Photocatalytic degradation of 2,4-dicholorophenoxyacetic acid by TiO2 modified catalyst: kinetics and operating cost analysis

Abstract

Effective pesticide remediation technology demands amendments in the advanced oxidation process for its continuous treatment and catalyst recovery. The evidence of 2,4-dichlorophenoxyacetic acid (2,4-D), an herbicide in water bodies, poses a major environmental threat to both humans and aquatic organisms. In the present study, a recirculation type photocatalytic reactor was developed to treat 2,4-dichlorophenoxyacetic acid using chitosan-TiO2 beads prepared via impregnation method under UV light. At optimized conditions, chitosan-TiO2 beads showed a maximum photocatalytic degradation of 86% than commercial TiO2 (65%) and followed pseudo first-order reaction. The 2,4-D degradation follows pseudo first-order kinetics under UV irradiation with a rate constant of 0.12 h−1, and the intermediates were identified using LCMS analysis. The total operational cost of the chitosan-TiO2 catalyst was found to be profitable (Rs. 1323 for 2 L) than that of TiO2 (Rs. 1679) at optimized conditions. The beads were reusable up to 4 consecutive cycles without loss in efficiency. This study briefs photocatalytic removal of 2,4-dichlorophenoxyacetic acid in a recirculation-type reactor for its reliability, low cost, efficiency, reusability, and commercialization.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Data availability

The data and materials of the manuscript that support its findings are available from the corresponding author, upon reasonable request.

References

  1. Abdennouri M, Elhalil A, Farnane M, Tounsadi H, Mahjoubi FZ, Elmoubarki R, Sadiq M, Khamar L, Galadi A, Baâlala M, Bensitel M, el hafiane Y, Smith A, Barka N (2015) Photocatalytic degradation of 2,4-D and 2,4-DP herbicides on Pt/TiO2 nanoparticles. J Saudi Chem Soc 19:485–493. https://doi.org/10.1016/j.jscs.2015.06.007

    Article  Google Scholar 

  2. Akpan UG, Hameed BH (2011) Photocatalytic degradation of 2,4-dichlorophenoxyacetic acid by Ca-Ce-W-TiO2 composite photocatalyst. Chem Eng J 173:369–375. https://doi.org/10.1016/j.cej.2011.07.069

    CAS  Article  Google Scholar 

  3. Asha RC, Vishnuganth MA, Remya N, Selvaraju N, Kumar M (2015) Livestock wastewater treatment in batch and continuous photocatalytic systems: performance and economic analyses. Water Air Soil Pollut 226. https://doi.org/10.1007/s11270-015-2396-4

  4. Bahrudin NN, Nawi MA (2019) Mechanistic of photocatalytic decolorization and mineralization of methyl orange dye by immobilized TiO2/chitosan-montmorillonite. J Water Process Eng 31:100843. https://doi.org/10.1016/j.jwpe.2019.100843

    Article  Google Scholar 

  5. Balakrishnan A, Appunni S, Gopalram K (2020) Immobilized TiO2/chitosan beads for photocatalytic degradation of 2,4-dichlorophenoxyacetic acid. Int J Biol Macromol 161:282–291. https://doi.org/10.1016/j.ijbiomac.2020.05.204

    CAS  Article  Google Scholar 

  6. Behnajady MA, Modirshahla N, Daneshvar N, Rabbani M (2007) Photocatalytic degradation of an azo dye in a tubular continuous-flow photoreactor with immobilized TiO2 on glass plates. Chem Eng J 127:167–176. https://doi.org/10.1016/j.cej.2006.09.013

    CAS  Article  Google Scholar 

  7. BIS (2012) Indian standards drinking water specifications IS 10500:2012. Bur Indian Stand Indian Stand Drink Water Specif 2:11

    Google Scholar 

  8. Burns CJ, Swaen GMH (2012) Review of 2,4-dichlorophenoxyacetic acid (2,4-D) biomonitoring and epidemiology. Crit Rev Toxicol 42:768–786

    CAS  Article  Google Scholar 

  9. Chang S, Yang X, Sang Y, Liu H (2016) Highly efficient photocatalysts and continuous-flow photocatalytic reactors for degradation of organic pollutants in wastewater. Chem - An Asian J 11:2352–2371

    CAS  Article  Google Scholar 

  10. Chen H, Zhang Z, Feng M, Liu W, Wang W, Yang Q, Hu Y (2017) Degradation of 2,4-dichlorophenoxyacetic acid in water by persulfate activated with FeS (mackinawite). Chem Eng J 313:498–507. https://doi.org/10.1016/j.cej.2016.12.075

    CAS  Article  Google Scholar 

  11. Dong H, Zeng G, Tang L, Fan C, Zhang C, He X, He Y (2015) An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Res 79:128–146

    CAS  Article  Google Scholar 

  12. Ebrahimi R, Mohammadi M, Maleki A, Jafari A, Shahmoradi B, Rezaee R, Safari M, Daraei H, Giahi O, Yetilmezsoy K, Puttaiah SH (2020) Photocatalytic degradation of 2,4-dichlorophenoxyacetic acid in aqueous solution using Mn-doped ZnO/graphene nanocomposite under LED radiation. J Inorg Organomet Polym Mater 30:923–934. https://doi.org/10.1007/s10904-019-01280-3

    CAS  Article  Google Scholar 

  13. Fazal T, Razzaq A, Javed F, Hafeez A, Rashid N, Amjad US, Ur Rehman MS, Faisal A, Rehman F (2020) Integrating adsorption and photocatalysis: a cost effective strategy for textile wastewater treatment using hybrid biochar-TiO2 composite. J Hazard Mater 390:121623. https://doi.org/10.1016/j.jhazmat.2019.121623

    CAS  Article  Google Scholar 

  14. Garabrant DH, Philbert MA (2002) Epidemiology and toxicology. Metab Clin Exp 32:233–257

    CAS  Google Scholar 

  15. González-Casamachin DA, Rivera De la Rosa J, Lucio-Ortiz CJ et al (2019) Visible-light photocatalytic degradation of acid violet 7 dye in a continuous annular reactor using ZnO/PPy photocatalyst: synthesis, characterization, mass transfer effect evaluation and kinetic analysis. Chem Eng J 373:325–337. https://doi.org/10.1016/j.cej.2019.05.032

    CAS  Article  Google Scholar 

  16. Grčić I, Vrsaljko D, Katančić Z, Papić S (2015) Purification of household greywater loaded with hair colorants by solar photocatalysis using TiO2-coated textile fibers coupled flocculation with chitosan. J Water Process Eng 5:15–27. https://doi.org/10.1016/j.jwpe.2014.12.008

    Article  Google Scholar 

  17. Haldorai Y, Shim JJ (2014) Novel chitosan-TiO2 nanohybrid: preparation, characterization, antibacterial, and photocatalytic properties. Polym Compos 35:327–333. https://doi.org/10.1002/pc.22665

    CAS  Article  Google Scholar 

  18. Hasmath Farzana M, Meenakshi S (2014) Synergistic effect of chitosan and titanium dioxide on the removal of toxic dyes by the photodegradation technique. Ind Eng Chem Res 53:55–63. https://doi.org/10.1021/ie402347g

    CAS  Article  Google Scholar 

  19. Hasmath Farzana M, Meenakshi S (2015) Photocatalytic aptitude of titanium dioxide impregnated chitosan beads for the reduction of Cr(VI). Int J Biol Macromol 72:1265–1271. https://doi.org/10.1016/j.ijbiomac.2014.09.029

    CAS  Article  Google Scholar 

  20. Hosseini N, Toosi MR (2019a) from water by polysulfone membranes mixed by graphene oxide / TiO 2 nanocomposite : study of filtration and batch adsorption. J Environ Health Sci Eng 17:247–258

    CAS  Article  Google Scholar 

  21. Hosseini N, Toosi MR (2019b) Combined adsorption process and photocatalytic degradation of some commercial herbicides over N-doped TiO2 particles supported on recyclable magnetic hexagonal mesoporous silica. Sep Sci Technol 54:1697–1709. https://doi.org/10.1080/01496395.2018.1539105

    CAS  Article  Google Scholar 

  22. Islam F, Wang J, Farooq MA et al (2018) Potential impact of the herbicide 2,4-dichlorophenoxyacetic acid on human and ecosystems. Environ Int 111:332–351

    CAS  Article  Google Scholar 

  23. Janani S, Sudha Rani KS, Ellappan P, Miranda LR (2016) Photodegradation of methylene blue using magnetically reduced graphene oxide bismuth oxybromide composite. J Environ Chem Eng 4:534–541. https://doi.org/10.1016/j.jece.2015.10.043

    CAS  Article  Google Scholar 

  24. Kanan S, Moyet MA, Arthur RB, Patterson HH (2020) Recent advances on TiO2-based photocatalysts toward the degradation of pesticides and major organic pollutants from water bodies. Catal Rev Sci Eng 62:1–65. https://doi.org/10.1080/01614940.2019.1613323

    CAS  Article  Google Scholar 

  25. Kaur T, Sraw A, Wanchoo RK, Toor AP (2018) Solar assisted degradation of carbendazim in water using clay beads immobilized with TiO2 & Fe doped TiO2. Sol Energy 162:45–56. https://doi.org/10.1016/j.solener.2017.11.033

    CAS  Article  Google Scholar 

  26. Kumar MNVR (2000) A review of chitin and chitosan applications. React Funct Polym 46:1–27

    CAS  Article  Google Scholar 

  27. Kumar R, Barakat MA, Al-Mur BA et al (2020) Photocatalytic degradation of cefoxitin sodium antibiotic using novel BN/CdAl2O4 composite. J Clean Prod 246:119076. https://doi.org/10.1016/j.jclepro.2019.119076

    CAS  Article  Google Scholar 

  28. Laws EA (2017) Aquatic pollution: an introductory text. John Wiley Sons 449:371–379. https://doi.org/10.1016/j.apsusc.2018.02.051

    CAS  Article  Google Scholar 

  29. León A, Reuquen P, Garín C, Segura R, Vargas P, Zapata P, Orihuela P (2017) FTIR and raman characterization of TiO2 nanoparticles coated with polyethylene glycol as carrier for 2-methoxyestradiol. Appl Sci 7:1–9. https://doi.org/10.3390/app7010049

    CAS  Article  Google Scholar 

  30. Mehmood CT, Zhong Z, Zhou H, Xiao Y (2020) Constructing porous beads with modified polysulfone-alginate and TiO2 as a robust and recyclable photocatalyst for wastewater treatment. J Water Process Eng 38:101601. https://doi.org/10.1016/j.jwpe.2020.101601

    Article  Google Scholar 

  31. Mohsenzadeh M, Mirbagheri SA, Sabbaghi S (2019) Degradation of 1,2-dichloroethane by photocatalysis using immobilized PAni-TiO2 nano-photocatalyst. Environ Sci Pollut Res 26:31328–31343. https://doi.org/10.1007/s11356-019-06240-5

    CAS  Article  Google Scholar 

  32. Muthirulan P, Devi CN, Sundaram MM (2014) TiO2 wrapped graphene as a high performance photocatalyst for acid orange 7 dye degradation under solar/UV light irradiations. Ceram Int 40:5945–5957. https://doi.org/10.1016/j.ceramint.2013.11.042

    CAS  Article  Google Scholar 

  33. Muthirulan P, Nirmala Devi C, Meenakshi Sundaram M (2017) Synchronous role of coupled adsorption and photocatalytic degradation on CAC–TiO2 composite generating excellent mineralization of alizarin cyanine green dye in aqueous solution. Arab J Chem 10:S1477–S1483. https://doi.org/10.1016/j.arabjc.2013.04.028

    CAS  Article  Google Scholar 

  34. Nawi MA, Sabar S, Jawad AH, Sheilatina, Ngah WSW (2010) Adsorption of Reactive Red 4 by immobilized chitosan on glass plates: towards the design of immobilized TiO2-chitosan synergistic photocatalyst-adsorption bilayer system. Biochem Eng J 49:317–325. https://doi.org/10.1016/j.bej.2010.01.006

    CAS  Article  Google Scholar 

  35. Oblak R, Kete M, Štangar UL, Tasbihi M (2018) Alternative support materials for titania photocatalyst towards degradation of organic pollutants. J Water Process Eng 23:142–150. https://doi.org/10.1016/j.jwpe.2018.03.015

    Article  Google Scholar 

  36. Paumo HK, Das R, Bhaumik M (2020) Visible-light-responsive nanostructured materials for photocatalytic degradation of persistent organic pollutants in water. In: Naushad M., Rajendran S., Lichtfouse E. (eds) Green Methods for Wastewater Treatment. Environmental Chemistry for a Sustainable World, vol 35. Springer, Cham. https://doi.org/10.1007/978-3-030-16427-0_1

  37. Preethi J, Vigneshwaran S, Karthikeyan P (2020) Chitosan modified zirconium/zinc oxide as a visible light driven photocatalyst for the efficient reduction of hexavalent chromium. Int J Biol Macromol 59:324–332. https://doi.org/10.1016/j.ijbiomac.2020.04.268

  38. Qiu P, Yao J, Chen H, Jiang F, Xie X (2016) Enhanced visible-light photocatalytic decomposition of 2,4-dichlorophenoxyacetic acid over ZnIn2S4/g-C3N4 photocatalyst. J Hazard Mater 317:158–168. https://doi.org/10.1016/j.jhazmat.2016.05.069

    CAS  Article  Google Scholar 

  39. Rajoriya S, Bargole S, George S, Saharan VK, Gogate PR, Pandit AB (2019) Synthesis and characterization of samarium and nitrogen doped TiO2 photocatalysts for photo-degradation of 4-acetamidophenol in combination with hydrodynamic and acoustic cavitation. Sep Purif Technol 209:254–269. https://doi.org/10.1016/j.seppur.2018.07.036

    CAS  Article  Google Scholar 

  40. Remya N, Lin JG (2011) Microwave-assisted carbofuran degradation in the presence of GAC, ZVI and H2O2: influence of reaction temperature and pH. Sep Purif Technol 76:244–252. https://doi.org/10.1016/j.seppur.2010.10.012

    CAS  Article  Google Scholar 

  41. Ren XD, Liu QS, Feng H, Yin XY (2014) The characterization of chitosan nanoparticles by raman spectroscopy. Appl Mech Mater 665:367–370. https://doi.org/10.4028/www.scientific.net/AMM.665.367

    Article  Google Scholar 

  42. Rose G, Echavia M, Matzusawa F, Negishi N (2009) Chemosphere photocatalytic degradation of organophosphate and phosphonoglycine pesticides using TiO 2 immobilized on silica gel. Chemosphere 76:595–600. https://doi.org/10.1016/j.chemosphere.2009.04.055

    CAS  Article  Google Scholar 

  43. Salaeh S, Juretic Perisic D, Biosic M, Kusic H, Babic S, Lavrencic Stangar U, Dionysiou DD, Loncaric Bozic A (2016) Diclofenac removal by simulated solar assisted photocatalysis using TiO2-based zeolite catalyst; mechanisms, pathways and environmental aspects. Chem Eng J 304:289–302. https://doi.org/10.1016/j.cej.2016.06.083

    CAS  Article  Google Scholar 

  44. Sandeep S, Nagashree KL, Maiyalagan T, Keerthiga G (2018) Photocatalytic degradation of 2,4-dichlorophenoxyacetic acid - a comparative study in hydrothermal TiO 2 and commercial TiO 2. Appl Surf Sci 449:371–379. https://doi.org/10.1016/j.apsusc.2018.02.051

    CAS  Article  Google Scholar 

  45. Senthilnathan J, Philip L (2009) Removal of mixed pesticides from drinking water system by photodegradation using suspended and immobilized TiO2. J Environ Sci Heal - Part B Pestic Food Contam Agric Wastes 44:262–270. https://doi.org/10.1080/03601230902728328

    CAS  Article  Google Scholar 

  46. Shan AY, Ghazi TIM, Rashid SA (2010) Immobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis: a review. Appl Catal A Gen 389:1–8

    CAS  Article  Google Scholar 

  47. Shen C, Wang YJ, Xu JH, Luo GS (2012) Facile synthesis and photocatalytic properties of TiO2 nanoparticles supported on porous glass beads. Chem Eng J 209:478–485. https://doi.org/10.1016/j.cej.2012.08.044

    CAS  Article  Google Scholar 

  48. Shojaeimehr T, Tasbihi M, Acharjya A, Thomas A, Schomäcker R, Schwarze M (2020) Impact of operating conditions for the continuous-flow degradation of diclofenac with immobilized carbon nitride photocatalysts. J Photochem Photobiol A Chem 388:388. https://doi.org/10.1016/j.jphotochem.2019.112182

    CAS  Article  Google Scholar 

  49. Singh RK, Philip L, Ramanujam S (2017) Removal of 2,4-dichlorophenoxyacetic acid in aqueous solution by pulsed corona discharge treatment: effect of different water constituents, degradation pathway and toxicity assay. Chemosphere. 184:207–214. https://doi.org/10.1016/j.chemosphere.2017.05.134

    CAS  Article  Google Scholar 

  50. Sirajudheen P, Meenakshi S (2019) Facile synthesis of chitosan-La 3+ -graphite composite and its influence in photocatalytic degradation of methylene blue. Int J Biol Macromol 133:253–261. https://doi.org/10.1016/j.ijbiomac.2019.04.073

    CAS  Article  Google Scholar 

  51. Sivagami K, Vikraman B, Krishna RR, Swaminathan T (2015) Ecotoxicology and environmental safety chlorpyrifos and endosulfan degradation studies in an annular slurry photo reactor. Ecotoxicol Environ Saf 134:1–5. https://doi.org/10.1016/j.ecoenv.2015.08.015

    CAS  Article  Google Scholar 

  52. Song Y (2014) Insight into the mode of action of 2,4-dichlorophenoxyacetic acid (2,4-D) as an herbicide. J Integr Plant Biol 56:106–113. https://doi.org/10.1111/jipb.12131

    CAS  Article  Google Scholar 

  53. Sowmya A, Meenakshi S (2014) Effective removal of nitrate and phosphate anions from aqueous solutions using functionalised chitosan beads. Desalin Water Treat 52:2583–2593. https://doi.org/10.1080/19443994.2013.798842

    CAS  Article  Google Scholar 

  54. Sraw A, Wanchoo RK, Pal A (2014) Optimization and kinetic studies for degradation of insecticide monocrotophos using LR grade and P25 TiO 2 under UV / sunlight conditions. 33. doi:https://doi.org/10.1002/ep.11909

  55. Sraw A, Kaur T, Pandey Y, Sobti A, Wanchoo RK, Toor AP (2018) Fixed bed recirculation type photocatalytic reactor with TiO2 immobilized clay beads for the degradation of pesticide polluted water. J Environ Chem Eng 6:7035–7043. https://doi.org/10.1016/j.jece.2018.10.062

    CAS  Article  Google Scholar 

  56. Trivedi NS, Kharkar RA, Mandavgane SA (2019) 2,4-Dichlorophenoxyacetic acid adsorption on adsorbent prepared from groundnut shell: effect of preparation conditions on equilibrium adsorption capacity. Arab J Chem 12:4541–4549. https://doi.org/10.1016/j.arabjc.2016.07.022

    CAS  Article  Google Scholar 

  57. Vigneshwaran S, Preethi J, Meenakshi S (2019) Removal of chlorpyrifos, an insecticide using metal free heterogeneous graphitic carbon nitride (g-C3N4) incorporated chitosan as catalyst: photocatalytic and adsorption studies. Int J Biol Macromol 132:289–299. https://doi.org/10.1016/j.ijbiomac.2019.03.071

  58. Vishnuganth MA, Remya N, Kumar M, Selvaraju N (2016) Photocatalytic degradation of carbofuran by TiO2-coated activated carbon: model for kinetic, electrical energy per order and economic analysis. J Environ Manag 181:201–207. https://doi.org/10.1016/j.jenvman.2016.06.016

    CAS  Article  Google Scholar 

  59. Xia ZY, Zhang L, Zhao Y et al (2017) Biodegradation of the herbicide 2,4-dichlorophenoxyacetic acid by a new isolated strain of Achromobacter sp. LZ35. Curr Microbiol. https://doi.org/10.1007/s00284-016-1173-y

  60. Zeghioud H, Assadi AA, Khellaf N, Djelal H, Amrane A, Rtimi S (2018) Reactive species monitoring and their contribution for removal of textile effluent with photocatalysis under UV and visible lights: dynamics and mechanism. J Photochem Photobiol A Chem 365:94–102. https://doi.org/10.1016/j.jphotochem.2018.07.031

    CAS  Article  Google Scholar 

  61. Zeghioud H, Kamagate M, Coulibaly LS, Rtimi S, Assadi AA (2019) Photocatalytic degradation of binary and ternary mixtures of antibiotics: reactive species investigation in pilot scale. Chem Eng Res Des 144:300–309. https://doi.org/10.1016/j.cherd.2019.02.015

    CAS  Article  Google Scholar 

  62. Zeghioud H, Khellaf N, Amrane A, Djelal H, Bouhelassa M, Assadi AA, Rtimi S (2020a) Combining photocatalytic process and biological treatment for Reactive Green 12 degradation: optimization, mineralization, and phytotoxicity with seed germination. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-020-11282-1

  63. Zeghioud H, Nguyen-Tri P, Khezami L, et al (2020b) Review on discharge plasma for water treatment: mechanism, reactor geometries, active species and combined processes. J. Water Process Eng 38:101664–101680. https://doi.org/10.1016/j.jwpe.2020.101664

  64. Zhao C, Yan Q, Wang S, Dong P, Zhang L (2018) Regenerable g-C3N4-chitosan beads with enhanced photocatalytic activity and stability. RSC Adv 8:27516–27524. https://doi.org/10.1039/c8ra04293d

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Nanotechnology Research Centre (NRC) and SRM Central Instrumentation Facility (SCIF) of the SRM Institute of Science & Technology for its facilities. The characterization was partially supported from a Startup Research Grant with File no DST/SERB/SRG/001396/ES.

Funding

This article has no competing financial support for its study.

Author information

Affiliations

Authors

Contributions

K.G. conceived the original idea. A.B. performed the experiments and wrote the manuscript with support from A.S. and K.G. All of the authors provided critical feedback and helped to shape the research, analysis, and manuscript. K.G. and A.S. supervised the project.

Corresponding author

Correspondence to Keerthiga Gopalram.

Ethics declarations

Ethics approval

The manuscript does not involve the use of any animals. It harms neither any animals nor any humans.

Consent to participate

All authors have consented to brainstorm and to participate in the research study.

Consent for publication

All of the authors have given their consent to publish this manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Sami Rtimi

Supplementary Information

ESM 1

(DOCX 607 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Balakrishnan, A., Gopalram, K. & Appunni, S. Photocatalytic degradation of 2,4-dicholorophenoxyacetic acid by TiO2 modified catalyst: kinetics and operating cost analysis. Environ Sci Pollut Res (2021). https://doi.org/10.1007/s11356-021-12928-4

Download citation

Keywords

  • TiO2/chitosan beads
  • 2,4-Dichlorophenoxyacetic acid (2,4-D)
  • Continuous degradation
  • Energy efficiency
  • Kinetics
  • Cost estimation