Metal- and metal/oxide-based engineered nanoparticles and nanostructures: a review on the applications, nanotoxicological effects, and risk control strategies

Abstract

The production and demand of nanoparticles in the manufacturing sector and personal care products, release a large number of engineered nanoparticles (ENPs) into the atmosphere, aquatic ecosystems, and terrestrial environments. The intentional or involuntary incorporation of ENPs into the environment is carried out through different processes. The ENPs are combined with other compounds and release into the atmosphere, settling on the ground due to the water cycle or other atmospheric phenomena. In the case of aquatic ecosystems, the ENPs undergo hetero-aggregation and sedimentation, reaching different living organisms and flora, as well as groundwater. Accordingly, the high mobility of ENPs in diverse ecosystems is strongly related to physical, chemical, and biological processes. Recent studies have been focused on the toxicological effects of a wide variety of ENPs using different validated biological models. This literature review emphasizes the study of toxicological effects related to using the most common ENPs, specifically metal and metal/oxides-based nanoparticles, addressing different synthesis methodologies, applications, and toxicological evaluations. The results suggest negative impacts on biological models, such as oxidative stress, metabolic and locomotive toxicity, DNA replication dysfunction, and bioaccumulation. Finally, it was consulted the protocols for the control of risks, following the assessment and management process, as well as the classification system for technological alternatives and risk management measures of ENPs, which are useful for the transfer of technology and nanoparticles commercialization.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abad-Álvaro I, Trujillo C, Bolea E, Laborda F, Fondevila M, Latorre MA, Castillo JR (2019) Silver nanoparticles-clays nanocomposites as feed additives: characterization of silver species released during in vitro digestions Effects on silver retention in pigs. Microchem J 149:104040. https://doi.org/10.1016/j.microc.2019.104040

    CAS  Article  Google Scholar 

  2. Abbas Q, Yousaf B, Amina Ali MU, Munir MAM, El-Naggar A, Rinklebe J, Naushad M (2020) Transformation pathways and fate of engineered nanoparticles (ENPs) in distinct interactive environmental compartments: a review. Environ Int 138:105646. https://doi.org/10.1016/j.envint.2020.105646

    CAS  Article  Google Scholar 

  3. Abou-Zeid RE, Awwad NS, Nabil S, Youssef MA (2019) Oxidized alginate/gelatin decorated silver nanoparticles as new nanocomposite for dye adsorption. Int J Biol Macromol 141:1280–1286. https://doi.org/10.1016/j.ijbiomac.2019.09.076

    CAS  Article  Google Scholar 

  4. Abudayyak M, Guzel E, Özhan G (2020) Cupric oxide nanoparticles induce cellular toxicity in liver and intestine cell lines. Adv Pharm Bull 10(2):213–220. https://doi.org/10.34172/apb.2020.025

    CAS  Article  Google Scholar 

  5. Ahmad I, Kan C (2017) Visible-light-driven, dye-sensitized TiO2 photo-catalyst for self-cleaning cotton fabrics. Coatings 7(192):1–13. https://doi.org/10.3390/coatings7110192

    CAS  Article  Google Scholar 

  6. Aksakal FI, Ciltas A (2019) Impact of copper oxide nanoparticles (CuO NPs) exposure on embryo development and expression of genes related to the innate immune system of zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 223:78–87. https://doi.org/10.1016/j.cbpc.2019.05.016

    CAS  Article  Google Scholar 

  7. Alamdari S, Sasani M, Afarideh H, Mohammadi A (2019) Preparation and characterization of GO-ZnO nanocomposite for UV detection application. Opt Mater 92:243–250. https://doi.org/10.1016/j.optmat.2019.04.041

    CAS  Article  Google Scholar 

  8. Ali M, Liu G, Yousaf B, Ullah H, Abbas Q, Mujtaba M (2019) A systematic review on global pollution status of particulate matter-associated potential toxic elements and health perspectives in urban environment. Environ Geochem Health 41(3):1131–1162. https://doi.org/10.1007/s10653-018-0203-z

    CAS  Article  Google Scholar 

  9. Ali K, Saquib Q, Ahmed B, Siddiqui MA, Ahmad J, Al-Shaeri M, Al-Khedhairy AA, Musarrat J (2020) Bio-functionalized CuO nanoparticles induced apoptotic activities in human breast carcinoma cells and toxicity against Aspergillus flavus: an in vitro approach. Process Biochem 91:387–397. https://doi.org/10.1016/j.procbio.2020.01.008

    CAS  Article  Google Scholar 

  10. Alqadami ASM, Faizal M, Aminudin M (2019) Efficacy of a wideband flexible antenna on a multilayer polymeric nanocomposites Fe3O4-PDMS substrate for wearable applications. Curr Appl Phys 19(11):1259–1265. https://doi.org/10.1016/j.cap.2019.08.007

    Article  Google Scholar 

  11. Alshammari AS, Alenezi MR, Silva SRP (2019) Excimer laser sintering of silver nanoparticles electrodes for fully solution processed organic thin film transistors. Opt Laser Technol 120:1–9. https://doi.org/10.1016/j.optlastec.2019.105758

    CAS  Article  Google Scholar 

  12. Amos-Tautua BM, Fakayode OJ, Songca SP (2019) Nano-Structures and Nano-Objects Evolution of gluconic acid capped paramagnetic iron oxide nanoparticles. Nano-Structures and Nano-Objects 20:100389. https://doi.org/10.1016/j.nanoso.2019.100389

    CAS  Article  Google Scholar 

  13. Anjana PM, Bindhu MR, Rakhi RB (2019) Green synthesized gold nanoparticle dispersed porous carbon composites for electrochemical energy storage. Mater. Sci. Technol 2(3):389–395. https://doi.org/10.1016/j.mset.2019.03.006

    Article  Google Scholar 

  14. Ankudze B, Pakkanen TT (2018) Gold nanoparticle decorated Au-Ag alloy tubes : a bifunctional substrate for label-free and in situ surface-enhanced Raman scattering based reaction monitoring. Appl Surf Sci 453:341–349. https://doi.org/10.1016/j.apsusc.2018.05.041

    CAS  Article  Google Scholar 

  15. Antonopoulou M, Karagianni P, Giannakas A, Makrigianni V, Mouzourakis E, Deligiannakis Y, Konstantinou I (2017) Photocatalytic degradation of phenol by char/N-TiO2 and char/N-F-TiO2 composite photocatalysts. Catal Today 280:114–121. https://doi.org/10.1016/j.cattod.2016.03.054

    CAS  Article  Google Scholar 

  16. Arami H, Khandhar A, Liggitt D, Krishnan KM (2015) In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chem Soc Rev 44(23):8576–8607. https://doi.org/10.1039/c5cs00541h

    CAS  Article  Google Scholar 

  17. Arcanjo GS, Mounteer AH, Bellato CR, Marçal LM, Brant SH, da Silva PR (2018) Heterogeneous photocatalysis using TiO2 modified with hydrotalcite and iron oxide under UV–visible irradiation for color and toxicity reduction in secondary textile mill effluent. J Environ Manag 211:154–163. https://doi.org/10.1016/j.jenvman.2018.01.033

    CAS  Article  Google Scholar 

  18. Arunkumar B, Jeyakumar SJ, Jothibas M (2019) A sol-gel approach to the synthesis of CuO nanoparticles using Lantana camara leaf extract and their photo catalytic activity. Optik - International Journal for Light and Electron Optics 183:698–705. https://doi.org/10.1016/j.ijleo.2019.02.046

    CAS  Article  Google Scholar 

  19. Auclair J, Turcotte P, Gagnon C, Peyrot C, Wilkinson KJ, Gagné F (2019) The influence of surface coatings on the toxicity of silver nanoparticle in rainbow trout. Comp Biochem Phys C: Toxicol Pharm 226:108623. https://doi.org/10.1016/j.cbpc.2019.108623

    CAS  Article  Google Scholar 

  20. Bakina OV, Glazkova EA, Svarovskaya NV, Rodkevich NG, Lerner MI (2019) «Janus»-like Cu-Fe bimetallic nanoparticles with high antibacterial activity. Mater Lett 242:187–190. https://doi.org/10.1016/j.matlet.2019.01.105

    CAS  Article  Google Scholar 

  21. Baláz M, Daneu N, Balázová L, Dutková E, Tkáciková L, Briancin J, Vargová M, Balázová M, Zorkovská A, Baláz P (2017) Bio-mechanochemical synthesis of silver nanoparticles with antibacterial activity. Adv Powder Technol 28:3307–3312. https://doi.org/10.1016/j.apt.2017.09.028

    CAS  Article  Google Scholar 

  22. Barbosa JS, Neto DMA, Freire RM, Rocha JS, Fechine LMUD, Denardin JC (2018) Ultrafast sonochemistry-based approach to coat TiO2 commercial particles for sunscreen formulation. Ultrason Sonochem 48:340–348. https://doi.org/10.1016/j.ultsonch.2018.06.015

    CAS  Article  Google Scholar 

  23. Barone AN, Hayes CE, Kerr JJ, Lee RC, Flaherty DB (2019) Acute toxicity testing of TiO2 -based vs. oxybenzone-based sunscreens on clownfish (Amphiprion ocellaris). Environ Sci Pollut Res 26:14513–14520. https://doi.org/10.1007/s11356-019-04769-z

    CAS  Article  Google Scholar 

  24. Bharathi P, Mohan MK, Shalini V, Harish S, Navaneethan M, Archana J, Kumar MG, Dhivya P, Ponnusamy S, Shimomura M, Hayakawa Y (2020) Growth and influence of Gd doping on ZnO nanostructures for enhanced optical, structural properties and gas sensing applications. Appl Surf Sci 499:1–11. https://doi.org/10.1016/j.apsusc.2019.143857

    CAS  Article  Google Scholar 

  25. Bhuvaneshwari M, Iswarya V, Nagarajan R, Chandrasekaran N, Mukherjee A (2016) Acute toxicity and accumulation of ZnO NPs in Ceriodaphnia dubia: relative contributions of dissolved ions and particles. Aquat Toxicol 177:494–502. https://doi.org/10.1016/j.aquatox.2016.07.003

    CAS  Article  Google Scholar 

  26. Boldeiu A, Simion M, Mihalache I, Radoi A, Banu M, Varasteanu P, Nadejde P, Vasile E, Acasandrei A, Popescu RC, Savu D, Kusko M (2019) Comparative analysis of honey and citrate stabilized gold nanoparticles: in vitro interaction with proteins and toxicity studies. J Photochem Photobiol B Biol 197:111519. https://doi.org/10.1016/j.jphotobiol.2019.111519

    CAS  Article  Google Scholar 

  27. Borase HP, Muley AB, Patil SV, Singhal RS (2019) Nano-eco toxicity study of gold nanoparticles on aquatic organism Moina macrocopa: as new versatile ecotoxicity testing model. Environ Toxicol Pharmacol 68:4–12. https://doi.org/10.1016/j.etap.2019.02.013

    CAS  Article  Google Scholar 

  28. Cazenave J, Ale A, Bacchetta C, Rossi A (2019) Nanoparticle Toxicity In Fish Models. Curr Pharm Des 25(37):3927–3942. https://doi.org/10.2174/1381612825666190912165413

    CAS  Article  Google Scholar 

  29. Chaúque EFC, Ngila JC, Ray SC, Ndlwana L (2019) Degradation of methyl orange on Fe/Ag nanoparticles immobilized on polyacrylonitrile nanofibers using EDTA chelating agents. J Environ Manag 236:481–489. https://doi.org/10.1016/j.jenvman.2019.02.023

    CAS  Article  Google Scholar 

  30. Chen Z, Han S, Zhou D, Zhou S, Jia G (2019) Effects of oral exposure to titanium dioxide nanoparticles on gut microbiota and gut-associated metabolism: In vivo. Nanoscale 11(46):22398–22412. https://doi.org/10.1039/c9nr07580a

    CAS  Article  Google Scholar 

  31. Cheng R, Kang M, Zhuang S, Wang S, Zheng X, Pan X, Shi L, Wang J (2019) Removal of bacteriophage f2 in water by Fe/Ni nanoparticles: Optimization of Fe/Ni ratio and influencing factors. Sci Total Environ 649:995–1003. https://doi.org/10.1016/j.scitotenv.2018.08.380

    CAS  Article  Google Scholar 

  32. Chokkalingam M, Jahan E, Huo Y, Mathiyalagan R, Anandapadmanaban G, Chan J, Kyu J, Lu J (2019) Photocatalytic degradation of industrial dyes using Ag and Au nanoparticles synthesized from Angelica gigas ribbed stem extracts. Optik - International Journal for Light and Electron Optics 185:1213–1219. https://doi.org/10.1016/j.ijleo.2019.04.065

    CAS  Article  Google Scholar 

  33. Cigán A, Lobotka P, Dvurecenskij A, Skrátek M, Radnóczi G, Majerová M, Czigány Z, Manka J, Vávra I, Micusík M (2018) Characterization and magnetic properties of nickel and nickel-iron nanoparticle colloidal suspensions in imidazolium-based ionic liquids prepared by magnetron sputtering. J Alloys Compd 768:625–634. https://doi.org/10.1016/j.jallcom.2018.07.205

    CAS  Article  Google Scholar 

  34. Costa PM, Fadeel B (2016) Emerging systems biology approaches in nanotoxicology : Towards a mechanism-based understanding of nanomaterial hazard and risk. Toxicol Appl Pharmacol 299:101–111. https://doi.org/10.1016/j.taap.2015.12.014

    CAS  Article  Google Scholar 

  35. Dahlan D, Khatijah S, Usra A, Bajili A, Ali A (2017) Synthesis of two-dimensional nanowall of Cu-Doped TiO 2 and its application as photoanode in DSSCs. Physcai E: Low-Dimens Syst and Nanostruct 91:185–189. https://doi.org/10.1016/j.physe.2017.05.003

    CAS  Article  Google Scholar 

  36. Davarpanah E, Guilhermino L (2019) Are gold nanoparticles and microplastics mixtures more toxic to the marine microalgae Tetraselmis chuii than the substances individually? Ecotoxicol Environ Saf 181:60–68. https://doi.org/10.1016/j.ecoenv.2019.05.078

    CAS  Article  Google Scholar 

  37. de Oliveira L, Souza J, Rocha GS, da Silva A, Lombardi AT, Sarmento H, Melão MGG (2020) Photosynthetic, morphological and biochemical biomarkers as tools to investigate copper oxide nanoparticle toxicity to a freshwater chlorophyceae. Environ Pollut 265:114856. https://doi.org/10.1016/j.envpol.2020.114856

    CAS  Article  Google Scholar 

  38. Dedman CJ, Newson GC, Davies G-L, Christie-Oleza JA (2020) Mechanisms of silver nanoparticle toxicity on the marine cyanobacterium Prochlorococcus under environmentally-relevant conditions. Sci Total Environ 747:141229. https://doi.org/10.1016/j.scitotenv.2020.141229

    CAS  Article  Google Scholar 

  39. Devi A, Kumar V, Muthukumar H, Gopinath P (2019) Electrospinning of Fe-doped ZnO nanoparticles incorporated polyvinyl alcohol nano fi bers for its antibacterial treatment and cytotoxic studies. Eur Polym J 118:27–35. https://doi.org/10.1016/j.eurpolymj.2019.05.038

    CAS  Article  Google Scholar 

  40. Dokht R, Johari SA, Sarkheil M, Yu IJ (2019) On how environmental and experimental conditions affect the results of aquatic nanotoxicology on brine shrimp (Artemia salina): A case of silver nanoparticles toxicity. Environ Pollut 255:113358. https://doi.org/10.1016/j.envpol.2019.113358

    CAS  Article  Google Scholar 

  41. Dong H, Zhou J, Virtanen S (2019) Fabrication of ZnO nanotube layer on Zn and evaluation of corrosion behavior and bioactivity in view of biodegradable applications. Appl Surf Sci 494:259–265. https://doi.org/10.1016/j.apsusc.2019.07.165

    CAS  Article  Google Scholar 

  42. Du W, Xu Y, Yin Y, Ji R, Guo H (2018) Risk assessment of engineered nanoparticles and other contaminants in terrestrial plants. Curr Opin Environ Sci Health 6:21–28. https://doi.org/10.1016/j.coesh.2018.07.010

    Article  Google Scholar 

  43. Dwivedi AD, Dubey SP, Sillanpää M, Kwon YN, Lee C, Varma RS (2015) Fate of engineered nanoparticles: Implications in the environment. Coord Chem Rev 287:64–78. https://doi.org/10.1016/j.ccr.2014.12.014

    CAS  Article  Google Scholar 

  44. Ebrahimbabaie P, Meeinkuirt W, Pichtel J (2020) Phytoremediation of engineered nanoparticles using aquatic plants : Mechanisms and practical feasibility. J Environ Sci 93:151–163. https://doi.org/10.1016/j.jes.2020.03.034

    Article  Google Scholar 

  45. Elemike EE, Onwudiwe DC, Nundkumar N, Singh M (2019) CuO and Au-CuO nanoparticles mediated by Stigmaphyllon ovatum leaf extract and their anticancer potential. Inorg Chem Commun 104:93–97. https://doi.org/10.1016/j.inoche.2019.03.039

    CAS  Article  Google Scholar 

  46. Elsharkawy EE, Abd El-Nasser M, Kamaly HF (2019) Silver nanoparticles testicular toxicity in rat. Environ Toxicol Pharmacol 70:103194. https://doi.org/10.1016/j.etap.2019.103194

    CAS  Article  Google Scholar 

  47. Fahmy HMA, Ali O, Hassan A, Mohamed M (2020) Biodistribution and toxicity assessment of copper nanoparticles in the rat brain. J Trace Elem Med Biol 61:126505. https://doi.org/10.1016/j.jtemb.2020.126505

    CAS  Article  Google Scholar 

  48. Fang Y, Meng S, Hou J, Liu Y, Guo Y (2019) Experimental study of growth of silver nanoparticles embedded in Bi2O3-SiO2-B2O3 glass. J Alloys Compd 809:1–8. https://doi.org/10.1016/j.jallcom.2019.151725

    CAS  Article  Google Scholar 

  49. Fatimah I, Pradita RY, Nurfalinda A (2016) Plant Extract Mediated of ZnO Nanoparticles by Using Ethanol Extract of Mimosa Pudica Leaves and Coffee Powder. Procedia Eng 148:43–48. https://doi.org/10.1016/j.proeng.2016.06.483

    CAS  Article  Google Scholar 

  50. Feizpoor S, Habibi-Yangjeh A, Vadivel S (2017) Novel TiO2/Ag2CrO4 nanocomposites: Efficient visible-light-driven photocatalysts with n-n heterojunctions. J Photochem Photobiol A Chem 341:57–68. https://doi.org/10.1016/j.jphotochem.2017.03.028

    CAS  Article  Google Scholar 

  51. Francis S, Nair K, Paul N, Koshy E, Mathew B (2019) Green synthesized metal nanoparticles as a selective inhibitor of human osteosarcoma and pathogenic microorganisms. Mater Today Chem 13:128–138. https://doi.org/10.1016/j.mtchem.2019.04.013

    CAS  Article  Google Scholar 

  52. Gangadhar S, Rokade AA, Soo S, Tae Y (2019) Green synthesis and characterization of supported gold nanoparticles Au@PS from Schisandra chinensis fruit extract: An efficient and reusable catalyst for the synthesis of chromeno 2, 3-d pyrimidin-2-yl phenol derivatives under solvent-free condition. Catal Commun 128:105703. https://doi.org/10.1016/j.catcom.2019.05.010

    CAS  Article  Google Scholar 

  53. Ghanbary F, Seydi E, Naserzadeh P, Salimi A (2018) Toxicity of nanotitanium dioxide (TiO2-NP) on human monocytes and their mitochondria. Environ Sci Pollut Res 25(7):6739–6750. https://doi.org/10.1007/s11356-017-0974-2

    CAS  Article  Google Scholar 

  54. Ghashghaee M, Fallah M, Rabiee A (2019) Superhydrophobic nanocomposite coatings of poly (methyl methacrylate) and stearic acid grafted CuO nanoparticles with photocatalytic activity. Prog Org Coat 136:105270. https://doi.org/10.1016/j.porgcoat.2019.105270

    CAS  Article  Google Scholar 

  55. Ginzburg AL, Truong L, Tanguay RL, Hutchison JE (2018) Synergistic Toxicity Produced by Mixtures of Biocompatible Gold Nanoparticles and Widely Used Surfactants. ACS Nano 12(6):5312–5322. https://doi.org/10.1021/acsnano.8b00036

    CAS  Article  Google Scholar 

  56. Gubala V, Johnston LJ, Krug HF, Moore CJ, Ober CK, Schwenk M, Vert M (2018) Engineered nanomaterials and human health: Part 2. Applications and nanotoxicology (IUPAC Technical Report) 90(8):1325–1356

    CAS  Google Scholar 

  57. Gunarani G, Raman AB, Kumar JD, Natarajan S, Jegadeesan GB (2019) Biogenic synthesis of Fe and NiFe nanoparticles using Terminalia bellirica extracts for water treatment applications. Mater Lett 247:90–94. https://doi.org/10.1016/j.matlet.2019.03.104

    CAS  Article  Google Scholar 

  58. Guo J, Yang Y, Zhu Q, Fan C, Lv P, Xiang M (2018) Low-temperature chemical vapor deposition (CVD) of metallic titanium film from a novel precursor. Surf Coat Technol 353:18–24. https://doi.org/10.1016/j.surfcoat.2018.08.064

    CAS  Article  Google Scholar 

  59. Hao H, Li H, Wang S, Cheng Z, Fang Y (2019) Epitaxial growth of Ag-Cu bimetallic nanoparticles via thermal evaporation deposition. Appl Surf Sci 505:143871. https://doi.org/10.1016/j.apsusc.2019.143871

    CAS  Article  Google Scholar 

  60. Haq Z, Khan A, Chen Y, Shah NS, Muhammad N, Khan A, Tahir K, Ullah F, Murtaza B, Hassan S, Qaisrani S, Wan P (2017) Biomedical applications of green synthesized Nobel metal nanoparticles. J Photochem Photobiol B Biol 173:150–164. https://doi.org/10.1016/j.jphotobiol.2017.05.034

    CAS  Article  Google Scholar 

  61. Hernández-Morales L, Espinoza-Gómez H, Flores-López LZ, Sotelo-Barrera EL, Núñez-Rivera A, Cadena-Nava RD, Alonso-Núñez G, Espinoza KA (2019) Study of the green synthesis of silver nanoparticles using a natural extract of dark or white Salvia hispanica L . seeds and their antibacterial application. Appl Surf Sci 489:952–961. https://doi.org/10.1016/j.apsusc.2019.06.031

    CAS  Article  Google Scholar 

  62. Herrera-García U, Castillo J, Patiño-Ruiz D, Solano R, Herrera A (2019) Activated carbon from Yam Peels Modified with Fe3O4 for removal of 2,4-dichlorophenoxyacetic acid in aqueous solution. Water (Switzerland) 11(11):2342. https://doi.org/10.3390/w11112342

    CAS  Article  Google Scholar 

  63. Hosseini S, Ajshari M, Fazlali A, Farahani S, Bandehali S, Van Der Bruggen B, Bagheripour E (2019) Mixed matrix PES-based nanofiltration membrane decorated by (Fe3O4–polyvinylpyrrolidone) composite nanoparticles with intensified antifouling and separation characteristics. Chem Eng Res Des 147:390–398. https://doi.org/10.1016/j.cherd.2019.05.025

    CAS  Article  Google Scholar 

  64. Hou J, Wang L, Wang C, Zhang S, Liu H, Li S, Wang X (2019) Toxicity and mechanisms of action of titanium dioxide nanoparticles in living organisms. J Environ Sci 75:40–53. https://doi.org/10.1016/j.jes.2018.06.010

    Article  Google Scholar 

  65. Hristozov D, Malsch I (2009) Hazards and Risks of engineered nanoparticles for the environment and human health. Sustainability 1(4):1161–1194. https://doi.org/10.3390/su1041161

    CAS  Article  Google Scholar 

  66. Huang D, Zhao J, Wang M, Zhu S (2020) Snow flake-like gold nanoparticles as SERS substrates for the sensitive detection of organophosphorus pesticide residues. Food Control 108:106835. https://doi.org/10.1016/j.foodcont.2019.106835

    CAS  Article  Google Scholar 

  67. Ira M, Mohd S, Tan H, Fairuz A, Rashid M, Hashim U (2019) VIS-NIR spectral and particles distribution of Au, Ag, Cu, Al and Ni nanoparticles synthesized in distilled water using laser ablation. Results in Physics 14:1–12. https://doi.org/10.1016/j.rinp.2019.102497

    Article  Google Scholar 

  68. Ishida Y, Nakabayashi R, Corpuz RD, Yonezawa T (2017) Water-dispersible fluorescent silver nanoparticles via sputtering deposition over liquid polymer using a very short thiol ligand. Colloids Surf A Physicochem Eng Asp 518:25–29. https://doi.org/10.1016/j.colsurfa.2017.01.022

    CAS  Article  Google Scholar 

  69. Ituen E, Mkpenie V, Ekemini E (2019) Adsorptive Fe-nanoparticles mediated by Musa sapientum peels extract as anticorrosion additive for aqueous oilfield descaling solution. Scientific African Journal 3:e00075. https://doi.org/10.1016/j.sciaf.2019.e00075

    Article  Google Scholar 

  70. Jamkhande PG, Ghule NW, Bamer AH, Kalaskar MG (2019) Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. J Drug Deliv Sci and Technol 53:101174. https://doi.org/10.1016/j.jddst.2019.101174

    CAS  Article  Google Scholar 

  71. Javadian S, Sadrpoor SM (2019) Functionalized graphene oxide with core-shell of Fe3O4@oliec acid nanospheres as a recyclable demulsi fier for effective removal of emulsified oil from oily wastewater. J Water Process Eng 32:1–15. https://doi.org/10.1016/j.jwpe.2019.100961

    Article  Google Scholar 

  72. Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK (2018) Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J. Nanotechnol 9(1):1050–1074. https://doi.org/10.3762/bjnano.9.98

    CAS  Article  Google Scholar 

  73. Jeon S, Kim E, Lee J, Lee S (2016) Potential risks of TiO2 and ZnO nanoparticles released from sunscreens into outdoor swimming pools. J Hazard Mater 317:312–318. https://doi.org/10.1016/j.jhazmat.2016.05.099

    CAS  Article  Google Scholar 

  74. Jia YP, Ma BY, Wei XW, Qian ZY (2017) The in vitro and in vivo toxicity of gold nanoparticles. Chin Chem Lett 28:691–702. https://doi.org/10.1016/j.cclet.2017.01.021

    CAS  Article  Google Scholar 

  75. Jofre C, Regiart M, Fernández M, Bertotti M, Raba J, Messina G (2020) Electrochemical microfluidic immunosensor based on TES-AuNPs@Fe3O4 and CMK-8 for IgG anti-Toxocara canis determination. Anal Chim Acta 1096:120–129. https://doi.org/10.1016/j.aca.2019.10.040

    CAS  Article  Google Scholar 

  76. José E, Paula A, Baffa O (2016) Silver nanoparticle films for metal enhanced luminescence : Toward development of plasmonic radiation detectors for medical applications. Sensors Actuators B Chem 224:248–255

    Article  Google Scholar 

  77. Karunakaran G, Kundu M, Maduraiveeran G, Kolesnikov E (2018) Microporous and Mesoporous Materials Hollow mesoporous heterostructures negative electrode comprised of CoFe2O4@Fe3O4 for next generation lithium ion batteries. Microporous Mesoporous Mater 272(7491):1–7. https://doi.org/10.1016/j.micromeso.2018.06.005

    CAS  Article  Google Scholar 

  78. Khan Z, Shahwar D, Yunus Ansari MK, Chandel R (2019) Toxicity assessment of anatase (TiO2) nanoparticles: A pilot study on stress response alterations and DNA damage studies in Lens culinaris Medik. Heliyon 5(7):e02069. https://doi.org/10.1016/j.heliyon.2019.e02069

    Article  Google Scholar 

  79. Kheiri S, Liu X, Thompson M (2019) Nanoparticles at biointerfaces: Antibacterial activity and nanotoxicology. Colloids Surf B: Biointerfaces 184:110550. https://doi.org/10.1016/j.colsurfb.2019.110550

    CAS  Article  Google Scholar 

  80. Khoshnamvand M, Hao Z, Fadare OO, Hanachi P, Chen Y, Liu J (2020) Toxicity of biosynthesized silver nanoparticles to aquatic organisms of different trophic levels. Chemosphere 258:127346 https://doi.org/10.1016/j.chemosphere.2020.127346

  81. Kozlov S, Nikolskaia A, Larina L, Vildanova M, Vishnev A, Shevaleevskiy O (2016) Rare-earth and Nb doping of TiO2 nanocrystalline mesoscopic layers for high-efficiency dye-sensitized solar cells. Phys. Status Solidi A App Mater Sci 213(7):1801–1806. https://doi.org/10.1002/pssa.201532982

    CAS  Article  Google Scholar 

  82. Krishnakumar S, Janani P, Mugilarasi S, Kumari G, Janney JB (2018) Biocatalysis and Agricultural Biotechnology Chemical induced fabrication of silver nanoparticles ( Ag-NPs ) as nanocatalyst with alpha amylase enzyme for enhanced breakdown of starch. Biocatal Agric Biotechnol 15:377–383. https://doi.org/10.1016/j.bcab.2018.06.016

    Article  Google Scholar 

  83. Krug P, Kwiatkowska M, Mojzych I, Głowala P, Dorant S, Kępińska D, Chotkowski M, Janiszewska K, Stolarski J (2019) Polypyrrole microcapsules loaded with gold nanoparticles : Perspectives for biomedical imaging. Synth Met 248:27–34. https://doi.org/10.1016/j.synthmet.2018.12.025

    CAS  Article  Google Scholar 

  84. Kumar R, Nayak M, Sahoo GC, Pandey K, Chawla M, Ansari Y, Das VNR, Topno RK, Madhukar M, Das P (2019) Iron oxide nanoparticles based antiviral activity of H1N1 influenza. J Infect Chemother 25:325–329. https://doi.org/10.1016/j.jiac.2018.12.006

    CAS  Article  Google Scholar 

  85. Kumar M, Garg S, Kaur A, Kataria J, Sharma S (2020) Green biomimetic silver nanoparticles as invigorated colorimetric probe for Hg2+ ions: A cleaner approach towards recognition of heavy metal ions in aqueous media. Mater Chem Phys 240:122164. https://doi.org/10.1016/j.matchemphys.2019.122164

    CAS  Article  Google Scholar 

  86. Kvitek O, Reznickova A, Zelenakova A, Zelenak V, Orendac M, Svorcik V (2019) Immobilization of Fe@Au superparamagnetic nanoparticles on polyethylene. Eur Polym J 110:56–62. https://doi.org/10.1016/j.eurpolymj.2018.10.043

    CAS  Article  Google Scholar 

  87. Lasio B, Pia G, Garroni S, Orrù R, Takacs L, Delogu F (2018) Non-monotonic variation of the grain size in Cu nanopowders subjected to ball milling. Mater Lett 212:171–173. https://doi.org/10.1016/j.matlet.2017.10.077

    CAS  Article  Google Scholar 

  88. Lassègue P, Noé L, Monthioux M, Caussat B (2017) Fluidized bed chemical vapor deposition of copper nanoparticles on multi- walled carbon nanotubes. Surf Coat Technol 331:129–136. https://doi.org/10.1016/j.surfcoat.2017.10.046

    CAS  Article  Google Scholar 

  89. Li X, Hu Z, Ma J, Wang X, Zhang Y, Wang W (2018) Colloids and Surfaces B : Biointerfaces The systematic evaluation of size-dependent toxicity and multi-time biodistribution of gold nanoparticles. Colloids Surf B: Biointerfaces 167:260–266. https://doi.org/10.1016/j.colsurfb.2018.04.005

    CAS  Article  Google Scholar 

  90. Li B, Chen X, Li K, Zhang C, He Y, Du R (2019a) Coupling membrane and Fe – Pd bimetallic nanoparticles for trichloroethene removing from water. J Ind Eng Chem 78:198–209. https://doi.org/10.1016/j.jiec.2019.06.013

    CAS  Article  Google Scholar 

  91. Li C, Li Z, Ren X (2019b) Preparation and characterization of polyester fabrics coated with TiO2/Benzotriazole for UV protection. Colloids and Surfaces A 577:695–701. https://doi.org/10.1016/j.colsurfa.2019.06.030

    CAS  Article  Google Scholar 

  92. Li Y, Duan W, Lu X, Yang S, Wen X (2019c) Synthesis of strawberry-like Fe3O4@SiO2@Ag composite colloidal particles for constructing responsive photonic crystals. Opt Mater 94:423–429. https://doi.org/10.1016/j.optmat.2019.06.002

    CAS  Article  Google Scholar 

  93. Lin CX, Gu JL, Cao JM (2019) The acute toxic effects of platinum nanoparticles on ion channels, transmembrane potentials of cardiomyocytes in vitro and heart rhythm in vivo in mice. Int J Nanomedicine 14:5595–5609. https://doi.org/10.2147/IJN.S209135

    CAS  Article  Google Scholar 

  94. Liu H, Wang X, Wu Y, Hou J, Zhang S, Zhou N, Wang X (2019a) Toxicity responses of different organs of zebrafish (Danio rerio) to silver nanoparticles with different particle sizes and surface coatings. Environ Pollut 246:414–422. https://doi.org/10.1016/j.envpol.2018.12.034

    CAS  Article  Google Scholar 

  95. Liu S, Zeng P, Li X, Thuyet DQ, Fan W (2019b) Effect of chronic toxicity of the crystalline forms of TiO2 nanoparticles on the physiological parameters of Daphnia magna with a focus on index correlation analysis. Ecotoxicol Environ Saf 181:292–300. https://doi.org/10.1016/j.ecoenv.2019.06.014

    CAS  Article  Google Scholar 

  96. Liu X, Tang J, Wang L, Liu R (2020) Synergistic toxic effects of ball-milled biochar and copper oxide nanoparticles on Streptomyces coelicolor M145. Sci Total Environ 720:137582. https://doi.org/10.1016/j.scitotenv.2020.137582

    CAS  Article  Google Scholar 

  97. Lopez-Chaves C, Soto-Alvaredo J, Montes-Bayon M, Bettmer J, Llopis J, Sanchez-Gonzalez C (2018) Gold nanoparticles: Distribution, bioaccumulation and toxicity. In vitro and in vivo studies. Nanomedicine 14(1):1–12. https://doi.org/10.1016/j.nano.2017.08.011

    CAS  Article  Google Scholar 

  98. Lozhkomoev AS, Pervikov AV, Chumaevsky AV, Dvilis ES, Paygin VD, Khasanov L, Lerner MI (2019) Fabrication of Fe-Cu composites from electro explosive bimetallic nanoparticles by spark plasma sintering. Vacuum 170:1–6. https://doi.org/10.1016/j.vacuum.2019.108980

    CAS  Article  Google Scholar 

  99. Luo X, Wu S, Yang Y, Jin N, Liu S, Huang B (2017) Deposition of titanium coating on SiC fiber by chemical vapor deposition with Ti-I2 system. Appl Surf Sci 406:62–68. https://doi.org/10.1016/j.apsusc.2017.02.141

    CAS  Article  Google Scholar 

  100. Luo P, Roca A, Tiede K, Privett K, Jiang J, Pinkstone J, Ma G, Veinot J, Boxall A (2018) Application of nanoparticle tracking analysis for characterising the fate of engineered nanoparticles in sediment-water systems. J Environ Sci (China) 64:62–71. https://doi.org/10.1016/j.jes.2016.07.019

    Article  Google Scholar 

  101. Madhav MR, David SEM, Kumar RSS, Swathy JS, Bhuvaneshwari M, Mukherjee A, Chandrasekaran N (2017) Toxicity and accumulation of Copper oxide (CuO) nanoparticles in different life stages of Artemia salina. Environ Toxicol Pharmacol 52:227–238. https://doi.org/10.1016/j.etap.2017.03.013

    CAS  Article  Google Scholar 

  102. Magudapathy P, Srivastava SK, Gangopadhyay P, Amirthapandian S, Saravanan K, Das A, Panigrahi M (2017) Alloying of metal nanoparticles by ion-beam induced sputtering. Chem Phys Lett 667:38–44. https://doi.org/10.1016/j.cplett.2016.11.041

    CAS  Article  Google Scholar 

  103. Mahaye N, Thwala M, Cowan DA, Musee N (2017) Genotoxicity of metal based engineered nanoparticles in aquatic organisms: A review. Mutat Res Rev Mutat Res 773:134–160. https://doi.org/10.1016/j.mrrev.2017.05.004

    CAS  Article  Google Scholar 

  104. Maher BA, Ahmed IAM, Karloukovski V, MacLaren DA, Foulds PG, Allsop D, Mann DMA, Torres-Jardón R, Calderon-Garciduenas L (2016) Magnetite pollution nanoparticles in the human brain. Proc Natl Acad Sci U S A 113(39):10797–10801. https://doi.org/10.1073/pnas.1605941113

    CAS  Article  Google Scholar 

  105. Mai T, Hilt JZ (2019) Functionalization of iron oxide nanoparticles with small molecules and the impact on reactive oxygen species generation for potential cancer therapy. Colloids Surf A Physicochem Eng Asp 576:9–14. https://doi.org/10.1016/j.colsurfa.2019.05.003

    CAS  Article  Google Scholar 

  106. Manna I, Bandyopadhyay M (2019) A review on the biotechnological aspects of utilizing engineered nanoparticles as delivery systems in plants. Plant Gene 17:100167. https://doi.org/10.1016/j.plgene.2018.100167

    CAS  Article  Google Scholar 

  107. Marandi M, Bayat S, Sabet MNS (2019) Hydrothermal growth of a composite TiO2 hollow spheres/TiO2 nanorods powder and its application in high performance dye-sensitized solar cells. J Electroanal Chem 833:143–150. https://doi.org/10.1016/j.jelechem.2018.11.023

    CAS  Article  Google Scholar 

  108. Marimón W, Benítez L, Núñez C, Pérez D (2019) Evaluation of the in vivo toxicity of green magnetic nanoparticles using Caenorhabditis elegans as a biological model. Environ. Nanotechnol. Monit 12:100253. https://doi.org/10.1016/j.enmm.2019.100253

    Article  Google Scholar 

  109. Marimón-Bolívar W, González EE (2018) Green synthesis with enhanced magnetization and life cycle assessment of Fe3O4 nanoparticles. Environ. Nanotechnol. Monit 9:58–66. https://doi.org/10.1016/j.enmm.2017.12.003

    Article  Google Scholar 

  110. Marimón-Bolívar W, Tejeda-Benítez L, Herrera AP (2018) Removal of mercury (II) from water using magnetic nanoparticles coated with amino organic ligands and yam peel biomass. Environ. Nanotechnol. Monit 10:486–493. https://doi.org/10.1016/j.enmm.2018.10.001

    Article  Google Scholar 

  111. Máté Z, Horváth E, Kozma G, Simon T, Kónya Z, Paulik E, Papp A, Szabó A (2016) Size-Dependent Toxicity Differences of Intratracheally Instilled Manganese Oxide Nanoparticles: Conclusions of a Subacute Animal Experiment. Biol Trace Elem Res 171(1):156–166. https://doi.org/10.1007/s12011-015-0508-z

    CAS  Article  Google Scholar 

  112. Mathur P, Jha S, Ramteke S, Jain NK (2018) Pharmaceutical aspects of silver nanoparticles. Artificial Cells, Nanomedicine and Biotechnology, 46(sup1), 115–126. https://doi.org/10.1080/21691401.2017.1414825

  113. Mau N, Minh T, Thi P, Hai N, Huy N (2018) Structure and magnetic properties of Fe-Co nanoparticles prepared by polyol method. Physica B: Physics of Condensed Matter 532:71–75. https://doi.org/10.1016/j.physb.2017.10.039

    CAS  Article  Google Scholar 

  114. McClements DJ, Xiao H (2017) Is nano safe in foods? Establishing the factors impacting the gastrointestinal fate and toxicity of organic and inorganic food-grade nanoparticles. Npj Science of Food 1(6):1–13. https://doi.org/10.1038/s41538-017-0005-1

    Article  Google Scholar 

  115. Miao L, Wang P, Hou J, Ning D, Liu Z, Liu S, Li T (2020) Chronic exposure to CuO nanoparticles induced community structure shift and a delay inhibition of microbial functions in multi-species biofilms. J Clean Prod 262:121353. https://doi.org/10.1016/j.jclepro.2020.121353

    CAS  Article  Google Scholar 

  116. Mihut DM, Afshar A, Lackey LW, Le KN (2019) Antibacterial effectiveness of metallic nanoparticles deposited on water filter paper by magnetron sputtering. Surf Coat Technol 368:59–66. https://doi.org/10.1016/j.surfcoat.2019.04.039

    CAS  Article  Google Scholar 

  117. Miller MR, Raftis JB, Langrish JP, McLean SG, Samutrtai P, Connell SP, Wilson S, Vesey AT, Fokkens PHB, Boere AJF, Krystek P, Campbell CJ, Hadoke PWF, Donaldson K, Cassee FR, Newby DE, Duffin R, Mills NL (2017) Inhaled Nanoparticles Accumulate at Sites of Vascular Disease. ACS Nano 11(5):4542–4552. https://doi.org/10.1021/acsnano.6b08551

    CAS  Article  Google Scholar 

  118. Mo Y, Jiang M, Zhang Y, Wan R, Li J, Zhong CJ, Li H, Tang S, Zhang Q (2019) Comparative mouse lung injury by nickel nanoparticles with differential surface modification. Journal of Nanobiotechnology 17(1):2. https://doi.org/10.1186/s12951-018-0436-0

    Article  Google Scholar 

  119. Mohammadpour R, Dobrovolskaia MA, Cheney DL, Greish KF, Ghandehari H (2019) Subchronic and chronic toxicity evaluation of inorganic nanoparticles for delivery applications. Adv Drug Deliv Rev 144:112–132. https://doi.org/10.1016/j.addr.2019.07.006

    CAS  Article  Google Scholar 

  120. Momeni S, Sedaghati F (2018) CuO/Cu2O nanoparticles: A simple and green synthesis, characterization and their electrocatalytic performance toward formaldehyde oxidation. Microchemical Journal Journal 143:64–71. https://doi.org/10.1016/j.microc.2018.07.035

    CAS  Article  Google Scholar 

  121. Mortezaee K, Najafi M, Samadian H, Barabadi H, Azarnezhad A, Ahmadi A (2019) Redox interactions and genotoxicity of metal-based nanoparticles: A comprehensive review. Chem Biol Interact 312:108814. https://doi.org/10.1016/j.cbi.2019.108814

    CAS  Article  Google Scholar 

  122. Mulenos MR, Liu J, Lujan H, Guo B, Lichtfouse E, Sharma VK, Sayes CM (2020) Copper, silver, and titania nanoparticles do not release ions under anoxic conditions and release only minute ion levels under oxic conditions in water: Evidence for the low toxicity of nanoparticles. Environ Chem Lett 18:1319–1328. https://doi.org/10.1007/s10311-020-00985-z

    CAS  Article  Google Scholar 

  123. Najimi S, Shakibaie M, Jafari E, Ameri A, Rahimi N, Forootanfar H, Yazdanpanah M, Rahimi HR (2017) Acute and subacute toxicities of biogenic tellurium nanorods in mice. Regul Toxicol Pharmacol 90:222–230. https://doi.org/10.1016/j.yrtph.2017.09.014

    CAS  Article  Google Scholar 

  124. Nasrollahi N, Aber S, Vatanpour V, Mohammad N (2019) Development of hydrophilic microporous PES ultra fi ltration membrane containing CuO nanoparticles with improved antifouling and separation performance. Mater Chem Phys 222:338–350. https://doi.org/10.1016/j.matchemphys.2018.10.032

    CAS  Article  Google Scholar 

  125. Niu L, Wang Q, Jing J, Zhao W (2019) Sensitivity enhanced D-type large-core fiber SPR sensor based on Gold nanoparticle/Au film co-modification. Opt Commun 450:287–295. https://doi.org/10.1016/j.optcom.2019.06.026

    CAS  Article  Google Scholar 

  126. Oksel, C., Hunt, N., Wilkins, T., and Wang, X. (2017). Risk management of nanomaterials: Guidelines for the Safe Manufacture and Use of Nanomaterials.

    Google Scholar 

  127. Pang P, Teng X, Chen M, Zhang Y, Wang H, Yang C, Yang W, Barrow CJ (2018) Ultrasensitive enzyme-free electrochemical immunosensor for microcystin-LR using molybdenum disulfide/gold nanoclusters nanocomposites as platform and Au@Pt core-shell nanoparticles as signal enhancer. Sensors Actuators B Chem 266:400–407. https://doi.org/10.1016/j.snb.2018.03.154

    CAS  Article  Google Scholar 

  128. Paramasivam G, Kayambu N, Maximus A, Sundramoorthy AK, Sundaramurthy A (2017) Anisotropic noble metal nanoparticles: Synthesis, surface functionalization and applications in biosensing, bioimaging, drug delivery and theranostics. Acta Biomater 49:45–65. https://doi.org/10.1016/j.actbio.2016.11.066

    CAS  Article  Google Scholar 

  129. Pascariu P, Tudose IV, Suchea M, Koudoumas E, Fifere N, Airinei A (2018) Preparation and characterization of Ni, Co doped ZnO nanoparticles for photocatalytic applications. Appl Surf Sci 448:481–488. https://doi.org/10.1016/j.apsusc.2018.04.124

    CAS  Article  Google Scholar 

  130. Patel RH, Kachhia PH, Sharma S (2019a) Studies on the High Thermal Conduction Fluid by Incorporating CuO Nanoparticles in a Liquid Coolant. Materials Today: Proceedings, 18, 1291–1296. https://doi.org/10.1016/j.matpr.2019.06.591

  131. Patel S, Jana S, Chetty R, Thakore S, Singh M, Devkar R (2019b) Toxicity evaluation of magnetic iron oxide nanoparticles reveals neuronal loss in chicken embryo. Drug Chem Toxicol 42(1):1–8. https://doi.org/10.1080/01480545.2017.1413110

    CAS  Article  Google Scholar 

  132. Patil P, Nakate UT, Nakate YT, Ambare RC (2019) Acetaldehyde sensing properties using ultrafine CuO nanoparticles. Mater Sci Semicond Process 101:76–81. https://doi.org/10.1016/j.mssp.2019.05.032

    CAS  Article  Google Scholar 

  133. Pauzi N, Zain NM, Amira N, Yusof A (2019) Gum arabic as natural stabilizing agent in green synthesis of ZnO nano fluids for antibacterial application. J Environ Chem Eng 8(3):103331. https://doi.org/10.1016/j.jece.2019.103331

    CAS  Article  Google Scholar 

  134. Perez O, Nedev N, Curiel M, Valdez B, Barajas A, Mateos D, Nedev R, Arias A (2018) Gold, copper and gold/copper bimetallic nanoparticles obtained by focused ion beam sputter deposition and rapid thermal annealing. Vacuum 157:166–172. https://doi.org/10.1016/j.vacuum.2018.08.033

    CAS  Article  Google Scholar 

  135. Piperigkou Z, Karamanou K, Basak A, Gialeli C, Docea A, Vynios D, Pavão M, Golokhvast KS, Shtilman MI, Argiris A, Shishatskaya E, Tsatsakis AM (2016) Emerging aspects of nanotoxicology in health and disease: From agriculture and food sector to cancer therapeutics. Food ChemToxicol 91:42–57. https://doi.org/10.1016/j.fct.2016.03.003

    CAS  Article  Google Scholar 

  136. Podporska-Carroll J, Myles A, Quilty B, McCormack DE, Fagan R, Hinder SJ, Dionysiou DD, Pillai SC (2017) Antibacterial properties of F-doped ZnO visible light photocatalyst. J Hazard Mater 324:39–47. https://doi.org/10.1016/j.jhazmat.2015.12.038

    CAS  Article  Google Scholar 

  137. Pogribna M, Koonce NA, Mathew A, Word B, Patri AK, Lyn-Cook B, Hammons G (2020) Effect of titanium dioxide nanoparticles on DNA methylation in multiple human cell lines. Nanotoxicology 14(4):534–553. https://doi.org/10.1080/17435390.2020.1723730

    CAS  Article  Google Scholar 

  138. Prajitha N, Athira SS, Mohanan PV (2019) Bio-interactions and risks of engineered nanoparticles. Environ Res 172:98–108. https://doi.org/10.1016/j.envres.2019.02.003

    CAS  Article  Google Scholar 

  139. Prakash J, Pivin JC, Swart HC (2015) Noble metal nanoparticles embedding into polymeric materials: From fundamentals to applications. Adv Colloid Interf Sci 226:187–202. https://doi.org/10.1016/j.cis.2015.10.010

    CAS  Article  Google Scholar 

  140. Priyanka KP, Kurian A, Balakrishna KM, Varghese T (2018) Toxicological impact of TiO2 nanoparticles on Eudrilus euginiae. IET Nanobiotechnology 12(5):579–584. https://doi.org/10.1049/iet-nbt.2017.0240

    Article  Google Scholar 

  141. Proença M, Borges J, Rodrigues MS, Meira DI, Sampaio P, Dias JP, Pedrosa P, Martin N, Bundaleski N, Teodoro OMND (2019) Nanocomposite thin films based on Au-Ag nanoparticles embedded in a CuO matrix for localized surface plasmon resonance sensing. Appl Surf Sci 484:152–168. https://doi.org/10.1016/j.apsusc.2019.04.085

    CAS  Article  Google Scholar 

  142. Puisney C, Baeza-Squiban A, Boland S (2018) Mechanisms of uptake and translocation of nanomaterials in the lung. Adv Exp Med Biol 1048:21–36. https://doi.org/10.1007/978-3-319-72041-8_2

    CAS  Article  Google Scholar 

  143. Qiao H, Xiao H, Huang Y, Yuan C, Zhang X, Bu X (2019) SiO2 loading into polydopamine-functionalized TiO2 nanotubes for biomedical applications. Surf Coat Technol 364:170–179. https://doi.org/10.1016/j.surfcoat.2019.02.089

    CAS  Article  Google Scholar 

  144. Quiroz HP, Dussan A (2019) Synthesis temperature dependence on magnetic properties of cobalt doped TiO2 thin films for spintronic applications. Appl Surf Sci 484:688–691. https://doi.org/10.1016/j.apsusc.2019.03.068

    CAS  Article  Google Scholar 

  145. Rahimi B, Jafari N, Abdolahnejad A, Farrokhzadeh H, Ebrahimi A (2019) Application of efficient photocatalytic process using a novel BiVO/TiO2-NaY zeolite composite for removal of acid orange 10 dye in aqueous solutions: Modeling by response surface methodology (RSM). J Environ Chem Eng 7(4):103253. https://doi.org/10.1016/j.jece.2019.103253

    CAS  Article  Google Scholar 

  146. Rangel-Mendez JR, Matos J, Cházaro-Ruiz LF, González-Castillo AC, Barrios-Yáñez G (2018) Microwave-assisted synthesis of C-doped TiO2 and ZnO hybrid nanostructured materials as quantum-dots sensitized solar cells. Appl Surf Sci 434:744–755. https://doi.org/10.1016/j.apsusc.2017.10.236

    CAS  Article  Google Scholar 

  147. Ranka P, Sethi V, Contractor AQ (2018) One step electrodeposition of composite of PANI-PSS tubules with TiO2 nanoparticles and application as electronic sensor device. Sensors Actuators B Chem 261:11–21. https://doi.org/10.1016/j.snb.2018.01.097

    CAS  Article  Google Scholar 

  148. Rezvani H, Kazemzadeh Y, Shari M, Riazi M, Shojaei S (2019) A new insight into Fe3O4-based nanocomposites for adsorption of asphaltene at the oil/water interface: An experimental interfacial study. J Pet Sci Eng 177:786–797. https://doi.org/10.1016/j.petrol.2019.02.077

    CAS  Article  Google Scholar 

  149. Ribeiro AR, Leite PE, Falagan-Lotsch P, Benetti F, Micheletti C, Budtz HC, Jacobsen NR, Lisboa-Filho PN, Rocha LA, Kühnel D, Hristozov D, Granjeiro JM (2017) Challenges on the toxicological predictions of engineered nanoparticles. NanoImpact 8:59–72. https://doi.org/10.1016/j.impact.2017.07.006

    Article  Google Scholar 

  150. Rihane N, Nury T, M’rad I, El Mir L, Sakly M, Amara S, Lizard G (2016) Microglial cells (BV-2) internalize titanium dioxide (TiO2) nanoparticles: toxicity and cellular responses. Environ Sci Pollut Res 23(10):9690–9699. https://doi.org/10.1007/s11356-016-6190-7

    CAS  Article  Google Scholar 

  151. Rivas MP, Luque JM, Estévez R, Rodríguez-Amaro R, Rodríguez JM (2017) Application of polyphenazine films doped with metal nanoparticles for the measurements of antioxidant capacity. J Electroanal Chem 789:24–28. https://doi.org/10.1016/j.jelechem.2017.02.023

    CAS  Article  Google Scholar 

  152. Ruiz-Ruiz V, González-olvera R, Díaz-pardo R, Betancourt I, Zumeta-dubé I, Díaz D, Farfán N, Arellano-Jiménez M (2018) Mechanochemically obtained Pd–Ag nanoalloys. Structural considerations and catalytic activity. Materialia, 4, 166–174. https://doi.org/10.1016/j.mtla.2018.09.031

  153. Sakka Y, Skjolding LM, Mackevica A, Filser J, Baun A (2016) Behavior and chronic toxicity of two differently stabilized silver nanoparticles to Daphnia magna. Aquat Toxicol 177:526–535. https://doi.org/10.1016/j.aquatox.2016.06.025

    CAS  Article  Google Scholar 

  154. Samadi A, Ahmadi R, Mostafa S (2019) Influence of TiO2-Fe3O4-MWCNT hybrid nanotubes on piezoelectric and electromagnetic wave absorption properties of electrospun PVDF nanocomposites. Org Electron 75:1–8. https://doi.org/10.1016/j.orgel.2019.105405

    CAS  Article  Google Scholar 

  155. Samei M, Sarrafzadeh MH, Faramarzi MA (2019) The impact of morphology and size of zinc oxide nanoparticles on its toxicity to the freshwater microalga, Raphidocelis subcapitata. Environ Sci Pollut Res 26(3):2409–2420. https://doi.org/10.1007/s11356-018-3787-z

    CAS  Article  Google Scholar 

  156. Sardella D, Gatt R, Valdramidis VP (2019) Metal nanoparticles for controlling fungal proliferation: quantitative analysis and applications. Curr Opin Food Sci 30:49–59. https://doi.org/10.1016/j.cofs.2018.12.001

    Article  Google Scholar 

  157. Saxena P, Harish (2019) Toxicity assessment of ZnO nanoparticles to freshwater microalgae Coelastrella terrestris. Environ Sci Pollut Res 26(26):26991–27001. https://doi.org/10.1007/s11356-019-05844-1

    CAS  Article  Google Scholar 

  158. Saxena P, Sangela V, Harish (2020) Toxicity evaluation of iron oxide nanoparticles and accumulation by microalgae Coelastrella terrestris. Environ Sci Pollut Res 27(16):19650–19660. https://doi.org/10.1007/s11356-020-08441-9

    CAS  Article  Google Scholar 

  159. Senthilkumar P, Yaswant G, Kavitha S, Chandramohan E, Kowsalya G, Vijay R, Sudhagar B, Santhosh DSR (2019) Preparation and characterization of hybrid chitosan-silver nanoparticles (Chi-Ag NPs); A potential antibacterial agent. Int J Biol Macromol 141:290–297. https://doi.org/10.1016/j.ijbiomac.2019.08.234

    CAS  Article  Google Scholar 

  160. Sha S, Ahangar HA, Sa A (2019) Taguchi method optimization for synthesis of Fe3O4@chitosan/Tragacanth Gum nanocomposite as a drug delivery system. Carbohydr Polym 222:1–9. https://doi.org/10.1016/j.carbpol.2019.114982

    CAS  Article  Google Scholar 

  161. Shalini S, Balasundaraprabhu R, Kumar TS, Muthukumarasamy N, Prasanna S (2018) Enhanced performance of sodium doped TiO2 nanorods based dye sensitized solar cells sensitized with extract from petals of Hibiscus sabdariffa (Roselle). Mater Lett 221:192–195. https://doi.org/10.1016/j.matlet.2018.03.091

    CAS  Article  Google Scholar 

  162. Sharma S, Sharma RK, Gaur K, Torres JFC, Loza-Rosas SA, Torres A, Saxena M, Julin M, Tinoco AD (2019) Fueling a hot debate on the application of TiO2 nanoparticles in sunscreen. Materials 12(14):2317. https://doi.org/10.3390/ma12142317

    CAS  Article  Google Scholar 

  163. Shen Y, Gong S, Li J, Wang Y, Zhang X, Zheng H, Zhang Q, You J, Huang Z, Chen Y (2019) Co-loading antioxidant N-acetylcysteine attenuates cytotoxicity of iron oxide nanoparticles in hypoxia/reoxygenation cardiomyocytes. Int J Nanomedicine 14:6103–6115. https://doi.org/10.2147/IJN.S209820

    CAS  Article  Google Scholar 

  164. Shinde SK, Mohite SM, Kadam AA, Yadav HM, Ghodake GS, Rajpure KY, Lee DS, Kim D (2019) Effect of deposition parameters on spray pyrolysis synthesized CuO nanoparticle thin fi lms for higher supercapacitor performance. J Electroanal Chem 850:1–8. https://doi.org/10.1016/j.jelechem.2019.113433

    CAS  Article  Google Scholar 

  165. Shivakumar MS, Krishnamurthy G, Ravikumar CR, Bhatt AS (2019) Decoration of silver nanoparticles on activated graphite substrate and their electrocatalytic activity for methanol oxidation. Journal of Science: Advanced Materials and Devices 4(2):290–298. https://doi.org/10.1016/j.jsamd.2019.06.001

    Article  Google Scholar 

  166. Sidiropoulou E, Feidantsis K, Kalogiannis S, Gallios GP, Kastrinaki G, Papaioannou E, Václavíková M, Kaloyianni M (2018) Insights into the toxicity of iron oxides nanoparticles in land snails. Comp Biochem Physiol C Toxicol Pharmacol 206–207:1–10. https://doi.org/10.1016/j.cbpc.2018.02.001

    CAS  Article  Google Scholar 

  167. Singh N, Das MK, Gautam R, Ramteke A, Rajamani P (2019a) Assessment of intermittent exposure of zinc oxide nanoparticle (ZNP)–mediated toxicity and biochemical alterations in the splenocytes of male Wistar rat. Environ Sci Pollut Res 26(32):33642–33653. https://doi.org/10.1007/s11356-019-06225-4

    CAS  Article  Google Scholar 

  168. Singh P, Sharma K, Hasija V, Sharma V, Sharma S, Raizada P, Singh M (2019b) Systematic review on applicability of magnetic iron oxides e integrated photocatalysts for degradation of organic pollutants in water. Mater Today Chem 14:1–27. https://doi.org/10.1016/j.mtchem.2019.08.005

    CAS  Article  Google Scholar 

  169. Solano R, Herrera A (2020) Cypermethrin elimination using Fe-TiO2 nanoparticles supported on coconut palm spathe in a solar flat plate photoreactor. Adv Compos Lett 28:1–13. https://doi.org/10.1177/2633366X20906164

    Article  Google Scholar 

  170. Solano R, Herrera A, Maestre D, Cremades A (2019) Fe-TiO2 Nanoparticles Synthesized by Green Chemistry for Potential Application in Waste Water Photocatalytic Treatment. J Nanotechnol 2019:1–11. https://doi.org/10.1155/2019/4571848

    CAS  Article  Google Scholar 

  171. Solano R, Patiño-Ruiz D, Herrera A (2020) Preparation of modified paints with nano-structured additives and its potential applications. Nanomater Nanotechnol 10:1–17. https://doi.org/10.1177/1847980420909188

    CAS  Article  Google Scholar 

  172. Soliman TS, Vshivkov SA (2019) Effect of Fe nanoparticles on the structure and optical properties of polyvinyl alcohol nanocomposite films. J Non-Cryst Solids 519:119452. https://doi.org/10.1016/j.jnoncrysol.2019.05.028

    CAS  Article  Google Scholar 

  173. Song WJ, Jeong MS, Choi DM, Kim KN, Wie MB (2019) Zinc oxide nanoparticles induce autophagy and apoptosis via oxidative injury and pro-inflammatory cytokines in primary astrocyte cultures. Nanomaterials 9(7):1043. https://doi.org/10.3390/nano9071043

    CAS  Article  Google Scholar 

  174. Sousa VS, Ribau Teixeira M (2020) Metal-based engineered nanoparticles in the drinking water treatment systems: A critical review. Sci Total Environ 707:136077. https://doi.org/10.1016/j.scitotenv.2019.136077

    CAS  Article  Google Scholar 

  175. Souza LRR, Bernardes LE, Barbetta MFS, da Veiga MAMS (2019) Iron oxide nanoparticle phytotoxicity to the aquatic plant Lemna minor: effect on reactive oxygen species (ROS) production and chlorophyll a/chlorophyll b ratio. Environ Sci Pollut Res 26:24121–24131. https://doi.org/10.1007/s11356-019-05713-x

    CAS  Article  Google Scholar 

  176. Srikanth B, Goutham R, Narayan RB, Ramprasath A, Gopinath KP, Sankaranarayanan AR (2017) Recent advancements in supporting materials for immobilised photocatalytic applications in waste water treatment. J Environ Manag 200:60–78. https://doi.org/10.1016/j.jenvman.2017.05.063

    CAS  Article  Google Scholar 

  177. Sudhakaran S, Athira S, Suresh S, Varma H, Mohanan P (2020) Determination of the bioavailability of zinc oxide nanoparticles using ICP-AES and associated toxicity. Colloids Surf B: Biointerfaces 188:110767. https://doi.org/10.1016/j.colsurfb.2019.110767

    CAS  Article  Google Scholar 

  178. Swain B, Park JR, Park K, Lee CG (2019) Synthesis of cosmetic grade TiO2-SiO2 core-shell powder from mechanically milled TiO2 nanopowder for commercial mass production. Mater Sci Eng C 95:95–103. https://doi.org/10.1016/j.msec.2018.10.005

    CAS  Article  Google Scholar 

  179. Tang Y, Xin H, Yang S, Guo M, Malkoske T, Yin D, Xia S (2018) Environmental risks of ZnO nanoparticle exposure on Microcystis aeruginosa: Toxic effects and environmental feedback. Aquat Toxicol 204:19–26. https://doi.org/10.1016/j.aquatox.2018.08.010

    CAS  Article  Google Scholar 

  180. Tang T, Zhang Z, Zhu X (2019) Toxic effects of TiO2 NPs on Zebrafish. Int J Environ Res Public Health 16(4):523. https://doi.org/10.3390/ijerph16040523

    CAS  Article  Google Scholar 

  181. Tavakoli S, Nemati S, Kharaziha M, Akbari-alavijeh S (2019) Embedding CuO Nanoparticles in PDMS-SiO2 Coating to Improve Antibacterial Characteristic and Corrosion Resistance. Colloids Interface Sci. Commun 28:20–28. https://doi.org/10.1016/j.colcom.2018.11.002

    CAS  Article  Google Scholar 

  182. Thangamani N, Bhuvaneshwari N (2019) Green synthesis of gold nanoparticles using Simarouba glauca leaf extract and their biological activity of micro-organism. Chem Phys Lett 732:136587. https://doi.org/10.1016/j.cplett.2019.07.015

    CAS  Article  Google Scholar 

  183. Thiagarajan V, Iswarya V, Julian PA, Seenivasan R, Chandrasekaran N, Mukherjee A (2019) Influence of differently functionalized polystyrene microplastics on the toxic effects of P25 TiO2 NPs towards marine algae Chlorella sp. Aquat Toxicol 207:208–216. https://doi.org/10.1016/j.aquatox.2018.12.014

    CAS  Article  Google Scholar 

  184. Tiple AD, Badwaik VJ, Padwad SV, Chaudhary RG, Singh NB (2020) A review on Nanotoxicology: Aquatic environment and biological system. MaterToday 29:1246–1250. https://doi.org/10.1016/j.matpr.2020.05.755

    CAS  Article  Google Scholar 

  185. Torrisi L, Restuccia N, Torrisi A (2019) Study of gold nanoparticles for mammography diagnostic and radiotherapy improvements. Rep Pract Oncol Radiother 24(5):450–457. https://doi.org/10.1016/j.rpor.2019.07.005

    Article  Google Scholar 

  186. Tosco T, Sethi R (2018) Human health risk assessment for nanoparticle-contaminated aquifer. Environ Pollut 239:242–252. https://doi.org/10.1016/j.envpol.2018.03.041

    CAS  Article  Google Scholar 

  187. US EPA. (2017). About Risk Assessment.

    Google Scholar 

  188. Velmurugan P, Park JH, Lee SM, Jang JS, Yi YJ, Han SS, Lee SH, Cho KM, Cho M, Oh BT (2016) Phytofabrication of bioinspired zinc oxide nanocrystals for biomedical application. Artif Cells Nanomed Biotechnol 44(6):1529–1536. https://doi.org/10.3109/21691401.2015.1058811

    CAS  Article  Google Scholar 

  189. Vinosha M, Palanisamy S, Muthukrishnan R (2019) Biogenic synthesis of gold nanoparticles from Halymenia dilatata for pharmaceutical applications: Antioxidant , anti-cancer and antibacterial activities. Process Biochem 85:219–229. https://doi.org/10.1016/j.procbio.2019.07.013

    CAS  Article  Google Scholar 

  190. Wahab A, Soo I, Ogasawara H, Ni Q (2019) Characterizations and application of CA/ZnO/AgNP composite nano fibers for sustained antibacterial properties. Mater Sci Eng C 105:1–8. https://doi.org/10.1016/j.msec.2019.110077

    CAS  Article  Google Scholar 

  191. Wang B, Zhang J, Chen C, Xu G, Qin X, Hong Y, Bose DD, Qiu F, Zou Z (2018) The size of zinc oxide nanoparticles controls its toxicity through impairing autophagic flux in A549 lung epithelial cells. Toxicol Lett 285:51–59. https://doi.org/10.1016/j.toxlet.2017.12.025

    CAS  Article  Google Scholar 

  192. Wang Y, Qin S, Li Y, Wu G, Sun Y, Zhang L, Huang Y, Lyu K, Chen Y, Yang Z (2019) Combined effects of ZnO nanoparticles and toxic Microcystis on life-history traits of Daphnia magna. Chemosphere 233:482–492. https://doi.org/10.1016/j.chemosphere.2019.05.269

    CAS  Article  Google Scholar 

  193. Warheit DB (2018) Hazard and risk assessment strategies for nanoparticle exposures: how far have we come in the past 10 years? F1000Research 7(376):1–14 https://doi.org/10.12688/f1000research.12691.1

    Google Scholar 

  194. Wei G, Ding J, Zhang T, Qiu F, Yue X, Yang D, Wang Z (2019) In situ fabrication of ZnO nanorods/Ag hybrid film with high mid-infrared reflectance for applications in energy efficient windows. Opt Mater 94:322–329. https://doi.org/10.1016/j.optmat.2019.06.004

    CAS  Article  Google Scholar 

  195. Wei CC, Yen PL, Chaikritsadakarn A, Huang CW, Chang CH, Liao VHC (2020) Parental CuO nanoparticles exposure results in transgenerational toxicity in Caenorhabditis elegans associated with possible epigenetic regulation. Ecotoxicol Environ Saf 203:111001. https://doi.org/10.1016/j.ecoenv.2020.111001

    CAS  Article  Google Scholar 

  196. Wong SWY, Zhou GJ, Leung PTY, Han J, Lee JS, Kwok KWH, Leung KMY (2020) Sunscreens containing zinc oxide nanoparticles can trigger oxidative stress and toxicity to the marine copepod Tigriopus japonicus. Mar Pollut Bull 154:111078. https://doi.org/10.1016/j.marpolbul.2020.111078

    CAS  Article  Google Scholar 

  197. Wu Q, He L, Wei Z, Li Y, Mao Z, Zhi C (2019) CuO nanoparticles derived from metal-organic gel with excellent electrocatalytic and peroxidase-mimicking activities for glucose and cholesterol detection. Biosens Bioelectron 145:1–7. https://doi.org/10.1016/j.bios.2019.111704

    CAS  Article  Google Scholar 

  198. Xie Y, Yu Y, Lu L, Ma X, Gong L, Huang X, Liu G, Yu Y (2018) CuO nanoparticles decorated 3D graphene nanocomposite as non-enzymatic electrochemical sensing platform for malathion detection. J Electroanal Chem 812:82–89. https://doi.org/10.1016/j.jelechem.2018.01.043

    CAS  Article  Google Scholar 

  199. Xu W, Xiao S, Lu X, Chen G, Liu C, Qu X (2019) Fabrication of commercial pure Ti by selective laser melting using hydride-dehydride titanium powders treated by ball milling. J Mater Sci Technol 35(2):322–327. https://doi.org/10.1016/j.jmst.2018.09.058

    Article  Google Scholar 

  200. Yang L, Wang WX (2019) Comparative contributions of copper nanoparticles and ions to copper bioaccumulation and toxicity in barnacle larvae. Environ Pollut 249:116–124. https://doi.org/10.1016/j.envpol.2019.02.103

    CAS  Article  Google Scholar 

  201. Yen HJ, Horng JL, Yu CH, Fang CY, Yeh YH, Lin LY (2019) Toxic effects of silver and copper nanoparticles on lateral-line hair cells of zebrafish embryos. Aquat Toxicol 215:105273. https://doi.org/10.1016/j.aquatox.2019.105273

    CAS  Article  Google Scholar 

  202. Yoo J, So H, Yang M, Lee K (2019) Effect of chloride ion on synthesis of silver nanoparticle using retrieved silver chloride as a precursor from the electronic scrap. Appl Surf Sci 475:781–784. https://doi.org/10.1016/j.apsusc.2019.01.032

    CAS  Article  Google Scholar 

  203. Yu S, Liu J, Yin Y, Shen M (2018) Interactions between engineered nanoparticles and dissolved organic matter: A review on mechanisms and environmental effects. J Environ Sci (China) 63:198–217. https://doi.org/10.1016/j.jes.2017.06.021

    Article  Google Scholar 

  204. Yusefi-Tanha E, Fallah S, Rostamnejadi A, Pokhrel LR (2020) Particle size and concentration dependent toxicity of copper oxide nanoparticles (CuONPs) on seed yield and antioxidant defense system in soil grown soybean (Glycine max cv. Kowsar). Sci Total Environ 715:136994. https://doi.org/10.1016/j.scitotenv.2020.136994

    CAS  Article  Google Scholar 

  205. Zargar R, Arora M (2017) Synthesis and Characterization of ZnO Nanoparticles for Biomedical Applications. Glob J Nanomed 2(1):555580. https://doi.org/10.1007/s10751-009-0129-z

    CAS  Article  Google Scholar 

  206. Zhang T, Zhu Z, Gong W, Xiang H, Fang R (2016) Characteristics of fine particles in an urban atmosphere—relationships with meteorological parameters and trace gases. Int J Environ Res Public Health 13(8):1–16. https://doi.org/10.3390/ijerph13080807

    CAS  Article  Google Scholar 

  207. Zhang J, Chaker M, Ma D (2017a) Pulsed laser ablation based synthesis of colloidal metal nanoparticles for catalytic applications. J Colloid Interface Sci 489:138–149. https://doi.org/10.1016/j.jcis.2016.07.050

    CAS  Article  Google Scholar 

  208. Zhang L, Zhang Q, Xie H, Guo J, Lyu H, Li Y, Sun Z, Wang H, Guo Z (2017b) Electrospun titania nanofibers segregated by graphene oxide for improved visible light photocatalysis. Appl Catal B Environ 201:470–478. https://doi.org/10.1016/j.apcatb.2016.08.056

    CAS  Article  Google Scholar 

  209. Zhang M, Lei E, Zhang R, Liu Z (2019a) The effect of SiO2 on TiO2-SiO2 composite fi lm for self-cleaning application. Surfaces and Interfaces 16:194–198. https://doi.org/10.1016/j.surfin.2018.10.005

    CAS  Article  Google Scholar 

  210. Zhang S, Tang Y, Chen Y, Zheng J (2019b) Synthesis of gold nanoparticles coated on flower-like MoS2 microsphere and their application for electrochemical nitrite sensing. J Electroanal Chem 839:195–201. https://doi.org/10.1016/j.jelechem.2019.03.036

    CAS  Article  Google Scholar 

  211. Zhang F, Wang Z, Song L, Fang H, Wang DG (2020) Aquatic toxicity of iron-oxide-doped microplastics to Chlorella pyrenoidosa and Daphnia magna. Environ Pollut 257:113451. https://doi.org/10.1016/j.envpol.2019.113451

    CAS  Article  Google Scholar 

  212. Zheng Q, Zhang ZR, Du J, Lin LL, Xia WX, Zhang J, Bian BR, Liu JP (2019) A novel direct reduction method to synthesize ordered Fe-Pt alloy nanoparticles. J Mater Sci Technol 35:560–567. https://doi.org/10.1016/j.jmst.2018.09.036

    Article  Google Scholar 

  213. Zhou Y, Ji J, Ji L, Wang L, Hong F (2019) Respiratory exposure to nano-TiO2 induces pulmonary toxicity in mice involving reactive free radical-activated TGF-β/Smad/p38MAPK/Wnt pathways. J Biomed Mater Res A 107(11):2567–2575. https://doi.org/10.1002/jbm.a.36762

    CAS  Article  Google Scholar 

  214. Zhu Q, Xu Q (2016) Immobilization of Ultrafine Metal Nanoparticles to High-Surface-Area Materials and Their Catalytic Applications. Chem 1(11):220–245. https://doi.org/10.1016/j.chempr.2016.07.005

    CAS  Article  Google Scholar 

  215. Zu G, Li H, Liu S, Li D, Wang J, Zhao J (2018) Highly efficient mass determination of TiO2 nanotube arrays and its application in lithium-ion batteries. Sustain Mater Technol 18:e00079. https://doi.org/10.1016/j.susmat.2018.e00079

    CAS  Article  Google Scholar 

Download references

Acknowledgment

The authors are grateful to the Universidad de Cartagena for providing the resources to develop this work.

Funding

Literature databases were supplied by University of Cartagena.

Author information

Affiliations

Authors

Contributions

Ricardo Solano: conceptualization and design of the article, literature search and data analysis, writing-original draft preparation, and drafting of the article. David Patiño: conceptualization and design of the article, literature search and data analysis, writing-original draft preparation, and drafting of the article. Lesly Tejeda: writing (original draft preparation), drafting of the article, critical revision of the article for important intellectual content, revision to the text, and final approval of the article. Adriana Herrera: writing (original draft preparation), drafting of the article, critical revision of the article for important intellectual content, revision to the text, and final approval of the article.

Corresponding author

Correspondence to Adriana Herrera.

Ethics declarations

Competing interests

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Ludek Blaha

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Solano, R., Patiño-Ruiz, D., Tejeda-Benitez, L. et al. Metal- and metal/oxide-based engineered nanoparticles and nanostructures: a review on the applications, nanotoxicological effects, and risk control strategies. Environ Sci Pollut Res 28, 16962–16981 (2021). https://doi.org/10.1007/s11356-021-12996-6

Download citation

Keywords

  • Engineered nanoparticle
  • Metal nanoparticles
  • Metal oxide nanoparticle
  • Nanotoxicological effect
  • Risk assessment