ (2013) Hepatic enzymes activity in the fish Prochilodus lineatus (Valenciennes, 1836) after sublethal cypermethrin exposure. Bull Environ Contam Toxicol 90(5):601–604. https://doi.org/10.1007/s00128-013-0961-3

    CAS  Article  Google Scholar 

  53. Martinuzzi CS, Attademo AM, Peltzer PM, Mac Loughlin TM, Marino DJ, Lajmanovich RC (2019) Comparative toxicity of two different dimethoate formulations in the common toad (Rhinella arenarum) tadpoles. Bull Environ Contam Toxicol 104:35–40. https://doi.org/10.1007/s00128-019-02741-8

    CAS  Article  Google Scholar 

  54. Meister RT (1992) Farm Chemicals Handbook '92. Meister Publishing Company, Willoughby

    Google Scholar 

  55. Miyata K, Ose K (2012) Thyroid hormone-disrupting effects and the amphibian metamorphosis assay. J Toxicol Pathol 25:1–9. https://doi.org/10.1293/tox.25.1

    CAS  Article  Google Scholar 

  56. Nieuwkoop PD, Faber J (1956) Normal table of Xenopus laevis (Daudin). North Holland Publishers, Amsterdam

    Google Scholar 

  57. Nikoloff N, Natale GS, Marino D, Soloneski S, Larramendy ML (2014) Flurochloridone-based herbicides induced genotoxicity effects on Rhinella arenarum tadpoles (Anura: Bufonidae). Ecotox Environ Saf 100:275–281. https://doi.org/10.1016/j.ecoenv.2013.10.021

    CAS  Article  Google Scholar 

  58. Ossana NA, Castañé PM, Salibián A (2013) Use of Lithobates catesbeianus tadpoles in a multiple biomarker approach for the assessment of water quality of the Reconquista river (Argentina). Arch Environ Contam Toxicol 65(3):486–497. https://doi.org/10.1007/s00244-013-9920-6

    CAS  Article  Google Scholar 

  59. Pari L, Amali R (2005) Protective role of tetrahydrocurcumin (THC) and active principle of turmeric on chloroquine-induced hepatoxicity in rats. J Pharm Pharmaceut Sci 8(1):115–123

    CAS  Google Scholar 

  60. Peltzer PM, Lajmanovich RC (2007) Amphibians. In: Iriondo MH, Paggi JC, Parma MJ (eds) The Middle Parana´ River: Limnology of a Subtropical Wetland. Springer, Berlin, pp 327–340

    Google Scholar 

  61. Peltzer PM, Lajmanovich RC, Attademo AM, Beltzer AH (2006) Anuran diversity across agricultural pond in Argentina. In: Hawksworth DL, Bull AT (eds) Marine, Freshwater, and Wetlands Biodiversity Conservation. Topics in Biodiversity and Conservation (Vol. 4). Springer, Dordrecht, pp 131–145. https://doi.org/10.1007/978-1-4020-5734-2_10

    Google Scholar 

  62. Peltzer PM, Lajmanovich RC, Sánchez-Hernandez JC, Cabagna MC, Attademo AM, Bassó A (2008) Effects of agricultural pond eutrophication on survival and health status of Scinax nasicus tadpoles. Ecotox Environ Saf 70(1):185–197. https://doi.org/10.1016/j.ecoenv.2007.06.005

    CAS  Article  Google Scholar 

  63. Peltzer PM, Junges CM, Attademo AM, Bassó A, Grenón P, Lajmanovich RC (2013) Cholinesterase activities and behavioral changes in Hypsiboas pulchellus (Anura: Hylidae) tadpoles exposed to glufosinate ammonium herbicide. Ecotoxicology 22(7):1165–1173. https://doi.org/10.1007/s10646-013-1103-8

    CAS  Article  Google Scholar 

  64. Pérez-Iglesias JM, Soloneski S, Nikoloff N, Natale GS, Larramendy ML (2015) Toxic and genotoxic effects of the imazethapyr-based herbicide formulation Pivot H® on montevideo tree frog Hypsiboas pulchellus tadpoles (Anura, Hylidae). Ecotox Environ Saf 119:15–24. https://doi.org/10.1016/j.ecoenv.2015.04.045

    CAS  Article  Google Scholar 

  65. Pérez-Iglesias JM, de Arcaute CR, Natale GS, Soloneski S, Larramendy ML (2017) Evaluation of imazethapyr-induced DNA oxidative damage by alkaline Endo III-and Fpg-modified single-cell gel electrophoresis assay in Hypsiboas pulchellus tadpoles (Anura, Hylidae). Ecotox Environ Saf 142:503–508. https://doi.org/10.1016/j.ecoenv.2017.04.054

    CAS  Article  Google Scholar 

  66. Pérez-Iglesias JM, Franco-Belussi L, Natale GS, de Oliveira C (2018) Biomarkers at different levels of organisation after atrazine formulation (SIPTRAN 500SC®) exposure in Rhinella schineideri (Anura: Bufonidae) Neotropical tadpoles. Environ Poll 244:733–746. https://doi.org/10.1016/j.envpol.2018.10.073

    CAS  Article  Google Scholar 

  67. Prashanth MS, Neelagund SE (2008) Impact of Cypermethrin on enzyme activities in the freshwater fish Cirrhinus mrigala (Hamilton). Caspian J Env Sci 6(2):91–95

    Google Scholar 

  68. Ramos-Martinez JI, Bartolomé TR, Pernas RV (1983) Purification and properties of glutathione reductase from hepatopancreas of Mytilus edulis. L Comp Biochem Phys B 75(4):689–692. https://doi.org/10.1016/0305-0491(83)90117-7

    Article  Google Scholar 

  69. Rasheed T, Bilal M, Nabeel F, Adeel M, Iqbal HM (2019) Environmentally-related contaminants of high concern: potential sources and analytical modalities for detection, quantification, and treatment. Environ Int 122:52–66. https://doi.org/10.1016/j.envint.2018.11.038

    CAS  Article  Google Scholar 

  70. Relyea RA (2009) A cocktail of contaminants: how mixtures of pesticides at low concentrations affect aquatic communities. Oecologia 159(2):363–376. https://doi.org/10.1007/s00442-008-1213-9

    Article  Google Scholar 

  71. Rudneva II, Kuzminova NS, Skuratovskaya EN (2010) Glutathione-S-transferase activity in tissues of Black Sea fish species. Asian J Exp Biol Sci 1(1):141–150

    CAS  Google Scholar 

  72. Ruiz de Arcaute C, Soloneski S, Larramendy M (2019) Genotoxicidad inducida por el herbicida fitohormonal ácido 2, 4-diclorofenoxiacético contenido en la formulación comercial DMA® en Cnesterodon decemmaculatus (Pisces: Poeciliidae). Investigación Joven 6(Especial):135

    Google Scholar 

  73. Ruiz de Arcaute C, Brodeur JC, Soloneski S, Larramendy ML (2020) Toxicity to Rhinella arenarum tadpoles (Anura, Bufonidae) of herbicide mixtures commonly used to treat fallow containing resistant weeds: glyphosate–dicamba and glyphosate–flurochloridone. Chemosphere 245:125623. https://doi.org/10.1016/j.chemosphere.2019.125623

    CAS  Article  Google Scholar 

  74. Saaristo M, Brodin T, Balshine S, Bertram MG, Brooks BW, Ehlman SM, Arnold KE (2018) Direct and indirect effects of chemical contaminants on the behaviour, ecology and evolution of wildlife. Proc Royal Soc B: Biol Sci 285(1885):20181297. https://doi.org/10.1098/rspb.2018.1297

    CAS  Article  Google Scholar 

  75. Samanta P, Pal S, Mukherjee AK, Ghosh AR (2014) Biochemical effects of glyphosate based herbicide, Excel Mera 71 on enzyme activities of acetylcholinesterase (AChE), lipid peroxidation (LPO), catalase (CAT), glutathione-S-transferase (GST) and protein content on teleostean fishes. Ecotox Environ Safe 107:120–125. https://doi.org/10.1016/j.ecoenv.2014.05.025

    CAS  Article  Google Scholar 

  76. Sánchez-Bayo F, Goka K (2012) Evaluation of suitable endpoints for assessing the impacts of toxicants at the community level. Ecotoxicology 21(3):667–680. https://doi.org/10.1007/s10646-011-0823-x

    CAS  Article  Google Scholar 

  77. Sánchez-Hernández JC (2007) Ecotoxicological perspectives of B-esterases in the assessment of pesticide contamination. In: Plattenberg RH (ed) Environmental pollution: new research. Nova Science Publishers Inc., New York, pp 1–45

    Google Scholar 

  78. Soloneski S, De Arcaute CR, Larramendy ML (2016) Genotoxic effect of a binary mixture of dicamba-and glyphosate-based commercial herbicide formulations on Rhinella arenarum (Hensel, 1867) (Anura, Bufonidae) late-stage larvae. Environ Sci Pollut Res 23(17):17811–17821. https://doi.org/10.1007/s11356-016-6992-7

    CAS  Article  Google Scholar 

  79. Sookoo N, Hailey A, Mohammed A (2017) Toxicity of six commercial pesticide formulations to larvae of two tropical frogs, Rhinella (Bufo) marina (Bufonidae) and Engystomops (Physalaemus) pustulosus (Leptodactylidae). J Aquat Pollut Toxicol 2017(1):2–10

    Google Scholar 

  80. Suarez R, Zaccagnini ME, Babbitt KJ, Calamari N, Natale GS, Cerezo A, Codugnello N, BocaT DMJ, Vera-Candioti J, Gavier-Pizarro G (2016) Anuran responses to spatial patterns of agricultural landscapes in Argentina. Landscape Ecology 31(10):2485–2505. https://doi.org/10.1007/s10980-016-0426-2

    Article  Google Scholar 

  81. Tiwari S, Singh A (2004) Piscididal activity of alcoholic extract of Nerium indicum leaf and their biochemical stress response on fish metabolism. Afr J Trad CAM1:15–29

    Google Scholar 

  82. Triana Velasquez TM, Henao Munoz LM, Bernal Bautista MH (2016) Toxicity of the herbicide propanil (Propanil Trust® 500EC) to embryos and tadpoles of three anuran species. Acta Biol Colomb 21(3):627–634. https://doi.org/10.15446/abc.v21n3.54845

    Article  Google Scholar 

  83. Vaira M, Akmentin M, Attademo M, Baldo D, Barrasso D, Barrionuevo S, Basso N, Blotto B, Cairo S, Cajade R, Céspedez J, Corbalán V, Chilote P, Duré M, Falcione C, Ferraro D, Gutierrez FR, Ingaramo MR, Junges C, Lajmanovich R, Lescano JN, Marangoni F, Martinazzo L, Marti R, Moreno L, Natale GS, Pérez Iglesias JM, Peltzer P, Quiroga L, Rosset S, Sanabria E, Sanchez L, Schaefer E, Úbeda C, Zaracho V (2012) Categorización del estado de conservación de los anfibios de la República Argentina. Cuad Herpetol 26:131–159

    Google Scholar 

  84. Van der Oost R, Beyer J, Vermeulen NP (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13(2):57–149. https://doi.org/10.1016/S1382-6689(02)00126-6

    Article  Google Scholar 

  85. Wagner N, Lötters S, Veith M, Viertel B (2015) Acute toxic effects of the herbicide formulation and the active ingredient used in cycloxydim-tolerant maize cultivation on embryos and larvae of the African clawed frog, Xenopus laevis. Bull Environ Contam Toxicol 94(4):412–418. https://doi.org/10.1007/s00128-015-1474-z

    CAS  Article  Google Scholar 

  86. Weir SM, Yu S, Salice CJ (2012) Acute toxicity of herbicide formulations and chronic toxicity of technical-grade trifluralin to larval green frogs (Lithobates clamitans). Environ Toxicol C Chem 31(9):2029–2034. https://doi.org/10.1002/etc.1910

    CAS  Article  Google Scholar 

  87. WHO (World Health Organization) (2019). Recommended classification of pesticides by hazard and guidelines to classification, 2019 edition. Geneva. Licence: CC BY-NC-SA 3.0 IGO. Available at: https://apps.who.int/iris/bitstream/handle/10665/332193/9789240005662-eng.pdf. Accessed 30 Mar 2020

  88. Zar JH (1999) Biostatistical analysis, 4th edn. Prentice Hall, New Jersey

    Google Scholar 

  89. Zhu L, Li W, Zha J, Wang Z (2014) Dicamba affects sex steroid hormone level and mRNA expression of related genes in adult rare minnow (Gobiocypris rarus) at environmentally relevant concentrations. Environ Toxicol 30(6):693–703. https://doi.org/10.1002/tox.21947

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank J. Brasca English Editing Service and A. Bassó for the field assistance. We also acknowledge anonymous reviewers for their comments and suggestions.

Availability of data and materials

Supporting data of the study are available in this published article (supplementary information). Besides, datasets generated and analyzed during the study are available from the corresponding author on reasonable request.

Funding

This study was supported in part by the National Agency for Promotion of Science and Technology, Argentina (ANPCyT FONCyT PICT, N° 1069), and the Course of Action for Research and Science Promotion, Argentina (CAI D-UNL, PIC N°100004LI).

Author information

Affiliations

Authors

Contributions

Andres M. Attademo Conception: Design, execution, interpretation, and writing.

Rafael C. Lajmanovich: Conception, design, execution, and interpretation.

Paola Peltzer: Design and interpretation.

Ana Paula Cuzziol Boccioni: Execution and interpretation.

Candela Martinuzzi: Execution and analyses.

Fernanda Simonielo: Execution and interpretation

Maria Rosa Repetti: Execution and analyses.

Corresponding author

Correspondence to Andrés Maximiliano Attademo.

Ethics declarations

Ethics approval and consent to participate

The animals used in this research have been treated according to the criteria of the ASIH (2004) and with approval bythe Animal Ethics Committee of the Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina (http://www.fbcb.unl.edu.ar/pages/investigacion/comite-deetica.php).

Consent to publish

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Bruno Nunes

Supplementary information

ESM 1

(DOCX 16 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Attademo, A.M., Lajmanovich, R.C., Peltzer, P.M. et al. Effects of the emulsifiable herbicide Dicamba on amphibian tadpoles: an underestimated toxicity risk?. Environ Sci Pollut Res (2021). https://doi.org/10.1007/s11356-021-13000-x

Download citation

Keywords

  • Dicamba
  • Herbicide
  • Tadpoles
  • Biomarker
  • Antioxidant systems
  • Acetylcholinesterase
  • Transaminase
  • Thyroid hormone