Skip to main content
Log in

Phytoparasitic nematodes of organic vegetables in the Argan Biosphere of Souss-Massa (Southern Morocco)

  • Emerging Harmony and Biodynamic Interactions
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Agroecological productivity of the Arganeraie Biosphere Reserve of Morocco is limited by the wide spread and dynamics of plant parasitic nematodes (PPN). Ecological studies of nematode communities are required to develop effective biological management of these bioagressors as conventional control methods of PPN are inadequate and have persistent harmful effects. Fifty-nine organic vegetable soils in Souss-Massa were nematologically sampled, and assessment of taxonomic proliferation was made in relation to host species, geographical origin, and climatic and microclimatic factors. Twenty-four nematode genera were identified as obligate and facultative plant feeders. Taxonomic diversity increased from Chtouka to Taroudant and Tiznit provinces. Soil texture, organic matter, pH, nitrogen, zinc, magnesium, copper, altitude, and humidity and temperature were seen to effect driving roles in the abundance, distribution, and community structures of nematodes. The most prevalent taxa posing a high risk to organic agriculture of Souss Massa were needle nematodes (Longidorus spp.) and root-knot nematodes (Meloidogyne spp.). Edaphic and climatic variables effected nematode populations greatly. A combination of biological treatments and appropriate agroecological practices restricting important economic PPN growth and enhancing soil quality are required to achieve sustainable management in the area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Afouda L, Baimey H, Fanou H (2008) Evaluation of Amaranthus sp. and Vernonia amygdalina, and soil amendments with poultry manure for the management of root-knot nematodes on eggplant. Phytoparasitica 36(4):368–376

    Google Scholar 

  • Agence du Bassin Hydraulique Souss Massa (2019) Modeling study of climate change in Souss Massa; mission 1 (study in progress). Unpublished internal data provided by the agency ABHSM.

  • Aït Hamza M, Ferji Z, Ali N, Tavoillot J, Chapuis E, El Oualkadi A et al (2015) Plant-parasitic nematodes associated with olive tree in Southern Morocco. Int J Agric Biol 17(4):719–726

    Google Scholar 

  • Aït Hamza M, Moukhli A, Ferji Z, Fossati-Gaschignard O, Tavoillot J, Ali N, Boubaker H, el Mousadik A, Mateille T (2018) Diversity of plant-parasitic nematode communities associated with olive nurseries in Morocco: origin and environmental impacts. Appl Soil Ecol 124:7–16

    Google Scholar 

  • Al-Hazmi AS, Dawabah AA, Al-Nadhary SN, Al-Yahya FA, Lafi HA (2017) Influence of soil texture and moisture on the interaction of Meloidogyne javanica and Macrophomina phaseolina on green beans. J Exp Biol Agric Sci 5(1):148–154

    Google Scholar 

  • Allison LE (1960) Wet-combustion apparatus and procedure for organic and inorganic carbon in soil 1. Soil Sci Soc Am J 24(1):36–40

    CAS  Google Scholar 

  • Ali N, Tavoilot J, Besnard G et al (2017) How anthropogenic changes may affect soil-borne parasite diversity? Plant-parasitic nematode communities associated with olive trees in Morocco as a case study. BMC Ecol 17:4. https://doi.org/10.1186/s12898-016-0113-9

    Article  Google Scholar 

  • Amosu JO, Taylor DP (1974) Interaction of Meloidogyne hapla, Pratylenchus penetrans, and Tylenchorhynchus agri on Kenland red clover, Trifolium pratense. Indian J Nematol 4:124–131

    Google Scholar 

  • Anwar SA, Mahdi MM, McKenry MV, Qadir A (2013) Survey of plant-parasitic nematodes associated with four vegetable crops cultivated within tunnels. Pak J Zool 45(3):595–603

    Google Scholar 

  • Anwar SA, McKenry MV (2012) Incidence and population density of plant-parasitic nematodes infecting vegetable crops and associated yield losses. Pak J Zool 44:327–333

    Google Scholar 

  • Ashley R, Bishop A, Dennis J (2007) Intensive organic vegetable production integrated development. A report for the Rural Industries Research and Development Corporation. RIRDC Publication No 04/121 RIRDC Project No: DAT-37A, 46 pp Google Scholar

  • Audebert A, Coyne DL, Dingkuhn M, Plowright RA (2000) The influence of cyst nematodes (Heterodera sacchari) and drought on water relations and growth of upland rice in Cote d'Ivoire. Plant Soil 220(1-2):235–242

    CAS  Google Scholar 

  • Badra T, Yousif GM (1979) Comparative effects of potassium levels on growth and mineral composition of intact and nematized cowpea and sour orange seedlings. Nematol Mediterr 7:21–27

    Google Scholar 

  • Baimey H, Coyne D, Dagbenonbakin G, James B (2009) Plant-parasitic nematodes associated with vegetable crops in Benin: relationship with soil physico-chemical properties. Nematol Mediterr 37(2):227–236

    Google Scholar 

  • Bakonyi G, Nagy P, Kovacs-Lang E, Kovacs E, Barabás S, Répási V, Seres A (2007) Soil nematode community structure as affected by temperature and moisture in a temperate semiarid shrubland. Appl Soil Ecol 37(1-2):31–40

    Google Scholar 

  • Barbano DM, Clark JL, Dunham CE, Flemin RJ (1990) Kjeldahl method for determination of total nitrogen content of milk: collaborative study. J Assoc Off Anal Chem 73(6):849–859

    CAS  Google Scholar 

  • Barker KR, Koenning SR (1998) Developing sustainable systems for nematode management. Annu Rev Phytopathol 36(1):165–205

    CAS  Google Scholar 

  • Barker KR, Pederson GA, Windham GL (eds) (1998) Plant nematode interactions. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison

    Google Scholar 

  • Benjlil H, Elkassemi K, Hamza MA, Mateille T, Furze JN, Cherifi K, Ferji Z (2020) Plant-parasitic nematodes parasitizing saffron in Morocco: structuring drivers and biological risk identification. Appl Soil Ecol 147:103362. https://doi.org/10.1016/j.apsoil.2019.103362

    Article  Google Scholar 

  • Blok VC, Jones JT, Phillips MS, Trudgill DL (2008) Parasitism genes and host range disparities in biotrophic nematodes: the conundrum of polyphagy versus specialisation. BioEssays 30:249–259

    CAS  Google Scholar 

  • Boag B, Crawford JW, Neilson R (1991) The effect of potential climatic changes on the geographical distribution of the plant-parasitic nematodes Xiphinema and Longidorus in Europe. Nematologica 37(1-4):312–323

    Google Scholar 

  • Bongers T (1988) De Nematoden van Nederland. Stichting Uitgeverij Koninklijke Nederlandse NatuurhistorischeVereniging, Utrecht, 408 p

    Google Scholar 

  • Bongers T (1990) The maturity index: an ecological measure of environmental disturbance based on nematode species composition. Oecologia 83:14–19

    Google Scholar 

  • Bougeard S, Qannari EM, Lupo C, Hanafi M (2011) From multiblock partial least squares to multiblock redundancy analysis. A continuum approach. Informatica 22(1):11–26

    Google Scholar 

  • Cadet P, Thioulouse J (1998) Identification of soil factors that relate to plant-parasitic nematode communities on tomato and yam in the French West Indies. Appl Soil Ecol 8(1-3):35–49

    Google Scholar 

  • Castillo P, Nico AI, Navas-Cortés JA, Landa BB, Jiménez-Díaz RM, Vovlas N (2010) Plant-parasitic nematodes attacking olive trees and their management. Plant Dis 94(2):148–162

    Google Scholar 

  • Chessel D, Dufour AB, Thioulouse J (2004) The ADE 4 package-1. One-table methods. R News 4:5–10

    Google Scholar 

  • Choshali AH, Seraji A, Rezaee S, Shirinfekr A, Mirghasemi SN (2015) The effects of soil organic matter content and soil texture on the population number of Pratylenchus loosi, in tea plantation of Iran. International Journal of Agronomy and Agricultural Research 6(2):54–62

    Google Scholar 

  • Chowdhury IA, Yan G, Friskop A (2019) Occurrence of vermiform plant-parasitic nematodes in North Dakota corn fields and impact of environmental and soil factors. Can J Plant Pathol 42:429–444. https://doi.org/10.1080/07060661.2019.1674384

    Article  CAS  Google Scholar 

  • Coakley SM, Scherm H, Chakraborty S (1999) Climate change and plant disease management. Annu Rev Phytopathol 37(1):399–426

    CAS  Google Scholar 

  • Colagiero M, Ciancio A (2011) Climate changes and nematodes: expected effects and perspectives for plant protection. Redia 94:113–118

    Google Scholar 

  • De Guiran GL, Bonnel M, Abirached M (1980) Landspreading of pig manures IV. Effect on soil nematodes. In: Gasser JE (ed) Effluents from Livestock. Appl, Sci. London, pp 109–119

    Google Scholar 

  • Dray S, Dufour AB (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22(4):1–20

    Google Scholar 

  • Duyck PF, Dortel E, Tixier P, Vinatier F, Loubana PM, Chabrier C, Quénéhervé P (2012) Niche partitioning based on soil type and climate at the landscape scale in a community of plant-feeding nematodes. Soil Biol Biochem 44(1):49–55

    CAS  Google Scholar 

  • EFSA PLH Panel (EFSA Panel on Plant Health) (2014) Scientific Opinion on the pest categorisation of Radopholus similis (Cobb) Thorne and Radopholus citrophilus Huettel, Dickson and Kaplan. EFSA J 12(10):3852. doi:https://doi.org/10.2903/j.efsa.2014.3852

  • Eisenback JD (1993) Interactions between nematodes in cohabitance. In: Khan MW (ed) Nematode interactions. Springer, Dordrecht, pp 134–174

    Google Scholar 

  • Evans AA, Perry RN (2009) Survival mechanisms. In: Perry RN, Moens M, Starr JL (eds) Root-knot nematodes. CABI, Wallingford, pp 201–222

    Google Scholar 

  • Falissard B (2012) psy: Various procedures used in psychometry. R package version 1.1. https://CRAN.R-project.org/package=psy

  • Fortuner R, Merny G (1973) Nematode root-parasites associated with rice in lower Casamance (Senegal) and Gambia. Cahiers ORSTOM Série Biologie 21:4–43

    Google Scholar 

  • Francl LJ (1993) Multivariate analysis of selected edaphic factors and their relationship to Heterodera glycines population density. J Nematol 25(2):270–276

    CAS  Google Scholar 

  • Georgieva SS, McGrath SP, Hooper DJ, Chambers BS (2002) Nematode communities under stress: the long-term effects of heavy metals in soil treated with sewage sludge. Appl Soil Ecol 20(1):27–42

    Google Scholar 

  • Grandison GS, Wallace HR (1974) The distribution and abundance of Pratylenchus thornei in fields of strawberry clover (Trifolium fragiferum). Nematologica 20(3):283–290

    Google Scholar 

  • Haegeman A, Elsen A, De Waele D, Gheysen G (2010) Emerging molecular knowledge on Radopholus similis, an important nematode pest of banana. Mol Plant Pathol 11(3):315–323

    Google Scholar 

  • Hedges JI, Oades JM (1997) Comparative organic geochemistries of soils and marine sediments. Org Geochem 27(7-8):319–361

    CAS  Google Scholar 

  • Hominick B (1999) Nematodes. In: Proceeding of the International Workshop Tropical Soil Biology: Opportunities and Challenges for African Agriculture. March, Nairobi, pp 16–19

    Google Scholar 

  • ISO 23611-4 (2007) Soil quality – sampling of soil invertebrates– part 4: sampling, extraction and identification of soil-inhabiting nematodes. International Organization for Standardization, Geneva

    Google Scholar 

  • Jones FGW, Perry JN (1978) Modelling populations of cyst-nematodes (Nematoda: Heteroderidae). J Appl Ecol:349–371

  • Jones JT, Haegeman A, Danchin EG, Gaur HS, Helder J, Jones MG et al (2013) Top 10 plant-parasitic nematodes in molecular plant pathology. Mol Plant Pathol 14(9):946–961

    Google Scholar 

  • Kandji ST, Ogol CK, Albrecht A (2001) Diversity of plant-parasitic nematodes and their relationships with some soil physico-chemical characteristics in improved fallows in western Kenya. Appl Soil Ecol 18(2):143–157

    Google Scholar 

  • Khalil MS (2013) Alternative approaches to manage plant-parasitic nematodes. J Plant Pathol Microbiol 04. https://doi.org/10.4172/2157-7471.1000e105

  • Kincaid RR, Martin FG, Gammon N, Breland HL, Pritchett WL (1970) Multiple regression of tobacco black shank, root-knot and coarse root indexes on soil pH, potassium, calcium and magnesium. Phytopathology 60(10):1513–1516

    CAS  Google Scholar 

  • Koenning SR, Overstreet C, Noling JW, Donald PA, Becker JO, Fortnum BA (1999) Survey of crop losses in response to phytoparasitic nematodes in the United States for 1994. J Nematol 31:587–618

    CAS  Google Scholar 

  • Lê S, Josse J, Husson F (2008) FactoMineR: an R package for multivariate analysis. J Stat Softw 25(1):1–18

    Google Scholar 

  • Lindsay WL, Norvell W (1978) Development of a DTPA soil test for zinc, iron, manganese, and copper 1. Soil Sci Soc Am J 42(3):421–428

    CAS  Google Scholar 

  • Loof PAA (1991) The family Pratylenchidae Thorne, 1949. In: Nickle WR (ed) Manual of Agricultural Nematology. Marcel Dekker, Inc., New York, pp 363–421

    Google Scholar 

  • Luc M, Bridge J, Sikora RA (2005) Reflections on nematology in subtropical and tropical agriculture. Plant-parasitic nematodes in subtropical and tropical agriculture. CAB International, Wallingford

    Google Scholar 

  • Mai WF, Mullin PG (1996) Plant-Parasitic Nematodes. A Pictorial Key to Genera, 5th edn. Comstock Publishing Associates, New-York

  • MAPMDREF : Ministère de l'agriculture, de la pêche maritime, du développement rural et des eaux et forêts (2018). Agriculture in figures 2018 edition 2019. http://www.agriculture.gov.ma/pages/publications/agriculture-en-chiffres-2018-edition-2019 (in French)

  • Maqbool MA (1992) Distribution and host association of plant-parasitic nematodes in Pakistan. National Nematological Research Centre, Karachi

    Google Scholar 

  • Mateille T, Tavoillot J, Martiny B, Dmowska E, Winiszewska G, Ferji Z, Msanda F, Mousadik AE (2016) Aridity or low temperatures: What affects the diversity of plant-parasitic nematode communities in the Moroccan argan relic forest? Appl Soil Ecol 101:64–71

    Google Scholar 

  • McSorley R, Frederick JJ (2002) Effect of subsurface clay on nematode communities in a sandy soil. Appl Soil Ecol 19(1):1–11

    Google Scholar 

  • Neilson R, Boag B (1996) The predicted impact of possible climatic change on virus-vector nematodes in Great Britain. Eur J Plant Pathol 102(2):193–199

    Google Scholar 

  • Nico AI, Rapoport HF, Jiménez-Díaz RM, Castillo P (2002) Incidence and population density of plant-parasitic nematodes associated with olive planting stocks at nurseries in Southern Spain. Plant Dis 86(10):1075–1079

    CAS  Google Scholar 

  • Nicol JM (2002) Important nematode pests. FAO plant production and protection series. http://www.fao.org/3/y4011e/y4011e00.htm#Contents

  • Noling JW (1986) Partitioning crop losses among pest groups. J Nematol 18:594–594

    Google Scholar 

  • Olle M, Williams IH (2012) Organic farming of vegetables. In: Lichtfouse E (ed) Sustainable Agriculture Reviews. Springer, Dordrecht, pp 63–76

    Google Scholar 

  • Oostenbrink M (1960) Estimating nematode populations by some selected methods. Nematology 85-102

  • Oostenbrink M (1966) Major characteristics of the relation between nematodes and plants. Wageningen, Veenman

    Google Scholar 

  • Ornat C, Sorribas FJ (2008) Integrated management of root-knot nematodes in Mediterranean horticultural crops. In: Ornat C, Sorribas FJ (eds) Integrated Management and Biocontrol of Vegetable and Grain Crops Nematodes. Springer, Dordrecht, pp 295–319

    Google Scholar 

  • Plowright R, Coyne D (2002) Assessment of the importance of individual plant-parasitic nematode species in a community dominated by Heterodera sacchari on upland rice in Cote d’Ivoire. Nematology 4(6):661–669

  • Popovici I, Ciobanu M (2010) Diversity and distribution of nematode communities in grasslands from Romania in relation to vegetation and soil characteristics. Appl Soil Ecol 14(1):27–36

    Google Scholar 

  • Powell NT (1971) Interactions between nematodes and fungi in disease complexes. Annu Rev Phytopathol 9(1):253–274

    Google Scholar 

  • Qi Y, Hu C (2007) Soil nematode abundance in relation to diversity in different farming management system. World J Agric Sci 3:587–592

    Google Scholar 

  • Regnault RC, Philogène BJR, Vincent C (2008) Biopesticides of Plant Origin. Lavoisier, Paris (in French)

    Google Scholar 

  • Richards LA (1954) Diagnosis and Improvement of Saline and Alkali Soils. USDA Handbook 60:84–156

    Google Scholar 

  • Roberts PA, Ulloa M (2010) Introgression of root-knot nematode resistance into tetraploid cottons. Crop Sci 50(3):940–951

    CAS  Google Scholar 

  • Robinson AF, Heald CM, Flanagan SL, Thames WH, Amador J (1987) Geographical distributions of Rotylenchulus reniformis, Meloidogyne incognita, and Tylenchulus semipenetrans in the Lower Rio Grande Valley as related to soil texture and land use. J Nematol 19(1):20–25

    CAS  Google Scholar 

  • Rodriguez-Kabana R (1986) Organic and inorganic nitrogen amendments to soil as nematode suppressants. J Nematol 18(2):129–134

    CAS  Google Scholar 

  • Ross J (1964) Interaction of Heterodera glycines and Meloidogyne incognita on soybeans. Phytopathology 54(3):304–307

    Google Scholar 

  • Sasser JN (1989) Plant-parasitic nematodes: the farmer's hidden enemy. A cooperative publication of the Department of Plant Pathology and the Consortium for International Crop Protection, Raleigh, USA

    Google Scholar 

  • Sehgal HL, Gaur HS (1999) Important nematode problems of India. Technical Bulletin NCIMP, New Delhi

    Google Scholar 

  • Seinhorst JW (1982) The relationship in field experiments between population density of Globodera rostochiensis before planting potatoes and yield of potato tubers. Nematologica 28(3):277–284

    Google Scholar 

  • Sims JT, Johnson GV (1991) Micronutrient soil tests. Micronutrients in Agriculture 4:427–476

    Google Scholar 

  • Starr JL, Moresco ER, Smith CW, Nichols RL, Roberts PA, Chee P (2010) Inheritance of resistance to Meloidogyne incognita in primitive cotton accessions from Mexico. J Nematol 42(4):352–358

    CAS  Google Scholar 

  • Starr JL, Roberts PA (2004) Resistance to plant-parasitic nematodes. Nematology, Advances and Perspectives 2:879–907

    Google Scholar 

  • Taylor CE (1971) Nematodes as vector of plant viruses. Plant-Parasitic Nematodes 2:185–211

    Google Scholar 

  • Thompson JP, Clewett TG, Sheedy JG, Reen RA, O’reilly MM, Bell KL (2010) Occurrence of root-lesion nematodes (Pratylenchus thornei and P. neglectus) and stunt nematode (Merlinius brevidens) in the northern grain region of Australia. Australas Plant Pathol 39(3):254–264

    Google Scholar 

  • Treonis AM, Unangst SK, Kepler RM, Buyer JS, Cavigelli MA, Mirsky SB, Maul JE (2018) Characterization of soil nematode communities in three cropping systems through morphological and DNA metabarcoding approaches. Sci Rep 8(1):1–12

    CAS  Google Scholar 

  • Tzortzakakis EA, Trudgill DL (2005) A comparative study of the thermal time requirements for embryogenesis in Meloidogyne javanica and M. incognita. Nematology 7(2):313–315

    Google Scholar 

  • van Den Hoogen J, Geisen S, Routh D, Ferris H, Traunspurger W, Wardle DA et al (2019) Soil nematode abundance and functional group composition at a global scale. Nature 572(7768):194–198

    Google Scholar 

  • van Den Hoogen J, Geisen S, Wall DH, Wardle DA, Traunspurger W, de Goede RG et al (2020) A global database of soil nematode abundance and functional group composition. Scientific Data 7(1):1–8

    Google Scholar 

  • Walkley AJ, Black IA (1934) Estimation of soil organic carbon by the chromic acid titration method. Soil Sci 37:29–38

    CAS  Google Scholar 

  • Wallace HR (1962) Observations on the behaviour of Ditylenchus dipsaci in soil. Nematologica 7(1):91–101

    Google Scholar 

  • Wang C, Bruening G, Williamson VM (2009) Determination of preferred pH for root-knot nematode aggregation using pluronic F-127 gel. J Chem Ecol 35(10):1242–1251

    CAS  Google Scholar 

  • Wickham H (2009) ggplot2: Elegant Graphics for Data Analysis. Springer Verlag, New York

    Google Scholar 

  • Widmer TL, Mitkowski NA, Abawi GS (2002) Soil organic matter and management of plant-parasitic nematodes. J Nematol 34(4):289

    CAS  Google Scholar 

  • Willer H, Schlatter B, Travnick J, Kemper L, Lernoud J (2020) The World of Organic Agriculture. Statistics and Emerging Trends 2020. Research Institute of Organic Agriculture (FiBL), Frick, and IFOAM Organic International, Bonn

  • Yavuzaslanoglu E, Elekcioglu HI, Nicol JM, Yorgancilar O, Hodson D, Yildirim AF, Yorgancilar A, Bolat N (2012) Distribution, frequency and occurrence of cereal nematodes on the Central Anatolian Plateau in Turkey and their relationship with soil physicochemical properties. Nematology 14(7):839–854

    Google Scholar 

  • Yeates GW (2007) Abundance, diversity, and resilience of nematode assemblages in forest soils. Can J For Res 37(2):216–225

    Google Scholar 

  • Zhong W, Gu T, Wang W, Zhang B, Lin X, Huang Q, Shen W (2010) The effects of mineral fertilizer and organic manure on soil microbial community and diversity. Plant Soil 326(1-2):511–522

    CAS  Google Scholar 

  • Zirakparvar ME, Norton DC, Cox CP (1980) Population increase of Pratylenchus hexincisus on corn as related to soil temperature and type. J Nematol 12(4):313–318

    CAS  Google Scholar 

  • Zoon FC, Troelstra SR, Maas PT (1993) Ecology of the plant-feeding nematode fauna associated with sea buckthorn (Hippophae rhamnoides L. ssp. rhamnoides) in different stages of dune succession. Fundam Appl Nematol 16(3):247–258

    Google Scholar 

Download references

Acknowledgements

The soil samples used in this research were collected with support of organic vegetable producers in Souss-Massa region. We express our gratitude to Mr. Mohamed Doulhousen, operator in the Soil-Plant-Water Laboratory of the Agronomic and Veterinary Institute Hassan II, for assistance during soil physicochemical analyses.

Availability of data and materials

All relevant data are contained herein.

Author information

Authors and Affiliations

Authors

Contributions

EH Mayad and I Filali Alaoui conceived the study design. I Filali Alaoui, E. Mzough, A. Idhmida, A Braimi, H Benjlil, K Basaid, and EH Mayad contributed to soil sampling and nematodes extraction. I Filali Alaoui and EH Mayad carried out the nematological analysis. I Filali Alaoui, A. Hallouti, MA Hamza, JN Furze and EH Mayad performed data analysis and interpretation. Authors contributed equally in the writing of the manuscript.

Corresponding author

Correspondence to El Hassan Mayad.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filali Alaoui, I., Ait Hamza, M., Benjlil, H. et al. Phytoparasitic nematodes of organic vegetables in the Argan Biosphere of Souss-Massa (Southern Morocco). Environ Sci Pollut Res 28, 64166–64180 (2021). https://doi.org/10.1007/s11356-021-12986-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-12986-8

Keywords