Skip to main content

Advertisement

Log in

Multi-matrix approach reveals the distribution of pesticides in a multipurpose protected area from the Atlantic Rainforest: potential risk for aquatic biota and human health?

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The Atlantic Rainforest is among the main biodiversity hotspots in the world, the Yabotí Biosphere Reserve (YBR) being one of the most important remaining areas. Agriculture practices could lead to intensive usage of pesticides resulting in a risk to the environment and human health. Water, suspended particulate matter (SPM), sediment, and fish (Andromakhe paris and Andromakhe saguazu) samples were collected from four streams with different degrees of protection of the YBR in two periods in order to assess the distribution of 18 organochlorine pesticides. Legacy and current-use pesticides were found in the different environmental matrices of the stream headwaters in non-anthropized areas within the buffer zone that drains the intangible area. A similar occurrence pattern of pesticides was found in all matrices. Levels of DDTs (<3.63 ng/L) and endosulfans (<21.8 ng/L) in surface water were above international guidelines for the protection of aquatic life in several streams for both sampling periods. HCHs, DDTs, endosulfans, and chlorpyrifos were detected in SPM and sediments from three streams, while γ-HCH (<60.3 ng/g lipid weight), chlorpyrifos (<698 ng/g lw), p,p´-DDD (<367 ng/g lw), and α-endosulfans (<209 ng/g lw) were detected in fish muscle in several streams. Chlorpyrifos and endosulfans were associated with current use, while DDx/DDT ratios suggested an old use. The concentration of pesticides found would not represent a risk to human health; however, it highlights the need to establish better regulation and action guidelines to reduce the anthropogenic effect on natural reserves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article and its supplementary information files. Additional datasets are available from the corresponding author on reasonable request.

Abbreviations

ARF:

Atlantic Rainforest

YBR:

Yabotí Biosphere Reserve

SPM:

Suspended particulate matter

OCPs:

Organochlorine pesticides

TOM:

Total organic matter

TOC:

Total organic carbon

GC-ECD:

Gas chromatograph-electron capture detector

GPC:

Gel permeation chromatography

HCH:

Hexachlorocyclohexanes

DDT:

Dichlorodiphenyltrichloroethanes

MWU:

Mann-Whitney U

Wt:

Wilcoxon test

KW:

Kruskal-Wallis

NGPBA:

National Guidelines for the Protection of Aquatic Biota

USEPA:

United States Environmental Protection Agency

CEQG:

Canadian Environmental Quality Guidelines

CCME:

Canadian Council of Ministers of the Environment

CAC:

Codex Alimentarius Commission

References

  • Aparicio VC, De Geronimo E, Marino D, Primost J, Carriquiriborde P, Costa JL (2013) Environmental fate of glyphosate and aminomethylphosphonic acid in surface waters and soil of agricultural basins. Chemosphere 93:1866–1873. https://doi.org/10.1016/j.chemosphere.2013.06.041

    Article  CAS  Google Scholar 

  • Araya PR, Hirt LM, Flores SA (2012) Composition and abundance of the fish community Yabotí Biosphere Reserve. Yabotí Stream, Misiones. Argentina. Revista AquaTIC 36:21–33 http://www.revistaaquatic.com/aquatic/art.asp?t=p&c=256

    Google Scholar 

  • Arias-Estevez M, Lopez-Periago E, Martinez-Carballo E, Simal-Gandara J, Mejuto JC, Garcia-Rio L (2008) The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agric Ecosyst Environ 123:247–260. https://doi.org/10.1016/j.agee.2007.07.011

    Article  CAS  Google Scholar 

  • Armas ED, Monteiro RTR, Antunes PM, Santos MA, Camargo PB, Abakerli RB (2007) Diagnóstico espaço-temporal da ocorrência de herbicidas nas águas superficiais e sedimentos do rio Corumbataí e principais afluentes. Quim Nova 30:1119–1127. https://doi.org/10.1590/S0100-40422007000500013

    Article  Google Scholar 

  • Avigliano E, Schenone NF (2015) Human health risk assessment and environmental distribution of trace elements, glyphosate, fecal coliform and total coliform in Atlantic Rainforest mountain rivers (South America). Microchem J 122:149–158. https://doi.org/10.1016/j.microc.2015.05.004

    Article  CAS  Google Scholar 

  • Avigliano E, Schenone NF (2016) Water quality in Atlantic rainforest mountain rivers (South America): quality indices assessment, nutrients distribution, and consumption effect. Environ Sci Pollut Res 23:115063–115075. https://doi.org/10.1007/s11356-016-6646-9

    Article  CAS  Google Scholar 

  • Avigliano E, Schenone N, Volpedo A, Goessler W, Fernández Cirelli A (2015) Heavy metals and trace elements in muscle of silverside (Odontesthes bonariensis) and water from different environments (Argentina): aquatic pollution and consumption effect approach. Sci Total Environ 506-507:102–108. https://doi.org/10.1016/j.scitotenv.2014.10.119

    Article  CAS  Google Scholar 

  • Avigliano E, Rosso JJ, Lijtmaer D, Ondarza P, Piacentini L, Izquierdo M, Cirigliano A, Romano G, Nuñez Bustos E, Porta A, Mabragaña E, Grassi E, Palermo J, Bukowski B, Tubaro P, Schenone NF (2019) Biodiversity and threats in non-protected areas: a multidisciplinary and multi-taxa approach focused on the Atlantic Forest. Heliyon 5:e02292. https://doi.org/10.1016/j.heliyon.2019.e02292

    Article  Google Scholar 

  • AWF (2013) Los bosques en peligro. ¿Cuál es el problema? Argentine Wildlife Foundation. Buenos Aires, Argentina. https://www.vidasilvestre.org.ar/. Accessed July 2020

  • Bartolomé L (2008) Perception, use and management of natural environment by a community of small rural producers settled within Yabotí Biosphere Reserve, Misiones. Secretaria de Investigacion y Posgrado, Universidad Nacional de Misiones. Misiones, Argentina. Informe Final, Proyecto 16H222.

  • Blocksom KA, Walters DM, Jicha TM, Lazorchak JM, Angradi TR, Bolgrien DW (2010) Persistent organic pollutants in fish tissue in the mid-continental great rivers of the United States. Sci Total Environ 408:1180–1189. https://doi.org/10.1016/j.scitotenv.2009.11.040

    Article  CAS  Google Scholar 

  • Bradshaw CJA, Giam X, Sodhi NS (2010) Evaluating the relative environmental impact of countries. PLoS One 5(5):e10440. https://doi.org/10.1371/journal.pone.0010440

    Article  CAS  Google Scholar 

  • Burtnik OJ (2006) Yerba Mate: Production Manual. INTA, AER. Ilust Santo Tomé, Corrientes. pp 1-52.

  • CAC (2003) Codex Alimentarius Commission. Report of the thirty-fifth session of the codex committee on pesticide residue, Rotterdam.

  • Calva LG, Torres MR (1998) Organochlorine pesticides. ContactoS 30:35–46

    Google Scholar 

  • Casciotta J, Almirón AE, Azpelicueta M (2003) A new species of Astyanax from the Río Uruguay Basin, Argentina (Characiformes, Characidae). Ichthyol Explor Freshwat 14:329–334

    Google Scholar 

  • Castilho JAA, Fenzl N, Guillen SM, Nascimento FS (2000) Organochlorine and organophosphorus pesticide residues in the Atoya River Basin, Chinandega, Nicaragua. Environ Pollut 110:523–533. https://doi.org/10.1016/s0269-7491(99)00277-8

    Article  CAS  Google Scholar 

  • CCME (2008) Canadian council of ministers of the environment. Canadian environmental quality guidelines. www.ccme.ca. Accessed Aug 2020

  • CCME (2010) Canadian Council of Ministers of the Environment. Canadian water quality guidelines for the protection of aquatic life. Endosulfan.1-896997-34-1. www.ceqg-rcqe.ccme.ca. Accessed Aug 2020

  • CEQG (2003) Canadian Environmental Quality Guidelines. Can Council of Ministers Environ. www.ccme.ca. Accessed Aug 2020

  • Chenurri K, Chakraborty P, Jayachandran S, Mohakud SK, Ishita I, Ramteke D, Padalkar PP, Babu PC, Babu KR (2020) Operationally defined mercury (Hg) species can delineate Hg bioaccumulation in mangrove sediment systems: a case study. Sci Total Environ 701:134842. https://doi.org/10.1016/j.scitotenv.2019.134842

    Article  CAS  Google Scholar 

  • Corradini E, Zilocchi H, Cuesta R, Segesso R, Jimenez ML, Musco JM (2005) Characterization of the tobacco production sector in the Republic Argentina. Third version. Buenos Aires, Argentina, pp 1–171

    Google Scholar 

  • Del Río JP, Maidana JA, Molteni A, Pérez M, Pochettino ML, Souilla L, Tito G, Turco E (2007) The role of the familiar ¨quintas¨ of the Pereyra Iraola Park (Bs. As., Argentina) in maintaining the agrobiodiversity. Kurtziana 33(1):217–226

    Google Scholar 

  • ETC Group. (2017). Who will feed us? The peasant food web vs. the industrial food chain. Retrieved from http://www.etcgroup.org/whowillfeedus. Accessed June 2020

  • Eyhérabide G (2012) Bases for handling the maize crop. Edition: Instituto Nacional de Tecnología Agropecuaria. INTA Pergamino, Buenos Aires, pp 1–299

    Google Scholar 

  • Ferrero BG (2013) Nature conservation as political action: two conflicts in the province of Misiones. Argentina, pp 33–55

  • Flores S, Hirt L, Arraya P (2015) Fish diversity and community structure of Yabotí stream, Yabotí Biosphere Reserve, Misiones, Argentina. Revista Mexicana de Biodiversidad 86:386–395. https://doi.org/10.1016/j.rmb.2015.04.004

    Article  Google Scholar 

  • Fontana JL (2005) Indigenous population in Yabotí Biosphere Reserve. Misiones Province, Argentina. Mbyá Community. Folia Botanica et Geobotanica Correntesiana n° 19, pp 1-39

  • Freire R, Schneider RM, Hernandes de Freitas F, Bonifácio CM, Granhen Tavares CR (2012) Monitoring of toxic chemical in the basin of Maringá stream. Acta SciTechnol 34:295–302. https://doi.org/10.4025/actascitechnol.v34i3.10302

    Article  CAS  Google Scholar 

  • Gebremariam SY, Beutel MW, Yonge DR, Flury M, Harsh JB (2012) Adsorption and desorption of chlorpyrifos to soils and sediments. Rev Environ Contam Toxicol 215:124–155. https://doi.org/10.1007/978-1-4614-1463-6_3

    Article  CAS  Google Scholar 

  • Giesy JP, Solomon KR, Coats JR, Dixon KR, Giddings JM, Kenaga EE (1999) Chlorpyrifos: ecological risk assessment in North American aquatic environments. In: Reviews of environmental contamination and toxicology. Springer, New York, pp 1–129

    Google Scholar 

  • Gonzalez M, Miglioranza KSB, Shimabukuro VM, Quiroz Londoño OM, Martinez DE, Aizpún JE, Moreno VJ (2012) Surface and groundwater pollution by organochlorine compounds in a typical soybean system from the south Pampa, Argentina. Environ Earth Sci 65:481–491. https://doi.org/10.1007/s12665-011-1328-x

    Article  CAS  Google Scholar 

  • Guitian O, Carballas T (1976) Soil analysis techniques. Santiago de Compostela, Spain, p 288

    Google Scholar 

  • Heinemann JA, Massaro M, Coray DS, Agapito-Tenfen SZ, Wen JD (2013) Sustainability and innovation in staple crop production in the US Midwest. Int J Agric Sustain 12:71–88. https://doi.org/10.1080/14735903.2013.806408

    Article  Google Scholar 

  • Huerga A, Lavilla I, Bendicho C (2005) Speciation of the immediately mobilisable As(III), As(V), MMA and DMA in river sediments by high performance liquid chromatography–hydride generation–atomic fluorescence spectrometry following ultrasonic extraction. Anal Chim Acta 534:121–128. https://doi.org/10.1016/j.aca.2004.11.025

    Article  CAS  Google Scholar 

  • IBEROMaB (2016) Información básica. http://rerb.oapn.es/. Accessed Mar 2020

  • INPE (2015) Atlas dos Remanescentes Florestais da Mata Atlántica - período 2013-2014, Fundaçao SOS Mata Atlántica. Instituto Nacional de Pesquisas Espaciais.

  • INTA (2004) Guía de pulverizaciones para cultivos de manzano, peral, frutales de carozo y vid, first ed. Instituto Nacional de Tecnología Agropecuaria Río Negro, Argentina.

  • Keith LH, Crumett W, Wentler G (1983) Principles of environmental analysis. Anal Chem 55:2210–2218

    Article  CAS  Google Scholar 

  • Kile D, Wershawand R, Chiou C (1999) Correlation of soil and sediment organic matter polarity to aqueous sorption of nonionic compounds. Environ Sci Technol 33:2053–2056. https://doi.org/10.1021/es980816o

    Article  CAS  Google Scholar 

  • Lee KT, Tanabe S, Koh CH (2001) Distribution of organochlorine pesticides in sediments from Kyeonggi Bay and nearby areas, Korea. Environ Pollut 114:207–213. https://doi.org/10.1016/S0269-7491(00)00217-7

    Article  CAS  Google Scholar 

  • Ligier HD, Polo HL, Matteio HR (1989) Potential water erosion in the province of Misiones; application of the universal soil loss equation to the soil map of the province of Misiones. Escale 1:50.000. EEA INTA Corrientes – Equipo de Relevamiento de Suelos – PNUD (Proyecto Arg. 85-019). Corrientes, Argentina, pp 1-48

  • Ligier D, Metteio H, Polo HL (2002) Erosión Hídrica Potencial en la Provincia de Misiones recurso naturales E.E.A. INTA. Corrientes, Argentina. https://www.agrositio.com.ar/noticia/38783-erosion-hidrica-potencial-en-la-provincia-de-misiones. Accessed 23 november 2004

  • Lucena C, Castro JB, Bertaco V (2013) Three new species of Astyanax from drainages of southern Brazil (Characiformes: Characidae). Neotropical Ichthyol 11:537–552. https://doi.org/10.1590/S1679-62252013000300007

    Article  Google Scholar 

  • Márquez S (2001) Evaluation of some effects of pollution per application of Lorsban (chlorpyrifos) in soil and cropping of Kikuyu (Pennisetum clandestinum hochst ex chiov) in Antioqueño north. Facultad de Ingeniería Universidad de Antioquia. Medellín, Colombia, pp 1–143

    Google Scholar 

  • Metcalfe TL, Metcalfe CD (1997) The trophodynamics of PCBs including mono and non-ortho congeners in the food web of North-Central Lake Ontario. Sci Total Environ 201:245–272. https://doi.org/10.1016/S0048-9697(97)84061-2

    Article  CAS  Google Scholar 

  • Miglioranza KSB, Gonzalez Sagrario MA, Aizpún de Moreno JE, Moreno VJ, Escalante AH, Osterrieth ML (2002) Agricultural soil as a potential source of input of organochlorine pesticides into a nearby pond. Environ Sci Pol 9:250–256. https://doi.org/10.1065/esDr2001.06.070

    Article  CAS  Google Scholar 

  • Miglioranza KSB, Aizpún de Moreno JE, Moreno VJ (2003) Dynamics of organochlorine pesticides in soils from the southeastern region of Argentina. Environ Toxicol Chem 22:712–717. https://doi.org/10.1002/etc.5620220405

    Article  CAS  Google Scholar 

  • Miglioranza KSB, Gonzalez M, Ondarza PM, Shimabukuro VM, Isla F, Fillmann G, Aizpún JE, Moreno VJ (2013) Assessment of Argentinean Patagonia pollution: PBDEs, OCPs and PCBs in different matrices from the Río Negro. Sci Total Environ 452-453:275–285. https://doi.org/10.1016/j.scitotenv.2013.02.055

    Article  CAS  Google Scholar 

  • Milford MH (1997) Soils and soils science: laboratory exercises. 4th Edition. Texas A&M University. Kendall/Hunt Publishing Company Dubuque, Iowa

  • Mittermeier R, Gil P, Hoffman M, Pilgrim J, Brooks T, Mittermeier C, Lamoreux J, Fonseca G (2004) Hotspots revisited: earth’s biologically richest and most endangered ecoregions. Cemex, Sierra Madre, pp 1–200

    Google Scholar 

  • Moraes R, Elfvendahl S, Kyin H, Molander S (2003) Pesticides residues in rivers of a Brazilian Rain Forest Reserve: assessing potential concern for effects on aquatic life and human health. Ambio 32:258–263. https://doi.org/10.1579/0044-7447-32.4.258

    Article  Google Scholar 

  • Myers N, Mittermeler RA, Mittermeler CG, Da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858. https://doi.org/10.1038/35002501

    Article  CAS  Google Scholar 

  • NGPBA (2005) Desarrollo de niveles guía nacionales para la protección de la biota acuática. Republica Argentina, Subsecretaria de Recursos Hídricos de la Nación. www.argentina.gob.ar. Accessed Jul 2020

  • Nicholls CI, Altieri MA (2019) Agroecological bases for the adaptation of agriculture to climate changes. Cuadernos de Investigación UNED (ISSN digital: 1659-441X) 11:55-61.

  • NMFS. (2008). National Marine Fisheries Service Endangered Species Section 7 Consultation Biological Opinion. EPA registration of pesticides containing chlorpyrifos, diazinon, and malathion (November 18, 2008). National Marine Fisheries Service. http://www.nmfs.noaa.gov/pr/pdfs/pesticide_biop.pdf.

  • Ondarza PM, Miglioranza KSB, Gonzalez M, Shimabukuro VM, Aizpun JE, Moreno VJ (2010) Organochlorine compounds in common carp (Cyprinus carpio) from Patagonia Argentina. J Braz Soc Ecotoxicol 5:41–47. https://doi.org/10.5132/jbse.2010.01.007

    Article  Google Scholar 

  • Ondarza PM, Gonzalez M, Fillmann G, Miglioranza KSB (2012) Increasing levels of persistent organic pollutants in rainbow trout (Oncorhynchus mykiss) following a mega-flooding episode in the Negro River basin, Argentinean Patagonia. Sci Total Environ 419:233–239. https://doi.org/10.1016/j.scitotenv.2012.01.001

    Article  CAS  Google Scholar 

  • Ondarza PM, Gonzalez M, Fillmann G, Miglioranza KSB (2014) PBDEs, PCBs and organochlorine pesticides distribution in edible fish from Negro River basin, Argentinean Patagonia. Chemosphere 94:135–142. https://doi.org/10.1016/j.chemosphere.2013.09.064

    Article  CAS  Google Scholar 

  • Piccolo GA, Rivera Flores SE (1985) Tea. Cultivation and processing. Catalog Technology. Cerro Azul, EEA Misiones, INTA. Miscelánea 6, pp 1-82

  • Racke K (1993) Environmental fate of chlorpyrifos. Environ Contamin Toxicol 131:1–154

    CAS  Google Scholar 

  • Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM (2009) The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142:1141–1153. https://doi.org/10.1016/j.biocon.2009.02.021

    Article  Google Scholar 

  • Ribeiro MC, Martensen AC, Metzger JP, Tabarelli M, Scarano F, Fortin MJ (2011) The Brazilian Atlantic Forest: a shrinking biodiversity hotspot. Biodiversity Hotspots, pp 405-434. doi:https://doi.org/10.1007/978-3-642-20992-5_21

  • Romero L (2009) Estimation of the temporal evolution of superficial runoff in different land use condition in the Itacaruare stream, Misiones Province, Argentina. Facultad de Ciencias Agrarias y Forestales. Universidad Nacional de La Plata. La Plata, Argentina, pp 1–163

    Google Scholar 

  • Rosso J, Mabragaña E, Avigliano E, Schenone N, Astarloa J (2013) Short and temporal scale patterns of fish assemblages in a subtropical rainforest mountain stream. Stud Neotropical Fauna Environ 48:199–209. https://doi.org/10.1080/01650521.2014.890850

    Article  Google Scholar 

  • Sabljic A, Gusten H, Verhaar H, Hermens J (1995) QSAR modelling of soil sorption. Improvements and systematics of log K, vs. log Kow correlations. Chemosphere 31:4489–4514. https://doi.org/10.1016/0045-6535(95)00327-5

    Article  CAS  Google Scholar 

  • SAGPyA (1998) Secretaría de Agricultura Ganadería, Pesca y Alimentos, Ministerio de la Producción de la República Argentina, Resolución 513/98. http://www.sagpya.mecon.gov.ar/. Access in: 15 Apr. 2008.

  • Sampeia Y, Uraokaa SI, Onoa T, Dettman DL (2019) Polycyclic aromatic hydrocarbons (PAHs) in sediment cores from lakes Shinji and Nakaumi, SW Japan: A proxy of recent fire events in the watershed. Estuar Coast Shelf Sci 226:106–269. https://doi.org/10.1016/j.ecss.2019.106269

    Article  CAS  Google Scholar 

  • Schmidt W, Hapeman C, Fettinger J, Rice C, Bilboulian S (1997) Structure and asymmetry in the isomeric conversion of β- to α- endosulfan. J Agric Food Chem 45:1023–1026. https://doi.org/10.1021/jf970020t

    Article  CAS  Google Scholar 

  • Schumacher BA (2002) ¨Methods for the determination of total organic carbon (TOC) in soil and sediments¨ EPA, Environmental Sciences Division National Exposure Research Laboratory, Las Vegas, E.E.U.U, pp 1-25

  • SENASA (2011) Servicio Nacional de Sanidad y Calidad Agroalimentaria. Endosulfán: nuevas medidas para la importación, elaboración y uso en Argentina, Buenos Aires (Resolution 511/2011).

  • Shanshan D, Jinling D, Xiangyun W, Peipei Q, Zhiwei W, Hao X, Hu Z, Xinquan W, Jiajun H (2019) Bioaccumulation of dichlorodiphenyltrichloroethanes (DDTs) in carp in a water/sediment microcosm: important role of sediment particulate matter and bioturbation. Environ Sci Pollut Res 26:9500–9507. https://doi.org/10.1007/s11356-019-04426-5

    Article  CAS  Google Scholar 

  • Silva Barni MF, Ondarza PM, Gonzalez M, Da Cuña R, Meijide F, Grosman F, Miglioranza KS (2016) Persistent organic pollutants (POPs) in fish with different feeding habits inhabiting a shallow lake ecosystem. Sci Total Environ 550:900–909. https://doi.org/10.1016/j.scitotenv.2016.01.176

    Article  CAS  Google Scholar 

  • Singh PB, Singh V (2008) Pesticide bioaccumulation and plasma sex steroids in fishes during the breeding phase from North India. Environ Toxicol Pharmacol 25:342–350. https://doi.org/10.1016/j.etap.2007.11.003

    Article  CAS  Google Scholar 

  • Soto DA, Luque FA, Gnazzo V (2019) Fishes for human consumption as indicators of environmental pollution by pesticides in northern Misiones, Argentina. Revista Argentina de Salud Pública 11:7–14

    Google Scholar 

  • Tanabe S, Ramesh A, Sakashita D, Iwata H, Tatsukawa R, Mohan D, Subramanian AN (1991) Fate of HCH (BHC) in tropical paddy field: application test in South India. Int J Environ Anal Chem 45:45–53. https://doi.org/10.1080/03067319108232937

    Article  CAS  Google Scholar 

  • UNEP (2011) Invitation to submit information on chemical and non-chemical alternatives to endosulfan - Relevance: 1008 Having amended the Stockholm Convention to list endosulfan in Annex A. http://www.pops.int/TheConvention/POPsReviewCommittee/Meetings/POPRC6/POPRC6Followupcommunications/Endosulfan/tabid/2497/Default.aspx - 06/01/2016. Accessed July 2020

  • UNESCO (2011) MAB Biosphere Reserve Information. Argentina Yaboti

  • USEPA (2019) US Environmental Protection Agency. Risk-based concentration table, Washington. http://semspub.epa.gov/work/03/2220569.pdf. Accessed Aug 2020

  • Van der Oost R, Beyer J, Nico P, Vermeulen E (2003) Fish bioaccumulation and biomarkers in environmental risk assessments. Environ Toxicol Pharmacol 13:57–149. https://doi.org/10.1016/S1382-6689(02)00126-6

    Article  Google Scholar 

  • Vilella FS, Becker FG, Hartz SM (2002) Diet of Astyanax species (Teleostei, Characidae) in an Atlantic Forest River in Southern Brazil. Braz Arch Biol Technol 45:223–232

    Article  Google Scholar 

  • Vryzas Z, Vassiliou G, Alexoudis C, Papadopoulou-Mourkidou E (2009) Spatial and temporal distribution of pesticide residues in surface waters in northeastern Greece. Water Res 43:1–10. https://doi.org/10.1016/j.watres.2008.09.021

    Article  CAS  Google Scholar 

  • WHO (2011) World Health Organization. Guidelines for drinking-water quality: 4th edition incorporating first addendum.

  • Zervudakis M, Rashev B, Germer C (2007) Review of ecosystem services and the values they provide. Rhodopes Project. A joint initiative of the NDP and the Ministry of Agriculture and Forestry of Bulgaria.

Download references

Acknowledgements

This research was possible thanks to the support provided by Fundación Bosques Nativos Argentinos para la Biodiversidad and Centro de Investigaciones Antonia Ramos (CIAR). The authors wish to thank the Ministerio de Ecología y Recursos Naturales Renovables de la Provincia de Misiones for their logistical support. We are also grateful to F Castia, E Benitez, L Rojas, R Villalba, H Lory, G Ibarra, E Taron, F Ramirez, and V Soley for their invaluable collaboration in the field. We are grateful to A Fabrizio, S Arreghini, C Weigandt, and G Arnedilo for their collaboration in determining the TOC and TOM from the sediment samples. The authors also thank the Universidad de Buenos Aires for the Eugenia Rolón doctoral scholarship. We thank the editor and three anonymous reviewers for their constructive comments, which helped us to improve the manuscript.

Funding

This study was supported by Agencia Nacional de Promoción Científica y Tecnológica (PICT 2015-1823 and 2015-2160) and Universidad de Buenos Aires (UBACyT 20020150100052BA).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: EA funding acquisition and supervision; AVV and EA name. Sample collection was performed by JJ, EM, and EA. Material preparation was performed by ER. Chemical analyses were performed by ER, PMO, and KM. The first draft of the manuscript was written by ER and EA. All authors read, commented, and approved the final manuscript.

Corresponding author

Correspondence to Esteban Avigliano.

Ethics declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 65.6 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rolón, E., Ondarza, P.M., Miglioranza, K.S.B. et al. Multi-matrix approach reveals the distribution of pesticides in a multipurpose protected area from the Atlantic Rainforest: potential risk for aquatic biota and human health?. Environ Sci Pollut Res 28, 34386–34399 (2021). https://doi.org/10.1007/s11356-021-12699-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-12699-y

Keywords

Navigation