Intensified wheat husk conversion employing energy-efficient hybrid electromagnetic radiations for production of fermentable sugar: process optimization and life cycle assessment

Abstract

This article reports an energy-efficient green pathway for the sustainable conversion of an abundant agro-residue viz. wheat husk (WH) into fermentable sugar (FS). The intensification effects of tungsten-halogen (TH) (150 W) and ultraviolet (UV) (100 W) irradiations on the pretreatment and subsequent hydrolysis of WH have been experimented with and optimized by Taguchi Orthogonal Design Array (TODA). In this study, two commercial catalysts, viz. Amberlyst-15 (A15) and nano-anataseTiO2 (NAT) have been used in varying concentrations for the WH conversion process in a novel TH-UV radiated rotating reactor (THUVRR). At optimized peracetic acid pretreatment conditions [90 °C reaction temperature; 1: 2.5 w/w of WH: H2O2; 1: 5 w/w of WH: CH3COOH (1 M); 2h of reaction time] maximum 20.2 wt. % FS yield and 15 wt. % isolated lignin (purity 97.6 %) were obtained. Subsequently, the pretreated WH (PWH) was hydrolyzed at optimized conditions [(700C reaction temperature; 7.5wt. % catalyst concentration (1:1 w/w A15: NAT); 1: 30 w/w of WH: water; 30 min reaction time)] in THUVRR to render maximum yield of FS (36.9g/ L) (67.4 wt. %), which was significantly greater than that obtained (20.2g/ L) (38.42 wt. %) employing a conventional thermal reactor (CTR). Besides, the energy consumption was 70% more in CTR (500 W) in comparison with THUVRR (150 W); thus, demonstrating markedly superior energy-efficiency vis-à-vis appreciable improvement in FS yield in THUVRR over CTR. Overall sustainability of the process analyzed by LCA proved the approach to be energy-saving and environmentally benign and is expected to be applicable to similar lignocellulosic agro-wastes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

LB:

Lignocellulosic biomass

FS:

Fermentable sugar

WH:

Wheat husk

PWH:

Pretreated wheat husk

A15:

Amberlyst 15

NAT:

Nano-anatase TiO2

NII:

Near-infrared irradiation

THUVRR:

Tungsten halogen ultraviolet radiated rotating reactor

CTR:

Conventional thermal reactor

TODA:

Taguchi orthogonal design array

i:

Number of replications

S/N:

Signal to noise ratio

N:

Noise

S:

Signal

MFS :

Mass of fermentable sugar (mg)

VRM:

Volume of the reaction mixture

DF:

Dilution factor

MWG:

Molecular weight of glucose

MWW:

Molecular weight of water

MR:

Microwave radiation

GHG:

Greenhouse gas

LCA:

Life cycle assessment

LCI:

Life cycle inventory

GWP:

Global warming potential

AP:

Acidification potential

EP:

Eutrophication potential

ODP:

Ozone depletion potential

POCP:

Photochemical ozone creation potential

PID:

Proportional, integral, derivative

ΨTp :

Reactor temperature in the pretreatment process (°C)

Ψtp :

Batch time in the pretreatment process (h)

Ψwp :

WH to acetic acid weight ratio in the pretreatment process

Ψcp :

WH to hydrogen peroxide weight ratio in the pretreatment process

ΨTh :

THUVRR temperature in the hydrolysis process (°C)

Ψth :

Batch time in the hydrolysis process (min)

Ψch :

Catalyst concentration in the hydrolysis process(%)

Ψwh :

Water to PWH weight ratio in the hydrolysis process

FS :

FS yield (g)

References

  1. Barman S, Chakraborty R (2019) Kinetics of combined noncatalytic and catalytic hydrolysis of jute fiber under ultrasonic–far infrared energy synergy. AIChE J 65(10):e16677. https://doi.org/10.1002/aic.16677

    CAS  Article  Google Scholar 

  2. Bauer B, Floyd TA (1987) Monitoring of glucose in biological fluids by fourier-transform infrared spectrometry with a cylindrical internal reflectance cell. Anal Chim Acta 197:295–301. https://doi.org/10.1016/S0003-2670(00)84740-6

    CAS  Article  Google Scholar 

  3. Banerjee S, Chattopadhyaya MC, Uma SYC (2014) Adsorption characteristics of modified wheat husk for the removal of a toxic dye, methylene blue, from aqueous solutions. J Hazard Toxic Radioact Waste 18(1):56–63. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000191

    CAS  Article  Google Scholar 

  4. Banerjee S, Gautam RK, JaiswalA GPK, Chattopadhyaya MC (2016) Study on adsorption behavior of Acid Orange 10 onto modified wheat husk. Desalin Water Treat 57(26):12302–12315. https://doi.org/10.1080/19443994.2015.1046151

    CAS  Article  Google Scholar 

  5. Bello S, Salim I, Méndez Trelles P, Rodil E, Feijoo G, Moreira MT (2018) Environmental sustainability assessment of HMF and FDCA production from lignocellulosic biomass through life cycle assessment (LCA). Holzforschung 73(1):105–115. https://doi.org/10.1515/hf-2018-0100

    CAS  Article  Google Scholar 

  6. Benali M, Ajao O, Jeaidi J, Gilani B, Mansoornejad B (2016) Integrated lignin-Kraft pulp biorefinery for the production of lignin and its derivatives: economic assessment and LCA-based environmental footprint. In Production of biofuels and chemicals from lignin 379-418. https://doi.org/10.1007/978-981-10-1965-4_13

  7. Bian J, Peng P, Peng F, Xiao X, Xu F, Sun RC (2014) Microwave-assisted acid hydrolysis to produce xylooligosaccharides from sugarcane bagasse hemicelluloses. Food Chem 156:7–13. https://doi.org/10.1016/j.foodchem.2014.01.112

    CAS  Article  Google Scholar 

  8. Borrion AL, McManus MC, Hammond GP (2012) Environmental life cycle assessment of lignocellulosic conversion to ethanol: a review. Renew SustEnerg Rev 16(7):4638–4650. https://doi.org/10.1016/j.rser.2012.04.016

    CAS  Article  Google Scholar 

  9. Bledzki AK, Mamun AA, Bonnia NN, Ahmad S (2012) Basic properties of grain by-products and their viability in polypropylene composites. Ind Crop Prod 37(1):427–434. https://doi.org/10.1016/j.indcrop.2011.05.010

    CAS  Article  Google Scholar 

  10. Bledzki AK, Mamun AA, Volk J (2010) Physical, chemical and surface properties of wheat husk, rye husk, and soft wood and their polypropylene composites. Compos Part A- Appl S 41(4):480–488. https://doi.org/10.1016/j.compositesa.2009.12.004

    CAS  Article  Google Scholar 

  11. Bulut Y, Aydın H (2006) A kinetics and thermodynamics study of methylene blue adsorption on wheat shells. Desalination 194(1-3):259–267. https://doi.org/10.1016/j.desal.2005.10.032

    CAS  Article  Google Scholar 

  12. Cai H, Li C, Wang A, Xu G, Zhang T (2012) Zeolite-promoted hydrolysis of cellulose in ionic liquid, insight into the mutual behavior of zeolite, cellulose and ionic liquid. Appl Catal B-Environ 123:333–338. https://doi.org/10.1016/j.apcatb.2012.04.041

    CAS  Article  Google Scholar 

  13. Chakraborty R, Mandal E (2015) Fast and energy efficient glycerol esterification with lauric acid by near and far-infrared irradiation: Taguchi optimization and kinetics evaluation. J Taiwan Inst Chem E 50:93–99. https://doi.org/10.1016/j.jtice.2014.12.024

    CAS  Article  Google Scholar 

  14. Chatterjee S, Barman S, Chakraborty R (2019) Combined effects of ionic liquid and tungsten halogen radiation on heterogeneous hydrolysis kinetics of waste papaya epidermis for production of total reducing sugar. Waste Biomass Valoriz 10(7):1845–1855. https://doi.org/10.1007/s12649-018-0220-2

    CAS  Article  Google Scholar 

  15. Chandrasekhar SATHY, Satyanarayana KG, Pramada PN, Raghavan P, Gupta TN (2003) Review processing, properties and applications of reactive silica from rice husk—an overview. J Mater Sci 38(15):3159–3168. https://doi.org/10.1023/A:1025157114800

    CAS  Article  Google Scholar 

  16. Cherubini F, Ulgiati S (2010) Crop residues as raw materials for biorefinery systems–A LCA case study. Appl Energy 87(1):47–57. https://doi.org/10.1016/j.apenergy.2009.08.024

    CAS  Article  Google Scholar 

  17. Choudhary V, Mushrif SH, Ho C, Anderko A, Nikolakis V, Marinkovic NS, Frenkel AI, Sandler SI, Vlachos DG (2013) Insights into the interplay of Lewis and Brønsted acid catalysts in glucose and fructose conversion to 5-(hydroxymethyl) furfural and levulinic acid in aqueous media. J Am Chem Soc 135(10):3997–4006. https://doi.org/10.1021/ja3122763

    CAS  Article  Google Scholar 

  18. Cui J, Sun H, Wang X, Sun J, Niu M, Wen Z (2015) Preparation of siliceous lignin microparticles from wheat husks with a facile method. Ind Crop Prod 74:689–696. https://doi.org/10.1016/j.indcrop.2015.05.061

    CAS  Article  Google Scholar 

  19. Dunmade I, Madushele N, Adedeji PA, Akinlabi ET (2019) A streamlined life cycle assessment of a coal-fired power plant: the South African case study. Environ Sci Pollut Res 26(18):18484–18492. https://doi.org/10.1007/s11356-019-05227-6

    CAS  Article  Google Scholar 

  20. Fan J, Zhu Z, Budarin V, Gronnow M, Gomez LD, Macquarrie D, Clark J (2013) Microwave-enhanced formation of glucose from cellulosic waste. Chem Eng Process 71:37–42. https://doi.org/10.1016/j.cep.2013.01.004

    CAS  Article  Google Scholar 

  21. Food outlook biannual report on global food markets (n.d.) http://www.fao.org/3/a-I8080e.pdf. Accessed 25 June 2018.

  22. Frank SN, Bard AJ (1977) Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutionsat semiconductor powders. J Phys Chem 81(15):1484–1488. https://doi.org/10.1021/j100530a011

    CAS  Article  Google Scholar 

  23. Frazier RS, Jin E, Kumar A (2015) Life cycle assessment of biochar versus metal catalysts used in syngas cleaning. Energies 8(1):621–644. https://doi.org/10.3390/en8010621

    CAS  Article  Google Scholar 

  24. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37–38. https://doi.org/10.1038/238037a0

    CAS  Article  Google Scholar 

  25. Goswami M, Meena S, Navatha S, Rani KP, Pandey A, Sukumaran RK, Prasad RBN, Devi BP (2015) Hydrolysis of biomass using a reusable solid carbon acid catalyst and fermentation of the catalytichydrolysate to ethanol. Bioresour Technol 188:99–102. https://doi.org/10.1016/j.biortech.2015.03.012

    CAS  Article  Google Scholar 

  26. Gremlich HU (1994) Ullmann’s Encyclopedia of Industrial Chemistry Vol B5. Weinheim, Switzerland: VCH 429–469

  27. Guo F, Fang Z, Xu CC, Smith RL Jr (2012a) Solid-acid mediated hydrolysis of biomass for producing biofuels. Prog Energy Combust Sci 38(5):672–690. https://doi.org/10.1016/j.pecs.2012.04.001

    CAS  Article  Google Scholar 

  28. Guo H, Qi X, Li L, Smith RL Jr (2012b) Hydrolysis of cellulose over functionalized glucose-derived carbon catalyst in ionic liquid. Bioresour Technol 116:355–359. https://doi.org/10.1016/j.biortech.2012.03.098

    CAS  Article  Google Scholar 

  29. Gupta VK, Jain R, Varshney S (2007) Removal of Reactofix golden yellow 3 RFN from aqueous solution using wheat husk—an agricultural waste. J Hazard Mater 142(1-2):443–448. https://doi.org/10.1016/j.jhazmat.2006.08.048

    CAS  Article  Google Scholar 

  30. Harris EE, Kline AA (1949) Hydrolysis of wood cellulose with hydrochloric acid and sulfur dioxide and the decomposition of its hydrolytic products. J Phys Chem 53(3):344–351. https://doi.org/10.1021/j150468a003

    CAS  Article  Google Scholar 

  31. Hegner J, Pereira KC, DeBoef B, Lucht BL (2010) Conversion of cellulose to glucose and levulinic acid via solid-supported acid catalysis. Tetrahedron Lett 51(17):2356–2358. https://doi.org/10.1016/j.tetlet.2010.02.148

    CAS  Article  Google Scholar 

  32. ISO, EN 14040: 2006 Environmental management: life cycle assessment; principles and framework. International Organization for Standardization.

  33. ISO, EN 14044: 2006 Environmental management: life cycle assessment; requirements and guidelines. International Organization for Standardization.

  34. Joglekar SN, Kharkar RA, Mandavgane SA, Kulkarni BD (2019a) Process development of silica extraction from RHA: a cradle to gate environmental impact approach. Environ Sci Pollut Res 26(1):492–500. https://doi.org/10.1007/s11356-018-3648-9

    CAS  Article  Google Scholar 

  35. Joglekar SN, Pathak PD, Mandavgane SA, Kulkarni BD (2019b) Process of fruit peel waste biorefinery: a case study of citrus waste biorefinery, its environmental impacts, and recommendations. Environ Sci Pollut Res 26(34):34713–34722. https://doi.org/10.1007/s11356-019-04196-0

    Article  Google Scholar 

  36. Joglekar SN, Tandulje AP, Mandavgane SA, Kulkarni BD (2019c) Environmental impact study of bagasse valorization routes. Waste Biomass Valoriz 10(7):2067–2078. https://doi.org/10.1007/s12649-018-0198-9

    CAS  Article  Google Scholar 

  37. Krishna BB, Singh R, Bhaskar T (2015) Effect of catalyst contact on the pyrolysis of wheat straw and wheat husk. Fuel 160:64–70. https://doi.org/10.1016/j.fuel.2015.07.065

    CAS  Article  Google Scholar 

  38. Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48(8):3713–3729. https://doi.org/10.1021/ie801542g

    CAS  Article  Google Scholar 

  39. Kun D, Pukánszky B (2017) Polymer/lignin blends: interactions, properties, applications. Eur Polym J 93:618–641. https://doi.org/10.1016/j.eurpolymj.2017.04.035

    CAS  Article  Google Scholar 

  40. Kuna E, Behling R, Valange S, Chatel G, Colmenares JC (2017) Sonocatalysis: a potential sustainable pathway for the valorization of lignocellulosic biomass and derivatives. Chemistry and Chemical Technologies in Waste Valorization 1-20.https://doi.org/10.1007/978-3-319-90653-9_1

  41. Liu M, Jia S, Gong Y, Song C, Guo X (2013) Effective hydrolysis of cellulose into glucose over sulfonated sugar-derived carbon in an ionic liquid. Ind Eng Chem Res 52(24):8167–8173. https://doi.org/10.1021/ie400571e

    CAS  Article  Google Scholar 

  42. Ma D, Zhao XR, Wang ZQ, Liu YL, Han RP (2012) Kinetics study of copper (II) adsorption from solution by wheat husk. Adv Mater Res 391:404–408. Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/amr.391-392.404

    Article  Google Scholar 

  43. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428. https://doi.org/10.1021/ac60147a030

    CAS  Article  Google Scholar 

  44. Mirjalili M, Tabatabai MB, Karimi L (2011) Novel herbal adsorbent based on wheat husk for reactive dye removal from aqueous solutions. Afr J Biotechnol 10(65):14478–14484. https://doi.org/10.5897/AJB11.1389

    CAS  Article  Google Scholar 

  45. Moheb A, Grondin M, Ibrahim RK, Roy R, Sarhan F (2013) Winter wheat hull (husk) is a valuable source for tricin, a potential selective cytotoxic agent. Food Chem 138(2-3):931–937. https://doi.org/10.1016/j.foodchem.2012.09.129

    CAS  Article  Google Scholar 

  46. Motojima S, Hori Y, Gakei S, Iwanaga H (1995) Preparation of Si 3 N 4 whiskers by reaction of wheat husks with NH 3. J Mater Sci 30(15):3888–3892. https://doi.org/10.1007/BF01153951

    CAS  Article  Google Scholar 

  47. Mythili R, Venkatachalam P, Subramanian P, Uma D (2013) Characterization of bioresidues for biooilproduction through pyrolysis. Bioresour Technol 138:71–78. https://doi.org/10.1016/j.biortech.2013.03.161

    CAS  Article  Google Scholar 

  48. Namchot W, Panyacharay N, Jonglertjunya W, Sakdaronnarong C (2014) Hydrolysis of delignified sugarcane bagasse using hydrothermal technique catalyzed by carbonaceous acid catalysts. Fuel 116:608–616. https://doi.org/10.1016/j.fuel.2013.08.062

    CAS  Article  Google Scholar 

  49. Petibois C, Rigalleau V, Melin AM, Perromat A, Cazorla G, Gin H, Déléris G (1999) Determination of glucose in dried serum samples by fourier-transform infrared spectroscopy. Clin Chem 45(9):1530–1535. https://doi.org/10.1093/clinchem/45.9.1530

    CAS  Article  Google Scholar 

  50. Pradhan P, Chakraborty S, Chakraborty R (2016) Optimization of infrared radiated fast and energy-efficient biodiesel production from waste mustard oil catalyzed by Amberlyst 15: engine performance and emission quality assessments. Fuel 173:60–68. https://doi.org/10.1016/j.fuel.2016.01.038

    CAS  Article  Google Scholar 

  51. Ravasco JM, Coelho JA, Simeonov SP, Afonso CA (2017) Bifunctional Cr 3+ modified ion exchange resins as efficient reusable catalysts for the production and isolation of 5-hydroxymethylfurfural from glucose. RSC Adv 7(13):7555–7559. https://doi.org/10.1039/C6RA22539J

    CAS  Article  Google Scholar 

  52. Saha PD, Dey A, Marik P (2012) Batch removal of chromium (VI) from aqueous solutions using wheat shell as adsorbent: process optimization using response surface methodology. Desalin Water Treat 39(1-3):95–102. https://doi.org/10.1080/19443994.2012.669164

    CAS  Article  Google Scholar 

  53. Shah J, Jan MR, Jamil S, Haq AU (2014) Magnetic particles precipitated onto wheat husk for removal of methyl blue from aqueous solution. Toxicol Environ Chem 96(2):218–226. https://doi.org/10.1080/02772248.2014.929690

    CAS  Article  Google Scholar 

  54. Shikinaka K, Otsuka Y, Nakamura M, Masai E, Katayama Y (2018) Utilization of lignocellulosic biomass via novel sustainable process. J Oleo Sci 67(9):1059–1070. https://doi.org/10.5650/jos.ess18075

    CAS  Article  Google Scholar 

  55. Shinde PN, Mandavgane SA, Karadbhajane V (2020) Process development and life cycle assessment of pomegranate biorefinery. Environ Sci Pollut Res 27(20):25785–25793. https://doi.org/10.1007/s11356-020-08957-0

    CAS  Article  Google Scholar 

  56. Shrotri A, Kobayashi H, Fukuoka A (2018) Cellulose depolymerization over heterogeneous catalysts. Acc Chem Res 51(3):761–768. https://doi.org/10.1021/acs.accounts.7b00614

    CAS  Article  Google Scholar 

  57. Singh R, Bhaskar T, Dora S, Balagurumurthy B (2013) Catalytic hydrothermal upgradation of wheat husk. Bioresour Technol 149:446–451. https://doi.org/10.1016/j.biortech.2013.09.092

    CAS  Article  Google Scholar 

  58. Sun B, Duan L, Peng G, Li X, Xu A (2015) Efficient production of glucose by microwave-assisted acid hydrolysis of cellulose hydrogel. Bioresour Technol 192:253–256. https://doi.org/10.1016/j.biortech.2015.05.045

    CAS  Article  Google Scholar 

  59. Taguchi G (1986) Introduction to quality engineering: designing quality into products and processes (No. 658.562 T3). http://worldcat.org/isbn/9283310845

  60. Takagaki A, Tagusagawa C, Domen K (2008) Glucose production from saccharides using layered transition metal oxide and exfoliated nanosheets as a water-tolerant solid acid catalyst. Chem Commun 42:5363–5365. https://doi.org/10.1039/B810346A

    Article  Google Scholar 

  61. Tekin K, Karagöz S, Bektaş S (2014) A review of hydrothermal biomass processing. Renew SustEnerg Rev 40:673–687. https://doi.org/10.1016/j.rser.2014.07.216

    CAS  Article  Google Scholar 

  62. Terzioğlu P, Yucel S, Rabagah TM, Özçimen D (2013) Characterization of wheat hull and wheat hull ash as a potential source of SiO2. Bioresour 8(3):4406–4420 Retrieved from https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_08_3_4406_Terzioglu_Wheat_Hull_Ash_Potential. Accessed 15 July 2013

    Article  Google Scholar 

  63. Tran TPT, Bénézet JC, Bergeret A (2014) Rice and Einkorn wheat husks reinforced poly (lactic acid) (PLA) biocomposites: effects of alkaline and silane surface treatments of husks. Ind Crop Prod 58:111–124. https://doi.org/10.1016/j.indcrop.2014.04.012

    CAS  Article  Google Scholar 

  64. Tsubaki S, Oono K, Onda A, Yanagisawa K, Mitani T, Azuma JI (2016) Effects of ionic conduction on hydrothermal hydrolysis of corn starch and crystalline cellulose induced by microwave irradiation. Carbohydr Polym 137:594–599. https://doi.org/10.1016/j.carbpol.2015.11.022

    CAS  Article  Google Scholar 

  65. Vanneste J, Ennaert T, Vanhulsel A, Sels B (2017) Unconventional pretreatment of lignocellulose with low-temperature plasma. Chem Sus Chem 10(1):14–31. https://doi.org/10.1002/cssc.201601381

    CAS  Article  Google Scholar 

  66. Verardi A, Lopresto CG, Blasi A, Chakraborty S, Calabrò V (2020) Bioconversion of lignocellulosic biomass to bioethanol and biobutanol. In Lignocellulosic Biomass to Liquid Biofuels 67-125. Academic Press. https://doi.org/10.1016/B978-0-12-815936-1.00003-4

  67. Wang HY, Shen LIU, Zhai LM, Zhang JZ, Ren TZ, Fan BQ, LIU HB (2015) Preparation and utilization of phosphate biofertilizers using agricultural waste. J Integr Agric 14(1):158–167. https://doi.org/10.1016/S2095-3119(14)60760-7

    CAS  Article  Google Scholar 

  68. Ward KJ, Haaland DM, Robinson MR, Eaton RP (1992) Post-prandial blood glucose determination by quantitative mid-infrared spectroscopy. Appl Spectrosc 46(6):959–965

    CAS  Article  Google Scholar 

  69. Xu S, Yin C, Pan D, Hu F, Wu Y, Miao Y, Xiao G (2019) Efficient conversion of glucose into 5-hydroxymethylfurfural using a bifunctional Fe3+ modified Amberlyst-15 catalyst. Sustain Energy Fuels 3(2):390–395. https://doi.org/10.1039/C8SE00499D

    CAS  Article  Google Scholar 

  70. Zeitner WA, Tompkins DT (2005) Shedding light on photocatalysis. ASHRAE Trans 111(2):523–534.12

    Google Scholar 

  71. Zhang Y, He H, Liu Y, Wang Y, Huo F, Fan M, Adidharma H, Li X, Zhang S (2019) Recent progress in theoretical and computational studies on the utilization of lignocellulosic materials. Green Chem 21(1):9–35. https://doi.org/10.1039/C8GC02059K

    CAS  Article  Google Scholar 

  72. Zhang Z, Zhao ZK (2009) Solid acid and microwave-assisted hydrolysis of cellulose in ionic liquid. Carbohydr Res 344(15):2069–2072. https://doi.org/10.1016/j.carres.2009.07.011

    CAS  Article  Google Scholar 

  73. Zhao J, Jayakumar A, Lee JM (2018) Bifunctional sulfonated MoO3–ZrO2 binary oxide catalysts for the one-step synthesis of 2, 5-diformylfuran from fructose. ACS Sustain Chem Eng 6(3):2976–2982. https://doi.org/10.1021/acssuschemeng.7b02671

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support provided by the ICBSEE-2020Conference, NIT, Rourkela, India.

Availability of data and materials

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Funding

Department of Science & Technology and Biotechnology; Government of West Bengal (File No. ST/P/S&T/4G-2/2018) and RUSA 2.0 (Ref. No. R-11/481/19 and Ref. No. R-11/316/19), India.

Author information

Affiliations

Authors

Contributions

SRC conducted the experiment, analyzed and interpreted the data, and prepared the draft manuscript under the guidance of RC. Besides, RC designed and developed the reactor conceptualized the entire research and provided overall guidance in writing and editing the manuscript. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Rajat Chakraborty.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Ta Yeong Wu

Supplementary Information

ESM 1

(DOCX 148 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Roy Choudhury, S., Chakraborty, R. Intensified wheat husk conversion employing energy-efficient hybrid electromagnetic radiations for production of fermentable sugar: process optimization and life cycle assessment. Environ Sci Pollut Res (2021). https://doi.org/10.1007/s11356-021-12793-1

Download citation

Keywords

  • Lignocellulosic agro-waste
  • Tungsten-halogen-UV irradiation
  • Amberlyst-15
  • Nano-anatase TiO2
  • Hydrolysis
  • Environmental sustainability