Ecological restoration of coal fly ash–dumped area through bamboo plantation

Abstract

The present study entails the phytoremediation potential of different bamboo species on 5-year-old FA-dumped site near Koradi thermal power plant of Nagpur, Maharashtra, India. The selected FA-dumped site was treated with farmyard manure, press mud, and bio fertilizer followed by plantation of six promising species of bamboo namely Bambusa balcooa Roxb., Dendrocalamus stocksii (Munro.) M. Kumar, Remesh and Unnikrishnan, Bambusa bambos (L.) Voss, Bambusa wamin E.G. Camus, Bambusa vulgaris var. striata (Lodd. ex Lindl.) Gamble, and Bambusa vulgaris var. vittata Riviere and Riviere. The experimental results indicated that the organic input in the FA-dumped site nourished the soil by improving its physico-chemical, and biological characteristics. The results revealed the contamination of the site with different trace elements in varied quantity including Cr (89.29 mg kg−1), Zn (84.77 mg kg−1), Ni (28.84 mg kg−1), Cu (22.91 mg kg−1), Li (19.65 mg kg−1), Pb (13.47 mg kg−1), and Cd (2.35 mg kg−1). A drastic reduction in concentration of heavy metals in FA was observed after 1 year of bamboo plantation as compared to the initial condition. The results showed that bamboo species are good excluders of Ba, Co, Cr, Li, Ni, Mn, and Zn, whereas they are good accumulators of Cd, Pb, and Cu. The values of biochemical parameters, such as pH, total chlorophyll, ascorbic acid (AA), and relative water content of all the bamboo leaves ranged from 5.11–5.70, 1.56-6.33 mg g−1, 0.16-0.19 mg g−1, and 60.23–76.68%, respectively. It is thereby concluded that the bamboo plantation with biofertilizers and organic amendments may indicate adaptive response to environmental pollution on FA-dumped site.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Abbreviations

FA:

Fly ash

BCF:

Bioconcentration factor

TF:

Translocation factor

TPPs:

Thermal power plants

VAM:

Vesicular arbuscular mycorrhiza

AA:

Ascorbic acid

TCS:

Total carbon sequestration

MTs:

Million tonnes

References

  1. Adriano DC, Page AL, Elseewi AA, Chang AC, Straughan I (1980) Utilization and disposal of fly ash and other coal residues in terrestrial ecosystems: a review. J Environ Qual 9(3):333–344. https://doi.org/10.2134/jeq1980.00472425000900030001x

    CAS  Article  Google Scholar 

  2. Alam J, Akhtar MN (2011) Fly ash utilization in different sectors in Indian scenario. Int J Emerg Trends Eng Develop 1(1):1–14

    Google Scholar 

  3. Alamri SA, Siddiqui MH, Al-Khaishany MYY, Khan MN, Ali HM, Alaraidh IA, Alsahli AA, Al-Rabiah AH, Mateen M (2018) Ascorbic acid improves the tolerance of wheat plants to lead toxicity. J Plant Interact 13(1):409–419. https://doi.org/10.1080/17429145.2018.1491067

    CAS  Article  Google Scholar 

  4. Arunachalam A, Arunachalam K (2002) Evaluation of bamboos in eco-restoration of ‘jhum’ fallows in Arunachal Pradesh: ground vegetation, soil and microbial biomass. For Ecol Manag 159:231–239. https://doi.org/10.1016/S0378-1127(01)00435-2

    Article  Google Scholar 

  5. Azeez MA, Orege JI (2018) Bamboo, its chemical modification and products. Bamboo-Curr Future Prospects. https://doi.org/10.5772/intechopen.76359

  6. Babu AG, Reddy MS (2011) Diversity of arbuscular mycorrhizal fungi associated with plants growing in fly ash pond and their potential role in ecological restoration. Curr Microbiol 63(3):273. https://doi.org/10.1007/s00284-011-9974-5

    CAS  Article  Google Scholar 

  7. Bakar RA, Darus SZ, Kulaseharan S, Jamaluddin N (2011) Effects of ten-year application of empty fruit bunches in an oil palm plantation on soil chemical properties. Nutr Cycl Agroecosyst 89(3):341–349. https://doi.org/10.1007/s10705-010-9398-9

    Article  Google Scholar 

  8. Banerjee S, Gothalwal R, Sahu PK, Sao S (2015) Microbial observation in bioaccumulation of heavy metals from the ash dyke of thermal power plants of Chhattisgarh, India. Adv Biosci Biotechnol 6(02):131. https://doi.org/10.4236/abb.2015.62013

    Article  Google Scholar 

  9. Belyaeva NO, Haynes JR (2012) Comparison of the effects of conventional organic amendments and biochar on the chemical, physical and microbial properties of coal fly ash as a plant growth medium. Environ Earth Sci 66:1987–1997. https://doi.org/10.1007/s12665-011-1424-y

    CAS  Article  Google Scholar 

  10. Ben-David A, Davidson CE (2014) Estimation method for serial dilution experiments. J Microbiol Methods 107:214–221. https://doi.org/10.1016/j.mimet.2014.08.023

    Article  Google Scholar 

  11. Bian F, Zhong Z, Zhang X, Yang C, Gai X (2019) Bamboo–an untapped plant resource for the phytoremediation of heavy metal contaminated soils. Chemosphere 246:125750. https://doi.org/10.1016/j.chemosphere.2019.125750

    CAS  Article  Google Scholar 

  12. Boechat CL, Pistoia VC, Gianelo C, de Oliveira Camargo FA (2016) Accumulation and translocation of heavy metal by spontaneous plants growing on multi-metal-contaminated site in the Southeast of Rio Grande do Sul state, Brazil. Environ Sci Pollut Res 23(3):2371–2380. https://doi.org/10.1007/s11356-015-5342-5

    CAS  Article  Google Scholar 

  13. Cardoso EJBN, Vasconcellos RLF, Bini D, Miyauchi MYH, Santos CAD, Alves PRL, Nogueira MA (2013) Soil health: looking for suitable indicators. What should be considered to assess the effects of use and management on soil health? Sci Agric 70(4):274–289. https://doi.org/10.1590/s0102-90162013000400009

  14. Central Electrical Authority (CEA) (2019) Report on fly ash generation at coal/lignite based thermal power stations and its utilization in the country for 1st half of the year 2018-19, New Delhi. https://www.cea.nic.in/reports/others/thermal/tcd/flyash_201819-firsthalf.pdf

  15. Chakraborty R, Mukherjee A (2009) Mutagenicity and genotoxicity of coal fly ash water leachate. Ecotoxicol Environ Saf 72(3):838–842. https://doi.org/10.1016/j.ecoenv.2008.09.023

    CAS  Article  Google Scholar 

  16. Chua J, Banua JM, Arcilla I, Orbecido A, de Castro ME, Deocaris C, Madrazo C, Ledesma N, Belo L (2019) Phytoremediation potential and copper uptake kinetics of Philippine bamboo species in copper contaminated substrate. Heliyon 5(9):e02440. https://doi.org/10.1016/j.heliyon.2019.e02440

    Article  Google Scholar 

  17. Das S, Prasad P (2010) Seasonal variation in air pollution tolerance indices and selection of plant species for industrial areas of Rourkela. Indian J Environ Prot 30(12):978–988

    CAS  Google Scholar 

  18. Desh R (1989) Experience in waste land development: a case study. In: Mathur AN, Rathore NS (eds) Renewable energy and environment. Proceedings of the International Solar Energy Convention. Udaipur, India. Himanshu Publications, Udaipur, pp 139–143

    Google Scholar 

  19. Dura DB, Hiura H (2006) Expansion characteristics of bamboo stand and sediment disaster in South Western Japan. Pak J Biol Sci 9(4):622–631 https://scialert.net/abstract/?doi=pjbs.2006.622.631

    Article  Google Scholar 

  20. Eid EM, Shaltout KH (2016) Bioaccumulation and translocation of heavy metals by nine native plant species grown at a sewage sludge dump site. Int J Phytoremediat 18:1075–1085. https://doi.org/10.1080/15226514.2016.1183578

    CAS  Article  Google Scholar 

  21. Emamverdian A, Ding Y, Mokhberdoran F, Xie Y (2018) Growth responses and photosynthetic indices of bamboo plant (Indocalamus latifolius) under heavy metal stress. Sci World J. https://doi.org/10.1155/2018/1219364

  22. Freibauer A (2003) Regionalized inventory of biogenic greenhouse gas emissions from European agriculture. Eur J Agron 19(2):135–160. https://doi.org/10.1016/S1161-0301(02)00020-5

    CAS  Article  Google Scholar 

  23. Gajić G, Djurdjević L, Kostić O, Jarić S, Mitrović M, Pavlović P (2018) Ecological potential of plants for phytoremediation and ecorestoration of fly ash deposits and mine wastes. Frontiers Environ Sci 13-6:124. https://doi.org/10.3389/fenvs.2018.00124

    Article  Google Scholar 

  24. Gajić G, Mitrović M, Pavlovic P (2019) Ecorestoration of fly ash deposits by native plant species at thermal power stations in Serbia. Phyto Manag Polluted Sites:113–177. https://doi.org/10.1016/B978-0-12-813912-7.00004-1

  25. George J, Masto RE, Ram LC, Das TB, Rout TK, Mohan M (2015) Human exposure risks for metals in soil near a coal-fired power-generating plant. Arch Environ Contam Toxicol 68:451–461. https://doi.org/10.1007/s00244-014-0111-x

    CAS  Article  Google Scholar 

  26. Gerhardt KE, Huang XD, Glick BR, Greenberg BM (2009) Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci 176(1):20–30. https://doi.org/10.1016/j.plantsci.2008.09.014

    CAS  Article  Google Scholar 

  27. Hasanuzzaman M, Hossain MA, da Silva JAT, Fujita M (2012) Plant response and tolerance to abiotic oxidative stress: antioxidant defense is a key factor. In: Venkateswarlu B, Shanker A, Shanker C, Maheswari M (eds) Crop stress and its management: perspectives and strategies. Springer, Dordrecht, pp 262–315. https://doi.org/10.1007/978-94-007-2220-0_8

  28. Hogarth NJ, Belcher B (2013) The contribution of bamboo to household income and rural livelihoods in a poor and mountainous county in Guangxi, China. Int For Rev 15(1):71–81. https://doi.org/10.1505/146554813805927237

    Article  Google Scholar 

  29. Hu Y, Zhang P, Li J, Chen D (2015) Stabilization and separation of heavy metals in incineration fly ash during the hydrothermal treatment process. J Hazard Mater 299:149–157. https://doi.org/10.1016/j.jhazmat.2015.06.002

    CAS  Article  Google Scholar 

  30. Intergovernmental Panel on Climate Change (IPCC) (2003), Penman J, Kruger D, Galbally IE, Hiraishi T, Nyenzi B, Emmanuel S, Buendia L, Hoppaus R, Martinsen T, Meijer J, Miwa K (2000) Good practice guidance and uncertainty management in national greenhouse gas inventories. Institute for Global Environmental Strategies, Japan

    Google Scholar 

  31. Jackson ML (1967) Soil chemical analysis. Prentice Hall of India Pvt. Ltd, New Delhi

    Google Scholar 

  32. Jackson ML (1973) Soil chemical analysis. Prentice Hall of India Pvt Ltd, New Delhi

    Google Scholar 

  33. Jambhulkar HP, Juwarkar AA (2009) Assessment of bioaccumulation of heavy metals by different plant species grown on fly ash dump. Ecotoxicol Environ Saf 72(4):1122–1128. https://doi.org/10.1016/j.ecoenv.2008.11.002

    CAS  Article  Google Scholar 

  34. Juwarkar AA, Jambhulkar HP (2008) Restoration of fly ash dump through biological interventions. Environ Monit Assess 139:355–365. https://doi.org/10.1007/s10661-007-9842-8

    CAS  Article  Google Scholar 

  35. Kabata-Pendias A (2011) Trace elements in soils and plants. CRC Press, Boca Raton

    Google Scholar 

  36. Khan A, Khan S, Khan MA, Qamar Z, Waqas M (2015) The uptake and bioaccumulation of heavy metals by food plants, their effects on plants nutrients, and associated health risk: a review. Environ Sci Pollut Res 22(18):13772–13799. https://doi.org/10.1007/s11356-015-4881-0

    CAS  Article  Google Scholar 

  37. Kigomo BN (2007) Guidelines for growing bamboo. KEFRI Guideline Series: No. 4. Kenya Forestry Research Institute, Nairobi

    Google Scholar 

  38. Kisku GC, Kumar V, Sahu P, Kumar P, Kumar N (2018) Characterization of coal fly ash and use of plants growing in ash pond for phytoremediation of metals from contaminated agricultural land. Int J Phytoremediat 20(4):330–337. https://doi.org/10.1080/15226514.2017.1381942

    CAS  Article  Google Scholar 

  39. Korner C, Morgan JA, Norby RJ (2007) CO2 fertilization: when, where, how much? In: Canadell JP, Pataki DE, Pitelka LF (eds) Terrestrial ecosystems in a changing world. Springer, Berlin, pp 9–21. https://doi.org/10.1007/978-3-540-32730-1_2

    Google Scholar 

  40. Kumari A, Pandey VC, Rai UN (2013) Feasibility of fern Thelypteris dentata for revegetation of coal fly ash landfills. J Geochem Explor 128:147–152. https://doi.org/10.1016/j.gexplo.2013.02.005

    CAS  Article  Google Scholar 

  41. Lessard G, Chouinard A (1980) Bamboo research in Asia. Proceedings of a workshop held in Singapore. IDRC, Ottawa

    Google Scholar 

  42. Liu D, Li S, Islam E, Chen JR, Wu JS, Ye ZQ, Peng DL, Yan WB, Lu KP (2015) Lead accumulation and tolerance of Moso bamboo (Phyllostachys pubescens) seedlings: applications of phytoremediation. J Zhejiang Univ Sci B 16:123–130. https://doi.org/10.1631/jzus.B1400107

    CAS  Article  Google Scholar 

  43. Maiti D, Pandey VC (2020) Metal remediation potential of naturally occurring plants growing on barren fly ash dumps. Environ Geochem Health 1-12. https://doi.org/10.1007/s10653-020-00679-z

  44. Maiti D, Prasad B (2017) Studies on colonization of fly ash disposal sites using invasive species and aromatic grasses. J Environ Eng Landsc Manag 25(3):251–263. https://doi.org/10.3846/16486897.2016.1231114

    Article  Google Scholar 

  45. Marsh J, Smith N (2007) New bamboo industries and pro-poor impacts: lessons from China and potential for Mekong countries. International Conference on Managing Forests for Poverty Reduction: Capturing Opportunities in Forest Harvesting and Wood Processing for the Benefit of the Poor, Ho-Chi Minh City

  46. Mendez MO, Maier RM (2008) Phyto stabilization of mine tailings in arid and semiarid environments- an emerging remediation technology. Environ Health Perspect 116:278–283. https://doi.org/10.1289/ehp.10608

    CAS  Article  Google Scholar 

  47. Mishra G, Giri K, Panday S, Kumar R, Bisht NS (2014) Bamboo: potential resource for eco-restoration of degraded lands. J Biol Earth Sci 4(2):B130–B136

    Google Scholar 

  48. Munawer ME (2018) Human health and environmental impacts of coal combustion and post-combustion wastes. J Sust Min 17(2):87–96. https://doi.org/10.1016/j.jsm.2017.12.007

    Article  Google Scholar 

  49. Muraje H (2009) Mass Propagation of bamboo and its adaptability to waste water gardens in horticulture. [dissertation] Nairobi. Kenya. Jomo Kenyatta University of Agriculture and Technology. http://hdl.handle.net/123456789/1670

  50. Nath AJ, Lal R, Das AK (2015) Managing woody bamboos for carbon farming and carbon trading. Glob Ecol Conserv 3:654–663. https://doi.org/10.1016/j.gecco.2015.03.002

    Article  Google Scholar 

  51. Neuschutz C, Stoltz E, Greger M (2006) Root penetration of sealing layers made of fly ash and sewage sludge. J Environ Qual 35(4):1260–1268. https://doi.org/10.2134/jeq2005.0229

    CAS  Article  Google Scholar 

  52. Nwaogwugwu CJ, Nosiri CI, Uhegbu FO, Okereke SC, Atasie OC (2017) Air pollution tolerance index osome selected medicinal plants around oil-producing Community of Asah, Abia State, Nigeria. Int J Sci Eng Res 8(6):747–754

    Google Scholar 

  53. Olsen SR (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. United States Department of Agriculture, Washington

  54. Pandey VC (2015) Assisted phytoremediation of fly ash dumps through naturally colonized plants. Ecol Eng 82:1–5. https://doi.org/10.1016/j.ecoleng.2015.04.002

    Article  Google Scholar 

  55. Pandey VC (2017) Managing waste dumpsites through energy plantations. In Phytoremediation Potential of Bioenergy Plants (371-386). Springer, Singapore. https://doi.org/10.1007/978-981-10-3084-0_15

  56. Pandey VC, Abhilash PC, Singh N (2009) The Indian perspective of utilizing fly ash in phytoremediation, phyto management and biomass production. J Environ Manag 90(10):2943–2958. https://doi.org/10.1016/j.jenvman.2009.05.001

    CAS  Article  Google Scholar 

  57. Pandey VC, Kurothe RS, Rao BK, Kumar G, Parandiyal AK, Singh AK, Kumar A (2012) Economic analysis of bamboo plantation in three major ravine systems of India. Agric Econ Res Rev 25(1):49–59

    Google Scholar 

  58. Pandey VC, Prakash P, Bajpai O, Kumar A, Singh N (2015) Phytodiversity on fly ash deposits: evaluation of naturally colonized species for sustainable phytorestoration. Environ Sci Pollut Res 22(4):2776–2787. https://doi.org/10.1007/s11356-014-3517-0

    CAS  Article  Google Scholar 

  59. Pandey SK, Bhattacharya T, Chakraborty S (2016a) Metal phytoremediation potential of naturally growing plants on fly ash dumpsite of Patratu thermal power station, Jharkhand, India. Int J Phytoremediat 18(1):87–93. https://doi.org/10.1080/15226514.2015.1064353

    CAS  Article  Google Scholar 

  60. Pandey VC, Sahu N, Behera SK, Singh N (2016b) Carbon sequestration in fly ash dumps: comparative assessment of three plant association. Ecol Eng 95:198–205. https://doi.org/10.1016/j.ecoleng.2016.06.010

    Article  Google Scholar 

  61. Pandey VC, Rai A, Singh L, Singh DP (2020) Understanding the role of litter decomposition in restoration of fly ash ecosystem. Bull Environ Contam Toxicol:1–7. https://doi.org/10.1007/s00128-020-02994-8

  62. Pathak JG, Tandel MB, Amlani MH, Chavda JR, Prajapati DH (2017) Growth evaluation of long internode bamboo species in South Gujarat. J Tree Sci 36(2):40–44. https://doi.org/10.5958/2455-7129.2017.00022.X

    Article  Google Scholar 

  63. Pulford ID, Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees: a review. Environ Int 29:529–540. https://doi.org/10.1016/S0160-4120(02)00152-6

    CAS  Article  Google Scholar 

  64. Rai PK, Panda LL, Chutia BM, Singh MM (2013) Comparative assessment of air pollution tolerance index (APTI) in the industrial (Rourkela) and non-industrial area (Aizawl) of India: an ecomanagement approach. African J Environ Sci Tech 8-7(10):944–948. https://doi.org/10.5897/AJEST2013.1532

    CAS  Article  Google Scholar 

  65. Ram LC, Jha SK, Tripathi RC, Masto RE, Selvi VA (2008) Remediation of fly ash landfills through plantation. J Bioremediat 18:71–90. https://doi.org/10.1002/rem.20184

    Article  Google Scholar 

  66. Ram N, Singh L, Kumar P (2010) Bamboo plantation diversity and its economic role in North Bihar, India. Nat Sci 8(11):111–115

    Google Scholar 

  67. Ramesh V, Balloli SS, Sharma KL, Ramachandran K, Korwar GR, Ramakrishna YS (2008) Characterization of soil for physical properties under different land use systems. Indian J Dryland Agric Res Dev 23(1):102–109

    Google Scholar 

  68. Rastogi A, Paul VK (2020) A critical review of the potential for fa utilization in construction-specific applications in India. J Environ Res Eng Manag 76(2):65–75. https://doi.org/10.5755/j01.erem.76.2.25166

    Article  Google Scholar 

  69. Reynolds SG (1970) The gravimetric method of soil moisture determination Part IA study of equipment, and methodological problems. J Hydrol 11(3):258–273. https://doi.org/10.1016/0022-1694(70)90066-1

    Article  Google Scholar 

  70. Ribeiro J, Silva TF, Mendonc Filho JG, Flores D (2014) Fly ash from coal combustion—an environmental source of organic compounds. Appl Geochem 44:103–110. https://doi.org/10.1016/j.apgeochem.2013.06.014

    CAS  Article  Google Scholar 

  71. Robertson GP, Sollins P, Ellis BG, Lajtha K (1999) Exchangeable ions, pH, and cation exchange capacity. Standard soil methods for long-term ecological research. Oxford University Press, New York, pp 106–114

    Google Scholar 

  72. Robinson B, Green S, Mills T, Clothier B, van der Velde M, Laplane R, Fung L, Deurer M, Hurst S, Thayalakumaran T, van den Dijssel C (2003) Phytoremediation: using plants as biopumps to improve degraded environments. Soil Res 41(3):599–611

    Article  Google Scholar 

  73. Roy M, Roychowdhury R, Mukherjee P (2018) Remediation of fly ash dumpsites through bioenergy crop plantation and generation: a review. Pedosphere 28(4):561–580. https://doi.org/10.1016/S1002-0160(18)60033-5

    Article  Google Scholar 

  74. Saikia P, Pandey VC (2020) Moso bamboo (Phyllostachys edulis (Carrière) J.Houz.)–One of the most valuable bamboo species for phytoremediation. In: Pandey, V.C., Singh, D.P. (Authored book with contributors), Phytoremediation potential of perennial grasses, Elsevier, Amsterdam 245-258.

  75. Sawarkar AD, Shrimankar DD, Kumar A, Kumar A, Singh E, Singh L, Kumar S, Kumar R (2020) Commercial clustering of sustainable bamboo species in India. Ind Crop Prod 154:112693. https://doi.org/10.1016/j.indcrop.2020.112693

    Article  Google Scholar 

  76. Singh L, Soni P (2010) Binding capacity and root penetration of seven species selected for revegetation of uranium tailings at Jaduguda in Jharkhand, India. Curr Sci 99(4):507–513 https://www.jstor.org/stable/24109574

    Google Scholar 

  77. Singh D, Chhonkar PK, Pande RN (1999) Soil organic carbon in “Soil, plant, water Analysis” A methods manual, Indian Agricultural Research Institute, Indian Council of Agricultural Research. New Delhi 1.4(6):19–19

    Google Scholar 

  78. Singh R, Singh DP, Kumar N, Bhargava SK, Barman SC (2010) Accumulation and translocation of heavy metals in soil and plants from fly ash contaminated area. J Environ Biol 31(4):421–430

    CAS  Google Scholar 

  79. Singh L, Sridharan S, Thul ST, Kokate P, Kumar P, Kumar S, Kumar R (2020a) Eco-rejuvenation of degraded land by microbe assisted bamboo plantation. Ind Crop Prod 155:112795. https://doi.org/10.1016/j.indcrop.2020.112795

    CAS  Article  Google Scholar 

  80. Singh L, Ruprela N, Dafale N, Thul ST (2020b) Variation in endophytic bacterial communities associated with the rhizomes of tropical Bamboos. J of Sust For 1-13. https://doi.org/10.1080/10549811.2020.1745655

  81. Sinha S, Gupta AK (2005) Translocation of metals from fly ash amended soil in the plant of Sesbania cannabina L. Ritz: Effect on antioxidants. Chemosphere 61(8):1204–1214. https://doi.org/10.1016/j.chemosphere.2005.02.063

    CAS  Article  Google Scholar 

  82. Soti PG, Jayachandran K, Koptur S, Volin JC (2015) Effect of soil pH on growth, nutrient uptake, and mycorrhizal colonization in exotic invasive Lygodium microphyllum. Plant Ecol 216(7):989–998. https://doi.org/10.1007/s11258-015-0484-6

    Article  Google Scholar 

  83. Srivastava S, Dwivedi AK (2016) Phytoremediation of arsenic using leaves of Bambusa vulgaris (Schrad. ex JC Wendl.) Nakai. Int J Waste Res 6(229):2. https://doi.org/10.4172/2252-5211.1000229

    Article  Google Scholar 

  84. Srivastava V, Ismail SA, Singh P, Singh RP (2015) Urban solid waste management in the developing world with emphasis on India: challenges and opportunities. Rev Environ Sci Biotechnol 14(2):317–337. https://doi.org/10.1007/s11157-014-9352-4

    Article  Google Scholar 

  85. Subbiah BV, Asija GL (1956) A rapid procedure for the determination of available nitrogen in soils. Curr Sci 25:259–260

    CAS  Google Scholar 

  86. Swami A, Bhatt D, Joshi PC (2004) Effects of automobile pollution on Sal (Shorea robusta) and Rohini (Mallotus phillipinensis) at Asarori, Dehradun. Himalayan J Environ Zool 18(1):57–61

    CAS  Google Scholar 

  87. Thakar BK, Mishra PC (2010) Dust collection potential and air pollution tolerance index of tree vegetation around Vedanta aluminium limited, Jharsuguda. Int Quart J Life Sci 3:603–612

    Google Scholar 

  88. Tiwari RK (2010) Hazardous impact of dust and SPM on leaf area and biochemical constituents of road side dominant plants growing along highways at Varanasi [Dissertation]. http://hdl.handle.net/10603/253510

  89. Tiwari S, Kumari B, Singh SN (2008) Evaluation of metal mobility/immobility in fly ash induced by bacterial strains isolated from the rhizospheric zone of Typha latifolia growing on fly ash dumps. Bioresour Technol 99:1305–1310. https://doi.org/10.1016/j.biortech.2007.02.010

    CAS  Article  Google Scholar 

  90. Toth SJ, Prince AL (1949) Estimation of cation-exchange capacity and exchangeable Ca, K, and Na contents of soils by flame photometer techniques. Soil Sci 67(6):439–446

    CAS  Article  Google Scholar 

  91. US Environmental Protection Agency (1996) Soil screening guidance: technical background document. USEPA Rep. 540/R-95/128. US Gov. Print Office, Washington, DC

    Google Scholar 

  92. United States Environmental Protection Agency (1998) SW-846 EPA Method 3051A. Microwave-assisted acid digestion of sediments, sludges, soils and oils. Test methods for evaluating solid waste. 3rd Update. US Environmental Protection Agency, Washington, DC

  93. Venkatesh MS, Bhatt BP, Kumar K, Majumdar B, Singh K (2005) Soil properties influenced by some important edible bamboo species in the North Eastern Himalayan region. Indian J Bamboo Rattan 4(3):221–230

    Article  Google Scholar 

  94. Verma SK, Masto RE, Gautam S, Choudhury DP, Ram LC, Maiti SK, Maity S (2015) Investigations on PAHs and trace elements in coal and its combustion residues from a power plant. Fuel 162:138–147. https://doi.org/10.1016/j.fuel.2015.09.005

    CAS  Article  Google Scholar 

  95. Viji R, Prasanna PR (2012) Assessment of water holding capacity of major soil series of Lalgudi, Trichy, India. J Environ Res Dev 7(1A):393–398

    Google Scholar 

  96. Were FH, Wafula GA, Wairungu S (2017) Phytoremediation using bamboo to reduce the risk of chromium exposure from a contaminated tannery site in Kenya. J Health Pollut 16:12–25. https://doi.org/10.5696/2156-9614-7.16.12

    Article  Google Scholar 

  97. Whiteside M, Herndon JM (2018) Coal fly ash aerosol: risk factor for lung cancer. J Adv Med Med Res 25(4):1–10. https://doi.org/10.9734/JAMMR/2018/39758

    Article  Google Scholar 

  98. Yadav VK, Fulekar MH (2018) The current scenario of thermal power plants and fly ash: production and utilization with a focus in India. Int J Adv Eng Res Dev 5(4):768–777

    Google Scholar 

  99. Yao ZT, Ji XS, Sarker PK, Tang JH, Ge LQ, Xia MS, Xi YQ (2015) A comprehensive review on the applications of coal fly ash. Earth Sci Rev 141:105–121. https://doi.org/10.1016/j.earscirev.2014.11.016

    Article  Google Scholar 

  100. Yuen JQ, Fung T, Zieyler AD (2017) Carbon stocks in bamboo ecosystems worldwide: Estimates and uncertainties. For Ecol Manag 393:113–138. https://doi.org/10.1016/j.foreco.2017.01.017

    Article  Google Scholar 

  101. Zhihua T, Lihua C, Xinxiao Y, Yushan Z (2013) Effect of bamboo plantation on rhizosphere soil enzyme and microbial activities in coastal ecosystem. J Food Agric Environ 11(3 and 4):2333–2338

    Google Scholar 

Download references

Acknowledgments

All the authors are grateful to M/S MAHAGENCO Ltd., Koradi, Maharashtra, India and the Director, CSIR-NEERI for facilitating and supporting the activities.

Availability of data and materials

All data generated or analyzed during this study are included in this published article [and its supplementary information files].

Funding

M/S MAHAGENCO Ltd., Koradi, Maharashtra, India

Author information

Affiliations

Authors

Contributions

Raushan Kumar (investigation, formal analysis, writing—original draft), Mohan Manu T (software, validation, visualization), Manoj Kumar (supervision), Sanjog Tarachand Thul (resources), Vimal Chandra Pandey (resources), Swati Yadav (investigation, methodology), Lal Singh (funding acquisition, data curation, project administration, and writing), and Sunil Kumar (writing—review and editing).

Corresponding authors

Correspondence to Lal Singh or Sunil Kumar.

Ethics declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Elena Maestri

Supplementary Information

ESM 1

(DOCX 24 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Thangaraju, M.M., Kumar, M. et al. Ecological restoration of coal fly ash–dumped area through bamboo plantation. Environ Sci Pollut Res (2021). https://doi.org/10.1007/s11356-021-12995-7

Download citation

Keywords

  • Bamboo
  • Bioconcentration factor
  • Translocation factor
  • Fly ash dumped site
  • Heavy metals
  • Phytoremediation
  • Total chlorophyll
  • Ascorbic acid