Skip to main content

Advertisement

Log in

Associations between concentrations of selected perfluoroalkyl acids and concentrations of blood cadmium, lead, and total mercury

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Data (N = 2552) from National Health and Nutrition Examination Survey for US adults aged ≥ 20 years for 2011–2016 were analyzed to estimate the associations between the concentrations of blood cadmium, lead, and total mercury and the concentrations of seven perfluoroalkyl acids (PFAA), namely, 2-(N-Methyl-perfluorooctane sulfonamido) acetic acid (MPAH), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnDA), perfluorohexane sulfonic acid (PFHxS), and perfluorooctane sulfonic acid (PFOS). Concentrations of blood cadmium were negatively associated with the concentrations of PFHxS (β = − 0.05428, p < 0.01) and PFOS (β = − 0.0212, p = 0.02). Concentrations of blood lead were positively associated with the concentrations of MPAH (β = 0.03301, p < 0.01), PFOA (β = 0.04783, p = 0.01), PFNA (β = 0.11761, p < 0.01), PFDA (β = 0.08007, p < 0.01), PFUA (β = 0.11382, p < 0.01), and PFOS (β = 0.04996, p = 0.02). Percent increases in the concentration of blood lead were 0.32%, 0.46%, 1.13%, 0.77%, 1.09%, and 0.48% for 10% increases in the concentrations of MPAH, PFOA, PFNA, PFDA, PFUA, and PFOS, respectively. Concentrations of blood total mercury were positively associated with the concentrations of PFNA (β = 0.37105, p < 0.01), PFDA (β = 0.46875, p < 0.01), PFUA (β = 0.56934, p < 0.01), and PFOS (β = 0.17557, p < 0.01). Percent increases in the concentration of blood total mercury were 3.6%, 4.57%, 5.58%, and 1.69% for 10% increases in the concentrations of PFNA, PFDA, PFUA, and PFOS, respectively. Associations between the concentrations of PFAAs with blood total mercury were substantially stronger than the concentrations with blood lead. Higher the carbon chain length for PFAAs, stronger were the associations between PFAAs with lead and mercury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

All data used for analysis for this study are in public domain and available free of charge at www.cdc.gov/nchs/nhanes/index.htm

References

Download references

Author information

Authors and Affiliations

Authors

Contributions

The responsibility of executing every aspect of this study was borne by Ram B. Jain. This included conceptualizing and designing the study; generating study database; deciding the methods of statistical analysis; conducting the data analysis; generating, tabulating, and interpreting the study results; and ultimately, writing, reviewing, revising, and finalizing the study manuscript.

Corresponding author

Correspondence to Ram B. Jain.

Ethics declarations

Ethical approval

Since this study did not recruit any human and/or animal subjects, this section does not apply.

Consent to participate

Since this study did not recruit any human subjects, this section does not apply.

Consent to publish

Since this study is not attempting to re-publish/publish any third party or author’s previously published material, this section does not apply.

Competing interests

The author declares that he has no competing interests.

Additional information

Responsible Editor: Lotfi Aleya

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, R.B. Associations between concentrations of selected perfluoroalkyl acids and concentrations of blood cadmium, lead, and total mercury. Environ Sci Pollut Res 28, 26537–26544 (2021). https://doi.org/10.1007/s11356-021-12493-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-12493-w

Keywords

Navigation