Effects of zinc toxicity on the nitrogen-fixing cyanobacterium Anabaena sphaerica—ultastructural, physiological and biochemical analyses

Abstract

The current study describes the mechanisms of zinc toxicity in the cyanobacterium Anabaena sphaerica after eight days treatment with 10 mg L−1 ZnCl2. The application of zinc not only showed elevated accumulation of the metal inside the cells but also exhibited devastating impacts on the cell numbers, morphology, and ultrastructure of A. sphaerica. The effects of zinc on the pigments contents, oxygen evolution rate, Fv/Fm, electron transport rate, and carbohydrate content were also evaluated in A. sphaerica. Moreover, zinc adversely affected nutrient uptake and the cellular energy budget in the test cyanobacterium which in turn hampered heterocyst development and nitrogen fixation. Alongside, the cyanobacterium experienced zinc-mediated non-competitive inhibition of glutamine synthetase activity, curtailed synthesis of amino acids and proteins. Furthermore, drastically reduced total lipid and increased unsaturated lipid contents were also the prominent characteristics of zinc stressed A. sphaerica. Most importantly, zinc stress caused severe damages to the protein, lipid, and DNA by triggering hydrogen peroxide generation and accumulation of oxidized glutathione. Therefore, excess zinc is highly toxic to the cyanobacterium A. sphaerica, and the mechanisms of its toxicity followed a cascade of events including oxidative stress mediated geopardisation of growth and ultrastructure, metabolic derangements, and macromolecular damages.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data availability

All data generated or analyzed during this study are included in this published article [and its supplementary information files].

References

  1. Ada FB, Ayotunde EO, Offem BO (2012) Surface and ground water concentrations of metal elements in central cross river state, Nigeria, and their suitability for fish culture. Int J Environ Sustain 2:9–20

    Google Scholar 

  2. Anyanwu BO, Ezejiofor AN, Igweze ZN, Orisakwe OE (2018) Heavy metal mixture exposure and effects in developing nations: an update. Toxics 6:65

    CAS  Article  Google Scholar 

  3. Baebprasert W, Jantaro S, Khetkorn W, Lindblad P, Incharoensakdi A (2011) Increased H2 production in the cyanobacterium Synechocystis sp. strain PCC 6803 by redirecting the electron supply via genetic engineering of the nitrate assimilation pathway. Metab Eng 13:610–616

    CAS  Article  Google Scholar 

  4. Balaji S, Kalaivani T, Rajasekaran C (2014) Biosorption of zinc and nickel and its effect on growth of different Spirulina strains. Clean Soil Air Water 42:507–512

    CAS  Article  Google Scholar 

  5. Balakrishnan K, Rajendran C, Kulandaivelu G (2000) Differential responses of iron, magnesium, and zinc deficiency on pigment composition, nutrient content, and photosynthetic activity in tropical fruit crops. Photosynthetica 38(3):477–479

    CAS  Article  Google Scholar 

  6. Bazihizina N, Taiti C, Marti L, Rodrigo-Moreno A, Spinelli F, Giordano C, Caparrotta S, Gori M, Azzarello E, Mancuso S (2014) Zn2+-induced changes at the root level account for the increased tolerance of acclimated tobacco plants. J Exp Bot 65:4931–4942

    CAS  Article  Google Scholar 

  7. Bbosa NB, Oyoo WS (2013) Seasonal variations of phytoplankton species in lake Victoria and the influence of iron and zinc ions on the dominant species identified during 2006–2007 studies. Lakes Reserv Res Manag 18:259–273

    CAS  Article  Google Scholar 

  8. Bernat G, Rögner M (2011) Center of the cyanobacteria electron transport network: the cytochrome b6f complex. In: Peschek GA, Obinger C, Renger G (eds) Bioenergetic processes of cyanobacteria: from evolutionary singularity to ecological diversity. Springer, Dordrecht, pp 573–606

    Google Scholar 

  9. Bickel PJ, Kechris KJ, Spector PC, Wedemayer GJ, Glazer AN (2002) Finding important sites in protein sequences. Proc Natl Acad Sci 99(23):14764–14771

    CAS  Article  Google Scholar 

  10. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  Article  Google Scholar 

  11. Bradl ADL (2005) Heavy metals in the environment, vol 282. Elsevier, London

    Google Scholar 

  12. Ceribasi IH, Yetis U (2001) Biosorption of Ni (II) and Pb (II) by Phanerochaete chrysosporium from a binary metal system - kinetics. Water SA 27:15–20

    CAS  Google Scholar 

  13. Chakraborty S, Mishra A (2020) Mitigation of zinc toxicity through differential strategies in two species of the cyanobacterium Anabaena isolated from zinc polluted paddy field. Environ Pollut 263(Part B):114375

    CAS  Article  Google Scholar 

  14. Chakraborty P, Babu PVR, Acharyya T, Bandyopadhyay D (2010) Stress and toxicity of biologically important transition metals (Co, Ni, Cu, and Zn) on phytoplankton in a tropical freshwater system: an investigation with pigment analysis by HPLC. Chemosphere 80:548–553

    CAS  Article  Google Scholar 

  15. Chakraborty S, Tiwari B, Singh SS, Srivastava AK, Mishra AK (2017) Differential physiological, oxidative and antioxidative responses of cyanobacterium Anabaena sphaerica to attenuate malathion pesticide toxicity. Biocatal Agric Biotechnol 11:56–63

    Article  Google Scholar 

  16. Chakraborty S, Mishra A, Verma E, Tiwari B, Mishra AK, Singh SS (2019) Physiological mechanisms of aluminum (Al) toxicity tolerance in nitrogen-fixing aquatic macrophyte Azolla microphylla Kaulf: phytoremediation, metabolic rearrangements, and antioxidative enzyme responses. Environ Sci Pollut Res Int 26:9041–9054

    CAS  Article  Google Scholar 

  17. Chaloub RM, de Magalhães CCP, Dos Santos CP (2005) Early toxic effects of zinc on PSII of Synechocystisaquatilis f. aquatilis (cyanophyceae). J Phycol 41:1162–1168

    CAS  Article  Google Scholar 

  18. Cheng YS, Zheng Y, Vander-Gheynst JS (2011) Rapid quantitative analysis of lipids using a colorimetric method in a microplate format. Lipids 46:95–103

    CAS  Article  Google Scholar 

  19. Chibuike GU, Obiora SC (2014) Heavy metal polluted soils: effect on plants and bioremediation methods. Appl. Environ. Soil Sci. 752708.

  20. Choudhary M, Jetley UK, Abash Khan M, Zutshi S, Fatma T (2007) Effect of heavy metal stress on proline, malondialdehyde, and superoxide dismutase activity in the cyanobacterium Spirulina platensis-S5. Ecotoxicol Environ Saf 66:204–209

    CAS  Article  Google Scholar 

  21. Cramer WA, Hasan SS, Yamashita E (2011) The Q cycle of cytochrome bc complexes: a structure perspective. Biochim Biophys Acta-Bioenergetics 1807:788–802

    CAS  Article  Google Scholar 

  22. Danilov RA, Ekelund NGA (2001) Responses of photosynthetic efficiency, cell shape and motility in Euglena gracilis (Euglenophyceae) to short-term exposure to heavy metals and pentachlorophenol. Water Air Soil Pollut 132:61–73

    CAS  Article  Google Scholar 

  23. Davis MS and Cronan JE (2001) Inhibition of Escherichia coli acetyl coenzyme A carboxylase by acyl-acyl carrier protein. J Bacteriol 183:1499–1503

  24. Day JW, Kemp WM, Yáñez-Arancibia A, Crump BC (2012) Estuarine ecology. Wiley, New York City

    Google Scholar 

  25. De Magalhães CCP, Cardoso D, Dos Santos CP, Chaloub RM (2004) Physiological and photosynthetic responses of Synechocystis aquatilisf.aquatilis (Cyanophyceae) to elevated levels of zinc. J Phycol 40:496–504

    Article  CAS  Google Scholar 

  26. Dubois M, Gilles RA, Hamilton FK (1956) Calorimetric method for determination of sugar and related substances. Anal Chem 28:350–356

    CAS  Article  Google Scholar 

  27. Erbe JL, Adams AC, Taylor KB, Hall LM (1996) Cyanobacteria carrying an smt-lux transcriptional fusion as biosensors for the detection of heavy metal cations. J Ind Microbiol 17:80–83

    CAS  Article  Google Scholar 

  28. Fales FW (1971) Evaluation of a spectrophotometric method for determination of total fecal lipid. Clin Chem 17:1103–1108

    CAS  Article  Google Scholar 

  29. Gonzalo S, Rodea-Palomares I, Leganés F, García-Calvo E, Rosal R, Fernández-Piñas F (2014) First evidences of PAMAM dendrimer internalization in microorganisms of environmental relevance: a linkage with toxicity and oxidative stress. Nanotoxicology 9:706–718

  30. Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    CAS  Article  Google Scholar 

  31. Hider RC, Kong XL (2011) Glutathione: a key component of the cytoplasmic labile iron pool. Biometals 24:1179–1187

    CAS  Article  Google Scholar 

  32. Hudek L, Rai LC, Freestone D, Michalczyk A, Gibson M, Song YF, Ackland ML (2009) Bioinformatic and expression analyses of genes mediating zinc homeostasis in Nostoc punctiforme. Appl Environ Microbiol 75:784–791

    CAS  Article  Google Scholar 

  33. Ishida A, Yamada Y, Kamidate T (2008) Colorimetric method for enzymatic screening assay of ATP using Fe (III)-xylenol orange complex formation. Anal Bioanal Chem 392:987–994

    CAS  Article  Google Scholar 

  34. Kang JX, Wang J (2005) A simplified method for analysis of polyunsaturated fatty acids. BMC Biochem 6:5

    Article  CAS  Google Scholar 

  35. Kirilovsky D, Kerfeld CA (2013) The orange carotenoid protein in photoprotection of photosystem II in cyanobacteria. Biochim Biophys Acta Bioenerg 1817:158–166

  36. Kondzior P, Butarewicz A (2018) Effect of heavy metals (Cu and Zn) on the content of photosynthetic pigments in the cells of algae Chlorella vulgaris. Ecol Eng 19:18–28

    Article  Google Scholar 

  37. Latifi A, Ruiz M, Zhang CC (2009) Oxidative stress in cyanobacteria. FEMS Microbiol Rev 33:258–278

    CAS  Article  Google Scholar 

  38. Lawrenz E, Fedewa EJ, Richardson TL (2011) Extraction protocols for the quantification of phycobilins in aqueous phytoplankton extracts. J Appl Phycol 23:865–871

    Article  Google Scholar 

  39. Lei C, Sun X (2018) Comparing lethal dose ratios using probit regression with arbitrary slopes. BMC Pharmacol Toxicol 19:61

    CAS  Article  Google Scholar 

  40. Li XF, Wang PF, Feng CL (2019) Acute toxicity and hazardous concentrations of zinc to native freshwater organisms under different pH values in China. Bull Environ Contam Toxicol 103:120–126

    CAS  Article  Google Scholar 

  41. Loreto F, Velikova V (2001) Isoprene produced by leaves protects the photosynthetic apparatus against zone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol 127:1781–1787

    CAS  Article  Google Scholar 

  42. Mackinney G (1941) Absorption of light by chlorophyll solutions. J Biol Chem 140:315–322

    CAS  Article  Google Scholar 

  43. Magnuson A (2019) Heterocyst thylakoid bioenergetics. Life (Basel, Switzerland) 9:13.

  44. Mateo P, Leganes F, Perona E, Loza V, Fernandez-Pinas F (2015) Cyanobacteria as bioindicators and bioreporters of environmental analysis in aquatic ecosystems. Biodivers Conserv 24:909–948

    Article  Google Scholar 

  45. Mi H, Endo T, Ogawa T, Asada K (1995) Thylakoid membrane-bound, NADPH-specific pyridine nucleotide dehydrogenase complex mediates cyclic electron transport in the cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol 36:661–668

    CAS  Google Scholar 

  46. Mishra AK (2004) Fox- and Fix- mutants of Anabaena 7120 defective in heterocyst development and nitrogen fixation. Algol Stud 108:75–85

    Google Scholar 

  47. Mishra J, Singh R, Arora NK (2017) Alleviation of heavy metal stress in plants and remediation of soil by rhizosphere microorganisms. Front Microbiol 8:1706

    Article  Google Scholar 

  48. Mullineaux CW (2008) Phycobilisome-reaction centre interaction in cyanobacteria. Photosynth Res 95:175–182

    CAS  Article  Google Scholar 

  49. Nguyen-Deroche T, Caruso A, Le TT, Bui TV, Schoefs B, Tremblin G, Morant-Manceau A(2012) Zinc affects differently growth, photosynthesis, antioxidant enzyme activities and phytochelatin synthase expression of four marine diatoms. Sci World J 982957.

  50. Okmen G, Bozanta E, Ceyhan AU (2011) Zinc effect on chlorophyll a, total carbohydrate, total protein contents and biomass of cyanobacterial species. J Appl Biol Sci 5:67–73

    CAS  Google Scholar 

  51. Omar HH (2002) Adsorption of zinc ions by Scenedesmus obliquus and S. quadricauda and its effect on growth and metabolism. Biol Plant 45:261–266

    CAS  Article  Google Scholar 

  52. Peng YY, Liao LL, Liu S, Nie MM, Li J, Zhang LD, Ma JF, Chen ZC (2019) Magnesium deficiency triggers SGR-mediated chlorophyll degradation for magnesium remobilization. Plant Physiol 181(1):262–275

    CAS  Article  Google Scholar 

  53. Ramel F, Mialoundama AS, Havaux M (2013) Nonenzymic carotenoid oxidation and photooxidative stress signalling in plants. J Exp Bot 64:799–805

    CAS  Article  Google Scholar 

  54. Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY(1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiol. 111:1-61, 1.

  55. Schaedle M, Bassham JA (1977) Chloroplast glutathione reductase. Plant Physiol 59:1011–1012

    CAS  Article  Google Scholar 

  56. Schwarz R, Forchhammer K (2005) Acclimation of unicellular cyanobacteria to macronutrient deficiency: emergence of a complex network of cellular responses. Microbiology 151:2503–2514

    CAS  Article  Google Scholar 

  57. Shapiro BM, Stadtman ER (1970) Glutamine synthetase (Escherichia coli). Methods Enzymol 17a:910–922

    Article  Google Scholar 

  58. Shehata FHA, Whitton BA (1982) Zinc tolerance in strains of the blue-green alga Anacystis nidulans. Br Phycol J 17:5–12

    Article  Google Scholar 

  59. Singh S, Mishra AK (2015) Unraveling of cross talk between Ca2+ and ROS regulating enzymes in Anabaena 7120 and ntcA mutant. J Basic Microbiol 55:1–17

    Article  CAS  Google Scholar 

  60. Su Y, Liu H, Yang J (2012) Metals and metalloids in the water-bloom-formingcyanobacteria and ambient water from Nanquan Coast of Taihu Lake, China. Bull Environ Contam Toxicol 89:439–443

    CAS  Article  Google Scholar 

  61. Toth T, Zsiros O, Kis M, Garab G, Kovács L (2012) Cadmium exerts its toxic effects on photosynthesis via a cascade mechanism in the cyanobacterium, Synechocystis PCC 6803. Plant Cell Environ 35:2075–2086

  62. Tripathi BN, Mehta SK, Gaur JP (2003) Differential sensitivity of Anabaena doliolum to Cu and Zn in batch and semicontinuous cultures. Ecotoxicol Environ Saf 56:311–318

    CAS  Article  Google Scholar 

  63. Umena Y, Kawakami K, Shen JR, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473:55–60

    CAS  Article  Google Scholar 

  64. Verma E, Chakraborty S, Tiwari B, Mishra AK (2018) Transcriptional regulation of acetyl CoA and lipid synthesis by PII protein in Synechococcus PCC 7942. J Basic Microbiol 58:187–197

    CAS  Article  Google Scholar 

  65. Watanabe M, Ikeuchi M (2013) Phycobilisome: architecture of a light harvesting supercomplex. Photosynth Res 116:265–276

    CAS  Article  Google Scholar 

  66. Welsh EA, Liberton M, Stöckel J, Loh T, Elvitigala T, Wang C, Wollam A, Fulton RS, Clifton SW, Jacobs JM, Aurora R, Ghosh BK, Sherman LA, Smith RD, Wilson RK, Pakrasi HB (2008) The genome of Cyanothece 51142, a unicellular diazotrophic cyanobacterium important in the marine nitrogen cycle. Proc Natl Acad Sci U S A 105:15094–15099

    Article  Google Scholar 

  67. Willis LB, Omar WSW, Sambanthamurthi R, Sinskey AJ (2008) Non radioactive assay for acetyl Co-A carboxylase activity. J Oil Palm Res 2:30–36

    Google Scholar 

  68. Xu K, Juneau P (2016) Different physiological and photosynthetic responses of three cyanobacterial strains to light and zinc. Aquat Toxicol 170:251–258

    CAS  Article  Google Scholar 

  69. Zeng J, Wang WX (2011) Temperature and irradiance influences on cadmium and zinc uptake and toxicity in a freshwater cyanobacterium, Microcystis aeruginosa. J Hazard Mater 190:922–929

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We are thankful to the Head, Department of Botany, Banaras Hindu University, Varanasi, India for providing laboratory facilities and Indian Council of Agricultural Research—AMAAS Network project for providing financial support.

Author information

Affiliations

Authors

Contributions

SC and AKM designed the project, whereas experimentation, visualization, writing original draft, and conceptualization have been done by SC. Supervision of the project, acquisition of fund, review, and editing of original draft has been done by AKM.

Corresponding author

Correspondence to Arun Kumar Mishra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Vitor Manuel Oliveira Vasconcelos

Supplementary Information

ESM 1

(DOCX 14 kb)

ESM 2

(DOCX 11 kb)

ESM 3

(DOCX 21 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, S., Mishra, A.K. Effects of zinc toxicity on the nitrogen-fixing cyanobacterium Anabaena sphaerica—ultastructural, physiological and biochemical analyses. Environ Sci Pollut Res (2021). https://doi.org/10.1007/s11356-021-12882-1

Download citation

Keywords

  • Anabaena sphaerica
  • Zinc toxicity
  • Oxidative stress
  • Ultrastructure
  • Photosynthesis