Carbon emissions from the peat fire problem—a review

Abstract

Peat fires in tropical peatland release a substantial amount of carbon into the environment and cause significant harm to peatlands and the ecology, resulting in climate change, biodiversity loss, and the alteration of the ecosystem. It is essential to understand peat fires and to develop more effective methods for controlling them. To estimate carbon emissions and monitor fires, the depth of burning can measure the overall burnt down the volume, which is proportional to the carbon emissions that are emitted to the environment. The first step is to understand the technique of measuring the depth of the burn. However, there is a lack of integrated information regarding the burning depth for peat fires. This review paper discusses the techniques used to measure the burning depth, with particular attention given to quantifying carbon emissions. The article also provides information on the types of methods used to determine the burning depths. This research contributes to the field of peat fire by providing a readily available reference for practitioners and researchers on the current state of knowledge on peat fire monitoring systems.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Akbar LA, Purnomo DMJ, Putra RA, Hatmojo RBD, Mulyasih H, Nugroho YS (2020) Method development of measuring depth of burn using laser ranging in laboratory scale. Evergreen 7(2):268–274

    CAS  Google Scholar 

  2. Altdorff D, Bechtold M, van der Kruk J, Vereecken H, Huisman J (2016) Mapping peat layer properties with multi-coil offset electromagnetic induction and laser scanning elevation data. Geoderma 261:178–189

    CAS  Google Scholar 

  3. Atwood EC, Englhart S, Lorenz E, Halle W, Wiedemann W, Siegert F (2016) Detection and characterization of low temperature peat fires during the 2015 fire catastrophe in Indonesia using a new high-sensitivity fire monitoring satellite sensor (FireBird). PLoS One 11(8):e0159410

    Google Scholar 

  4. Ballhorn U, Siegert F, Mason M, Limin S (2009) Derivation of burn scar depths and estimation of carbon emissions with LIDAR in Indonesian peatlands. Proc Natl Acad Sci 106(50):21213–21218

    CAS  Google Scholar 

  5. Barber CV, Schweithelm J (2000) Trial by fire. World Resources Institute, Washington

    Google Scholar 

  6. Benscoter BW, Wieder RK (2003) Variability in organic matter lost by combustion in a boreal bog during the 2001 Chisholm fire. Can J For Res 33(12):2509–2513

    Google Scholar 

  7. Benscoter B, Thompson D, Waddington J, Flannigan M, Wotton B, De Groot W, Turetsky M (2011) Interactive effects of vegetation, soil moisture and bulk density on depth of burning of thick organic soils. Int J Wildland Fire 20(3):418–429

    CAS  Google Scholar 

  8. Boby LA, Schuur EA, Mack MC, Verbyla D, Johnstone JF (2010) Quantifying fire severity, carbon, and nitrogen emissions in Alaska's boreal forest. Ecol Appl 20(6):1633–1647

    Google Scholar 

  9. Bourgeau-Chavez LL, Grelik SL, Billmire M, Jenkins LK, Kasischke ES, Turetsky MR (2020) Assessing Boreal peat fire severity and vulnerability of peatlands to early season wildland fire. Front Forests Global Change 3(20). https://doi.org/10.3389/ffgc.2020.00020

  10. Buchan D, Gebremikael MT, Ameloot N, Sleutel S, De Neve S (2013) The effect of free-living nematodes on nitrogen mineralisation in undisturbed and disturbed soil cores. Soil Biol Biochem 60:142–155. https://doi.org/10.1016/j.soilbio.2013.01.022

    CAS  Article  Google Scholar 

  11. Cahyono BK, Aditya T, Istarno I (2020) The least square adjustment for estimating the tropical peat depth using LiDAR data. Remote Sens 12(5):875

    Google Scholar 

  12. Chasmer L, Hopkinson C, Petrone R, Sitar M (2017) Using multitemporal and multispectral airborne lidar to assess depth of peat loss and correspondence with a new active normalized burn ratio for wildfires. Geophys Res Lett 44(23):11,851–811,859

    Google Scholar 

  13. Chaudhari PR, Ahire DV, Ahire VD, Chkravarty M, Maity S (2013) Soil bulk density as related to soil texture, organic matter content and available total nutrients of Coimbatore soil. Int J Sci Res Publ 3(2):1–8

    CAS  Google Scholar 

  14. Cheng H, Hao F, Ouyang W, Liu S, Chunye LIN, Wenjing Y (2012) Vertical distribution of rare earth elements in a wetland soil core from the Sanjiang Plain in China. J Rare Earths 30(7):731–738. https://doi.org/10.1016/S1002-0721(12)60120-3

    CAS  Article  Google Scholar 

  15. Darrouzet-Nardi A, Weintraub MN (2014) Evidence for spatially inaccessible labile N from a comparison of soil core extractions and soil pore water lysimetry. Soil Biol Biochem 73:22–32. https://doi.org/10.1016/j.soilbio.2014.02.010

    CAS  Article  Google Scholar 

  16. Davenport IJ, Holden N, Gurney RJ (2004) Characterizing errors in airborne laser altimetry data to extract soil roughness. IEEE Trans Geosci Remote Sens 42(10):2130–2141

    Google Scholar 

  17. Davies GM, Gray A, Rein G, Legg CJ (2013) Peat consumption and carbon loss due to smouldering wildfire in a temperate peatland. For Ecol Manag 308:169–177. https://doi.org/10.1016/j.foreco.2013.07.051

    Article  Google Scholar 

  18. Frandsen WH (1997) Ignition probability of organic soils. Can J For Res 27(9):1471–1477. https://doi.org/10.1139/x97-106

    Article  Google Scholar 

  19. Frandsen WH (1998) Heat flow measurements from smoldering porous fuel. Int J Wildland Fire 8(3):137–145

    Google Scholar 

  20. Fuller D, Fulk M (2001) Burned area in Kalimantan, Indonesia mapped with NOAA-AVHRR and Landsat TM imagery. Int J Remote Sens 22(4):691–697

    Google Scholar 

  21. Granath G, Moore PA, Lukenbach MC, Waddington JM (2016) Mitigating wildfire carbon loss in managed northern peatlands through restoration. Sci Rep 6(1):28498. https://doi.org/10.1038/srep28498

    CAS  Article  Google Scholar 

  22. Harenda K, Lamentowicz M, Samson M, Chojnicki B (2018) The role of peatlands and their carbon storage function in the context of climate change. Interdiscip Approaches Sustain Dev Goals:169–187. https://doi.org/10.1007/978-3-319-71788-3_12

  23. Hayasaka, H., Noguchi, I., Putra, E., Yulianti, N., and Vadrevu, K. (2014). Peat-fire-related air pollution in Central Kalimantan, Indonesia. Environmental Pollution (Barking, Essex : 1987), 195. doi:https://doi.org/10.1016/j.envpol.2014.06.031

  24. Heil A, Langmann B, Aldrian E (2007) Indonesian peat and vegetation fire emissions: Study on factors influencing large-scale smoke haze pollution using a regional atmospheric chemistry model. Mitig Adapt Strateg Glob Chang 12(1):113–133

    Google Scholar 

  25. Hille MG, Stephens SL (2005) Mixed conifer forest duff consumption during prescribed fires: tree crown impacts. For Sci 51(5):417–424

    Google Scholar 

  26. Hokanson K, Lukenbach M, Devito K, Kettridge N, Petrone R, Waddington J (2016) Groundwater connectivity controls peat burn severity in the boreal plains. Ecohydrology 9(4):574–584

    Google Scholar 

  27. Hollaus M, Aubrecht C, Höfle B, Steinnocher K, Wagner W (2011) Roughness mapping on various vertical scales based on full-waveform airborne laser scanning data. Remote Sens 3(3):503–523

    Google Scholar 

  28. Hossain MF, Chen W, Zhang Y (2015) Bulk density of mineral and organic soils in the Canada’s arctic and sub-arctic. Inform Process Agric 2(3):183–190. https://doi.org/10.1016/j.inpa.2015.09.001

    Article  Google Scholar 

  29. Huang X, Rein G (2014) Smouldering combustion of peat in wildfires: Inverse modelling of the drying and the thermal and oxidative decomposition kinetics. Combustion and Flame 161(6):1633–1644

    CAS  Google Scholar 

  30. Huang X, Rein G (2019) Upward-and-downward spread of smoldering peat fire. Proc Combust Inst 37(3):4025–4033. https://doi.org/10.1016/j.proci.2018.05.125

    CAS  Article  Google Scholar 

  31. Huang X, Rein G, Chen H (2015) Computational smoldering combustion: Predicting the roles of moisture and inert contents in peat wildfires. Proc Combust Inst 35(3):2673–2681. https://doi.org/10.1016/j.proci.2014.05.048

    CAS  Article  Google Scholar 

  32. Huang X, Restuccia F, Gramola M, Rein G (2016) Experimental study of the formation and collapse of an overhang in the lateral spread of smouldering peat fires. Combustion and Flame 168:393–402. https://doi.org/10.1016/j.combustflame.2016.01.017

    CAS  Article  Google Scholar 

  33. Hurley MJ, Gottuk DT, Hall JR Jr, Harada K, Kuligowski ED, Puchovsky M et al (2015) SFPE handbook of fire protection engineering. Springer, Berlin

    Google Scholar 

  34. Johnston FH, Henderson SB, Chen Y, Randerson JT, Marlier M, DeFries RS, Kinney P, Bowman DMJS, Brauer M (2012) Estimated global mortality attributable to smoke from landscape fires. Environ Health Perspect 120(5):695–701

    Google Scholar 

  35. Kasischke ES, Turetsky MR, Ottmar RD, French NH, Hoy EE, Kane ES (2008) Evaluation of the composite burn index for assessing fire severity in Alaskan black spruce forests. Int J Wildland Fire 17(4):515–526

    Google Scholar 

  36. Keller GV, Frischknecht FC (1966) Electrical methods in geophysical prospecting. Pergamon Press, Oxford

    Google Scholar 

  37. Keller T, Håkansson I (2010) Estimation of reference bulk density from soil particle size distribution and soil organic matter content. Geoderma 154(3):398–406. https://doi.org/10.1016/j.geoderma.2009.11.013

    CAS  Article  Google Scholar 

  38. Kiely L, Spracklen DV, Wiedinmyer C, Conibear L, Reddington CL, Archer-Nicholls S et al (2019) New estimate of particulate emissions from Indonesian peat fires in 2015. Atmos Chem Phys 19(17):11105–11121

    CAS  Google Scholar 

  39. Kingdom, N. C. U. (2017). Peatland Restoration gets underway at Ben Lomond. Retrieved from https://www.iucn-uk-peatlandprogramme.org/news/peatland-restoration-gets-underway-ben-lomond

  40. Koplitz S, Mickley L, Jacob D, Marlier ME, DeFries R, Gaveau DL et al (2018) Role of the Madden-Julian Oscillation in the transport of smoke from Sumatra to the Malay Peninsula during severe non-El Nino haze events. J Geophys Res-Atmos 123(11):6282–6294

    Google Scholar 

  41. Kurtz NT, Markus T, Cavalieri DJ, Krabill W, Sonntag JG, Miller J (2008) Comparison of ICESat data with airborne laser altimeter measurements over Arctic sea ice. IEEE Trans Geosci Remote Sens 46(7):1913–1924

    Google Scholar 

  42. Lee W-C, Lee S-W, Jeon J-H, Jung H, Kim S-O (2019) A novel method for real-time monitoring of soil ecological toxicity – detection of earthworm motion using a vibration sensor. Ecotoxicol Environ Saf 185:109677. https://doi.org/10.1016/j.ecoenv.2019.109677

    CAS  Article  Google Scholar 

  43. Leng LY, Ahmed OH, Jalloh MB (2019) Brief review on climate change and tropical peatlands. Geosci Front 10(2):373–380. https://doi.org/10.1016/j.gsf.2017.12.018

    Article  Google Scholar 

  44. Lestari P, Muthmainnah F, Permadi DA (2020) Characterization of carbonaceous compounds emitted from Indonesian surface and sub surface peat burning. Atmos Pollut Res 11(9):1465–1472. https://doi.org/10.1016/j.apr.2020.06.001

    CAS  Article  Google Scholar 

  45. Li X, Lange H (2015) A modified soil coring method for measuring fine root production, mortality and decomposition in forests. Soil Biol Biochem 91:192–199. https://doi.org/10.1016/j.soilbio.2015.08.015

    CAS  Article  Google Scholar 

  46. Lin S, Sun P, Huang X (2019) Can peat soil support a flaming wildfire? Int J Wildland Fire 28. https://doi.org/10.1071/WF19018

  47. Loick N, Dixon ER, Abalos D, Vallejo A, Matthews GP, McGeough KL, Well R, Watson CJ, Laughlin RJ, Cardenas LM (2016) Denitrification as a source of nitric oxide emissions from incubated soil cores from a UK grassland soil. Soil Biol Biochem 95:1–7. https://doi.org/10.1016/j.soilbio.2015.12.009

    CAS  Article  Google Scholar 

  48. Lukenbach MC, Hokanson KJ, Moore PA, Devito KJ, Kettridge N, Thompson DK, Wotton BM, Petrone RM, Waddington JM (2015) Hydrological controls on deep burning in a northern forested peatland. Hydrol Process 29(18):4114–4124

    Google Scholar 

  49. Luo L, Ma W, Zhang Z, Zhuang Y, Yang J, Cao X, Liang S, Yi S (2019) Integration of terrestrial laser scanning and soil sensors for deformation and hydrothermal monitoring of frost mounds. Measurement 131:513–523. https://doi.org/10.1016/j.measurement.2018.09.020

    Article  Google Scholar 

  50. Marlier ME, DeFries RS, Kim PS, Gaveau DL, Koplitz SN, Jacob DJ et al (2015) Regional air quality impacts of future fire emissions in Sumatra and Kalimantan. Environ Res Lett 10(5):054010

    Google Scholar 

  51. Marlier ME, Liu T, Yu K, Buonocore JJ, Koplitz SN, DeFries RS et al (2019) Fires, smoke exposure, and public health: An integrative framework to maximize health benefits from peatland restoration. GeoHealth 3(7):178–189

    Google Scholar 

  52. Miyanishi K, Johnson E (2002) Process and patterns of duff consumption in the mixedwood boreal forest. Can J For Res 32(7):1285–1295

    Google Scholar 

  53. New S, Belcher C, Hudspith V, Gallego-Sala A (2016) Holocene fire history: can evidence of peat burning be found in the palaeo-archive? Mires and Peat 18(26)

  54. Oguchi T, Hayakawa YS, Wasklewicz T (2011) Chapter Seven - data sources. In: Smith MJ, Paron P, Griffiths JS (eds) Developments in Earth Surface Processes, vol 15. Elsevier, Amsterdam, pp 189–224

    Google Scholar 

  55. Ohlemiller TJ (1985) Modeling of smoldering combustion propagation. Prog Energy Combust Sci 11(4):277–310

    CAS  Google Scholar 

  56. Page, S., and Hooijer, A. (2016). In the line of fire: the peatlands of Southeast Asia. Philosophical Transactions of the Royal Society B: Biological Sciences, 371.

  57. Page S, Rieley J (1998) Tropical peatlands: a review of their natural resource functions, with particular reference to Southeast Asia. Int Peat J 8:95–106

    Google Scholar 

  58. Page SE, Siegert F, Rieley JO, Boehm H-DV, Jaya A, Limin S (2002) The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 420(6911):61–65. https://doi.org/10.1038/nature01131

    CAS  Article  Google Scholar 

  59. Page SE, Wűst R, Weiss D, Rieley JO, Shotyk W, Limin SH (2004) A record of Late Pleistocene and Holocene carbon accumulation and climate change from an equatorial peat bog (Kalimantan, Indonesia): implications for past, present and future carbon dynamics. J Quat Sci 19(7):625–635

    Google Scholar 

  60. Parry L, West L, Holden J, Chapman P (2014) Evaluating approaches for estimating peat depth. J Geophys Res Biogeosci 119(4):567–576

    Google Scholar 

  61. Peterse F, Nicol GW, Schouten S, Sinninghe Damsté JS (2010) Influence of soil pH on the abundance and distribution of core and intact polar lipid-derived branched GDGTs in soil. Org Geochem 41(10):1171–1175. https://doi.org/10.1016/j.orggeochem.2010.07.004

    CAS  Article  Google Scholar 

  62. Pitkänen A, Turunen J, Tolonen K (1999) The role of fire in the carbon dynamics of a mire, eastern Finland. The Holocene 9(4):453–462

    Google Scholar 

  63. Poulter B, Christensen NL Jr, Halpin PN (2006) Carbon emissions from a temperate peat fire and its relevance to interannual variability of trace atmospheric greenhouse gases. J Geophys Res-Atmos 111(D6)

  64. Prat-Guitart, N., Hadden, R., Rein, G., Belcher, C., and Yearsley, J. (2013). Effect of peat moisture content on smouldering fire propagation. Paper presented at the Proceedings of 4th Fire Behavior and Fuels Conference.

  65. Prat-Guitart N, Belcher C, Hadden R, Rein G, Yearsley J (2015) A laboratory study of the effect of moisture content on the spread of smouldering peat fires. FLAMMA 6:35–38

    Google Scholar 

  66. Prat-Guitart N, Rein G, Hadden RM, Belcher CM, Yearsley JM (2016) Effects of spatial heterogeneity in moisture content on the horizontal spread of peat fires. Sci Total Environ 572:1422–1430. https://doi.org/10.1016/j.scitotenv.2016.02.145

    CAS  Article  Google Scholar 

  67. Ratnaningsih AT, Prasytaningsih SR (2017) The characteristics of peats and Co2 Emission due to fire in industrial plant forests. Paper presented at the IOP Conference Series: Earth and Environmental Science

  68. Reddy AD, Hawbaker TJ, Wurster F, Zhu Z, Ward S, Newcomb D, Murray R (2015) Quantifying soil carbon loss and uncertainty from a peatland wildfire using multi-temporal LiDAR. Remote Sens Environ 170:306–316

    Google Scholar 

  69. Rein, G. (2013). Smouldering fires and natural fuels. . In C. M. Belcher (Ed.), Fire Phenomena and the Earth System: An Interdisciplinary Guide to Fire Science (pp. 15-33).

  70. Rein G (2016) Smoldering combustion SFPE Handbook of Fire Protection Engineering. Springer, Berlin, pp 581–603

    Google Scholar 

  71. Rein G, Cleaver N, Ashton C, Pironi P, Torero JL (2008) The severity of smouldering peat fires and damage to the forest soil. Catena 74(3):304–309

    Google Scholar 

  72. Richards PM, Liang Y, Johnson RL, Mattes TE (2019) Cryogenic soil coring reveals coexistence of aerobic and anaerobic vinyl chloride degrading bacteria in a chlorinated ethene contaminated aquifer. Water Res 157:281–291. https://doi.org/10.1016/j.watres.2019.03.059

    CAS  Article  Google Scholar 

  73. Sadri S, Pan M, Wada Y, Vergopolan N, Sheffield J, Famiglietti JS, Kerr Y, Wood E (2020) A global near-real-time soil moisture index monitor for food security using integrated SMOS and SMAP. Remote Sens Environ 246:111864. https://doi.org/10.1016/j.rse.2020.111864

    Article  Google Scholar 

  74. Sahani M, Zainon NA, Mahiyuddin WRW, Latif MT, Hod R, Khan MF et al (2014) A case-crossover analysis of forest fire haze events and mortality in Malaysia. Atmos Environ 96:257–265

    CAS  Google Scholar 

  75. Sale, T., Gallo, S., Askarani, K. K., Irianni-Renno, M., Lyverse, M., Hopkins, H., Blotevogel J. Burge, S. (2020). Real-time soil and groundwater monitoring via spatial and temporal resolution of biogeochemical potentials. J Hazard Mater, 124403. doi: https://doi.org/10.1016/j.jhazmat.2020.124403

  76. Shetler G, Turetsky MR, Kane E, Kasischke E (2008) Sphagnum mosses limit total carbon consumption during fire in Alaskan black spruce forests. Can J For Res 38(8):2328–2336

    CAS  Google Scholar 

  77. Siegert F, Rücker G, Hinrichs A, Hoffmann A (2001) Increased fire impacts in logged over forests during El Niño driven fires. Nature 414:437–440

    CAS  Google Scholar 

  78. Simpson JE, Wooster MJ, Smith TE, Trivedi M, Vernimmen RR, Dedi R et al (2016) Tropical peatland burn depth and combustion heterogeneity assessed using UAV photogrammetry and airborne LiDAR. Remote Sens 8(12):1000

    Google Scholar 

  79. Somavilla A, Gubiani PI, Reichert JM, Reinert DJ, Zwirtes AL (2017) Exploring the correspondence between precompression stress and soil load capacity in soil cores. Soil Tillage Res 169:146–151. https://doi.org/10.1016/j.still.2017.02.003

    Article  Google Scholar 

  80. Sorensen KW (1993) Indonesian peat swamp forests and their role as a carbon sink. Chemosphere 27(6):1065–1082. https://doi.org/10.1016/0045-6535(93)90068-G

    Article  Google Scholar 

  81. Stockwell CE, Jayarathne T, Cochrane MA, Ryan KC, Putra EI, Saharjo BH et al (2016) Field measurements of trace gases and aerosols emitted by peat fires in Central Kalimantan, Indonesia, during the 2015 El Niño. Atmos Chem Phys 16(18):11711–11732

    CAS  Google Scholar 

  82. Tan KH (1995) Soil sampling, preparation, and analysis, 2nd edn. CRC Press, Boca Raton (April 29, 2005)

    Google Scholar 

  83. Turetsky M, Donahue W, Benscoter B (2011) Experimental drying intensifies burning and carbon losses in a northern peatland. Nat Commun 2(1):1–5

    Google Scholar 

  84. Turetsky MR, Benscoter B, Page S, Rein G, Van Der Werf GR, Watts A (2015) Global vulnerability of peatlands to fire and carbon loss. Nat Geosci 8(1):11–14

    CAS  Google Scholar 

  85. Usup A, Hashimoto Y, Takahashi H, Hayasaka H (2004) Combustion and thermal characteristics of peat fire in tropical peatland in Central Kalimantan, Indonesia. Tropics 14(1):1–19. https://doi.org/10.3759/tropics.14.1

    Article  Google Scholar 

  86. Van der Werf GR, Randerson JT, Giglio L, Collatz G, Mu M, Kasibhatla PS et al (2010) Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009). Atmos Chem Phys 10(23):11707–11735

    Google Scholar 

  87. Veverica TJ, Kane ES, Kasischke ES (2012) Tamarack and black spruce adventitious root patterns are similar in their ability to estimate organic layer depths in northern temperate forests. Can J Soil Sci 92(5):799–802

    Google Scholar 

  88. Wasser, L. A. (2014). The Basics of LiDAR - Light Detection and Ranging - Remote Sensing. Retrieved from https://www.neonscience.org/lidar-basics

  89. Watson RT, Noble IR, Bolin B, Ravindranath N, Verardo DJ, Dokken DJ (2000) Land use, land-use change and forestry: a special report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  90. Wieder RK, Scott KD, Kamminga K, Vile MA, Vitt DH, Bone T et al (2009) Postfire carbon balance in boreal bogs of Alberta, Canada. Glob Chang Biol 15(1):63–81

    Google Scholar 

  91. Wilkinson S, Moore P, Flannigan M, Wotton B, Waddington J (2018) Did enhanced afforestation cause high severity peat burn in the Fort McMurray Horse River wildfire? Environ Res Lett 13(1):014018

    Google Scholar 

  92. Wilkinson S, Tekatch A, Markle C, Moore P, Waddington J (2020) Shallow peat is most vulnerable to high peat burn severity during wildfire. Environ Res Lett 15(10):104032

    Google Scholar 

  93. Xing Z, Zhao T, Gao Y, He Z, Zhang L, Peng X, Song L (2017) Real-time monitoring of methane oxidation in a simulated landfill cover soil and MiSeq pyrosequencing analysis of the related bacterial community structure. Waste Manag 68:369–377. https://doi.org/10.1016/j.wasman.2017.05.007

    CAS  Article  Google Scholar 

  94. Xu S, Zhao Y, Wang M, Shi X (2018) Comparison of multivariate methods for estimating selected soil properties from intact soil cores of paddy fields by Vis–NIR spectroscopy. Geoderma 310:29–43. https://doi.org/10.1016/j.geoderma.2017.09.013

    CAS  Article  Google Scholar 

  95. Yeager C, Marshall A, Stickler C, Chapman C (2003) Effects of forest fires on peat swamp and lowland Dipterocarp forests in Kalimantan, Indonesia. Tropical Biodiversity 8:121–138

    Google Scholar 

  96. Zhang X, Meng X, Fan J, Gao L, Sun X (2011) Soil Total organic carbon, δ13C Values and their responses to the soil core transferring experiment from high- to low-elevation forest along natural altitudinal transect of old temperate volcanic Forest soils. Procedia Environ Sci 5:139–144. https://doi.org/10.1016/j.proenv.2011.03.059

    CAS  Article  Google Scholar 

Download references

Funding

This work was supported by the UTMSHINE Signature Grant and Professional Development Research University awarded by the Universiti Teknologi Malaysia (SGSHINE 3.2: Predicting Terrestrial Gamma Dose Rate Based on Geological and Soil InformationQ.J130000.2451.07G85 & Developing Peat Fire Suppression Technology Solution—Q.J130000.21A2.05E16).

Author information

Affiliations

Authors

Contributions

Nor Azizah Che Azmi—conceptualization, investigation, and design of work.

Nazirah Mohd Apandi—interpretation of data, formal analysis, and writing-original draft.

Ahmad Safuan A. Rashid—conceptualization, validation, writing—review and editing, supervision, and funding acquisition.

All the authors have contributed to preparing this review paper starting from the conception or design of the work, data acquisition and analysis, and interpretation of data to drafting and reviewing the manuscript.

Corresponding author

Correspondence to Nazirah Mohd Apandi.

Ethics declarations

Ethics statement

The authors state that the research was conducted according to ethical standards.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Philippe Garrigues

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Che Azmi, N.A., Mohd Apandi, N. & A. Rashid, A.S. Carbon emissions from the peat fire problem—a review. Environ Sci Pollut Res 28, 16948–16961 (2021). https://doi.org/10.1007/s11356-021-12886-x

Download citation

Keywords

  • Burn of depth
  • Carbon emissions
  • Carbon emissions assessment
  • Burn depth assessment techniques