Bleaching effect in Sarcophyton spp. soft corals—is there a correlation to their diterpene content?

Abstract

Rising seawater temperature is one of the greatest threats to the persistence of coral reefs. While great efforts have been made to understand the metabolic costs of thermal acclimation, the exact roles of many secondary metabolites involved in the immediate response exhibited by soft corals remain largely unknown. Herein, an untargeted metabolomics approach using ultra-performance liquid chromatography coupled to high-resolution mass spectrometry (UPLC–MS) was employed to investigate thermal stress-induced modifications to the de novo synthesis of secondary metabolites in two soft coral species, Sarcophyton ehrenbergi and S. glaucum. Exposure to elevated temperature resulted in symbiont photoinhibition primarily via either damage to photosystem II (PSII) or the loss of algal symbionts during coral bleaching. This was suggested by a decrease in pulse amplitude modulated (PAM) measurements of corals incubated at different temperatures. Thermal stress was also found to impair the production of diterpenoid secondary metabolites in soft corals. Principally, reduction in the levels of a number of diterpenes, viz. sarcophytoxide and deoxysarcophytoxide, in heat stressed S. ehrenbergi and S. glaucum was observed indicative that thermal acclimation is energetically costly and will necessitate downstream changes in secondary metabolic pathways. Our data suggest that, while the host controls the production of ecologically important terpenes, when energetic contribution from the algal symbiont is reduced or absent as a result of a bleaching event, energy reserves may be insufficient to maintain the production of such energetically cost chemicals. This study provides for the first time a holistic assessment of secondary metabolite changes imposed in soft corals during exposure and acclimation to elevated temperatures.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Aceret TL, Sammarco PW, Coll JC (1995) Toxic effects of alcyonacean diterpenes on scleractinian corals. J Exp Mar Biol Ecol 188:63–78. https://doi.org/10.1016/0022-0981(94)00186-H

    CAS  Article  Google Scholar 

  2. Anthony KR, Kline DI, Diaz-Pulido G, Dove S, Hoegh-Guldberg O (2008) Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc Natl Acad Sci U S A 105:17442–17446. https://doi.org/10.1073/pnas.0804478105

    Article  Google Scholar 

  3. Berkelmans R, Oliver JK (1999) Large-scale bleaching of corals on the Great Barrier Reef. Coral Reefs 18:55–60. https://doi.org/10.1007/s003380050154

    Article  Google Scholar 

  4. Bonnard I, Jhaumeer-Laulloo SB, Bontemps N, Banaigs B, Aknin M (2010) New lobane and cembrane diterpenes from two Comorian soft corals. Marine Drugs 8:359–372. https://doi.org/10.3390/md8020359

    CAS  Article  Google Scholar 

  5. Coll JC, Bowden B, König GM, Braslau R, Price IR (2010) Studies of Australian soft corals. XXXX.1 The Natural Products Chemistry of Alcyonacean Soft Corals with Special Reference to the Genus Lobophytum vol 95. https://doi.org/10.1002/bscb.19860950909

  6. Coll JC, Price IR, König GM, Bowden BF (1987) Algal overgrowth of alcyonacean soft corals. Mar Biol 96:129–135. https://doi.org/10.1007/bf00394846

    Article  Google Scholar 

  7. Coll JC, Tapiolas DM, Bowden BF, Webb L, Marsh H (1983) Transformation of soft coral (Coelenterata: Octocorallia) terpenes by Ovula ovum (Mollusca: Prosobranchia). Mar Biol 74:35–40. https://doi.org/10.1007/bf00394272

    Article  Google Scholar 

  8. Davy SK, Allemand D, Weis VM (2012) Cell biology of cnidarian-dinoflagellate symbiosis. Microbiol Mol Biol Rev 76:229–261. https://doi.org/10.1128/MMBR.05014-11

    CAS  Article  Google Scholar 

  9. Dinesen ZD (1983) Patterns in the distribution of soft corals across the central Great Barrier Reef. Coral Reefs 1:229–236. https://doi.org/10.1007/bf00304420

    Article  Google Scholar 

  10. Dumas ME, Kinross J, Nicholson JK (2014) Metabolic phenotyping and systems biology approaches to understanding metabolic syndrome and fatty liver disease. Gastroenterology 146:46–62. https://doi.org/10.1053/j.gastro.2013.11.001

    Article  Google Scholar 

  11. El Sayed KA, Hamann MT, Waddling CA, Jensen C, Lee SK, Dunstan CA, Pezzuto JM (1998) Structurally novel bioconversion products of the marine natural product sarcophine effectively inhibit JB6 cell transformation. J Organ Chem 63:7449–7455

    Article  Google Scholar 

  12. Fabricius KE, Mieog JC, Colin PL, Idip D, van Oppen MJ (2004) Identity and diversity of coral endosymbionts (zooxanthellae) from three Palauan reefs with contrasting bleaching, temperature and shading histories. Mol Ecol 13:2445–2458. https://doi.org/10.1111/j.1365-294X.2004.02230.x

    CAS  Article  Google Scholar 

  13. Farag MA, Meyer A, Ali SE, Salem MA, Giavalisco P, Westphal H, Wessjohann LA (2018) Comparative metabolomics approach detects stress-specific responses during coral bleaching in soft corals. J Proteome Res 17:2060–2071. https://doi.org/10.1021/acs.jproteome.7b00929

    CAS  Article  Google Scholar 

  14. Farag MA, Porzel A, al-Hammady MA, Hegazy MEF, Meyer A, Mohamed TA, Westphal H, Wessjohann LA (2016) Soft corals biodiversity in the Egyptian Red Sea: a comparative MS and NMR metabolomics approach of wild and aquarium grown species. J Proteome Res 15:1274–1287. https://doi.org/10.1021/acs.jproteome.6b00002

    CAS  Article  Google Scholar 

  15. Faulkner DJ (2000) Marine natural products. Nat Prod Rep 17:7–55

    CAS  Article  Google Scholar 

  16. Feller M, Rudi A, Berer N, Goldberg I, Stein Z, Benayahu Y, Schleyer M, Kashman Y (2004) Isoprenoids of the soft coral Sarcophyton glaucum: nyalolide, a new biscembranoid, and other terpenoids. J Nat Prod 67:1303–1308. https://doi.org/10.1021/np040002n

    CAS  Article  Google Scholar 

  17. Fleury BG, Coll JC, Sammarco PW, Tentori E, Duquesne S (2004) Complementary (secondary) metabolites in an octocoral competing with a scleractinian coral: effects of varying nutrient regimes. J Exp Mar Biol Ecol 303:115–131. https://doi.org/10.1016/j.jembe.2003.11.006

    CAS  Article  Google Scholar 

  18. Fleury B, Coll JC, Tentori E, Duquesne S, Figueiredo L (2000) Effect of nutrient enrichment on the complementary (secondary) metabolite composition of the soft coral Sarcophyton ehrenbergi (Cnidaria: Octocorallia: Alcyonaceae) of the Great Barrier Reef vol 136. https://doi.org/10.1007/s002270050009

  19. Gershenzon J (1994) Metabolic costs of terpenoid accumulation in higher plants. J Chem Ecol 20:1281–1328. https://doi.org/10.1007/bf02059810

    CAS  Article  Google Scholar 

  20. Gomaa MN et al. (2015) Antibacterial effect of the red sea soft coral Sarcophyton trocheliophorum vol 30. https://doi.org/10.1080/14786419.2015.1040991

  21. Hanson JR (2009) Diterpenoids Natural product reports 26:1156-1171 doi:https://doi.org/10.1039/b807311m

  22. Hegazy ME, Gamal Eldeen AM, Shahat AA, Abdel-Latif FF, Mohamed TA, Whittlesey BR, Pare PW (2012) Bioactive hydroperoxyl cembranoids from the Red Sea soft coral Sarcophyton glaucum. Marine Drugs 10:209–222. https://doi.org/10.3390/md10010209

    CAS  Article  Google Scholar 

  23. Hillyer KE, Dias D, Lutz A, Roessner U, Davy SK (2017) 13C metabolomics reveals widespread change in carbon fate during coral bleaching. Metabolomics 14:12. https://doi.org/10.1007/s11306-017-1306-8

    CAS  Article  Google Scholar 

  24. Jones RJ, Hoegh-Guldberg O, Larkum AWD, Schreiber U (1998) Temperature-induced bleaching of corals begins with impairment of the CO2 fixation mechanism in zooxanthellae. Plant Cell Environ 21:1219–1230. https://doi.org/10.1046/j.1365-3040.1998.00345.x

    CAS  Article  Google Scholar 

  25. Kaplan F et al (2004) Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol 136:4159–4168. https://doi.org/10.1104/pp.104.052142

    CAS  Article  Google Scholar 

  26. Kneeland J, Hughen K, Cervino J, Hauff B, Eglinton T (2013) Lipid biomarkers in Symbiodinium dinoflagellates: new indicators of thermal stress. Coral Reefs 32:923–934. https://doi.org/10.1007/s00338-013-1076-3

    Article  Google Scholar 

  27. Lichtenthaler HK, Buschmann C, Knapp M (2005) How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio RFd of leaves with the PAM fluorometer. Photosynthetica 43:379–393. https://doi.org/10.1007/s11099-005-0062-6

    CAS  Article  Google Scholar 

  28. Michalek-Wagner K, Bowden BF (2000) Effects of bleaching on secondary metabolite chemistry of Alcyonacean soft corals. J Chem Ecol 26:1543–1562. https://doi.org/10.1023/a:1005525110045

    CAS  Article  Google Scholar 

  29. Paul VJ, Van Alstyne KL (1988) Chemical defense and chemical variation in some tropical Pacific species of Halimeda (Halimedaceae; Chlorophyta). Coral Reefs 6:263–269. https://doi.org/10.1007/bf00302022

    CAS  Article  Google Scholar 

  30. Peng B, Li H, Peng XX (2015) Functional metabolomics: from biomarker discovery to metabolome reprogramming. Protein Cell 6:628–637. https://doi.org/10.1007/s13238-015-0185-x

    CAS  Article  Google Scholar 

  31. Riekeberg E, Powers R (2017) New frontiers in metabolomics: from measurement to insight. F1000Research 6:1148. https://doi.org/10.12688/f1000research.11495.1

    CAS  Article  Google Scholar 

  32. Rosenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenberg I (2007) The role of microorganisms in coral health, disease and evolution. Nat Rev Microbiol 5:355–362. https://doi.org/10.1038/nrmicro1635

    CAS  Article  Google Scholar 

  33. Sammarco PW, Strychar KB (2013) Responses to high seawater temperatures in zooxanthellate octocorals. PLoS One 8:e54989. https://doi.org/10.1371/journal.pone.0054989

    CAS  Article  Google Scholar 

  34. Strychar KB, Coates M, Sammarco PW, Piva TJ, Scott PT (2005) Loss of Symbiodinium from bleached soft corals Sarcophyton ehrenbergi, Sinularia sp. and Xenia sp. J Exp Mar Biol Ecol 320:159–177. https://doi.org/10.1016/j.jembe.2004.12.039

    Article  Google Scholar 

  35. Tchernov D, Gorbunov MY, de Vargas C, Narayan Yadav S, Milligan AJ, Haggblom M, Falkowski PG (2004) Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals. Proc Natl Acad Sci U S A 101:13531–13535. https://doi.org/10.1073/pnas.0402907101

    CAS  Article  Google Scholar 

  36. Weis VM (2008) Cellular mechanisms of Cnidarian bleaching: stress causes the collapse of symbiosis. J Exp Biol 211:3059–3066. https://doi.org/10.1242/jeb.009597

    CAS  Article  Google Scholar 

  37. Wooldridge SA (2010) Is the coral-algae symbiosis really ‘mutually beneficial’ for the partners? BioEssays 32:615–625. https://doi.org/10.1002/bies.200900182

    Article  Google Scholar 

  38. Wylie CR, Paul VJ (1989) Chemical defenses in three species of Sinularia (Coelenterata, Alcyonacea): effects against generalist predators and the butterflyfish Chaetodon unimaculatus Bloch. J Exp Mar Biol Ecol 129:141–160. https://doi.org/10.1016/0022-0981(89)90053-1

    Article  Google Scholar 

Download references

Acknowledgments

Dr. Mohamed Farag thanks Cristopher Bottchner, IPB, Germany, for assistance with LC-MS. The study was further supported by the Leibniz Center for Tropical Marine Research, Bremen, Germany.

Funding

Dr. Farag acknowledges the funding received from the Hanse-Wissenschaftskolleg (HWK) and Alexander von Humboldt (AVH), Germany.

Author information

Affiliations

Authors

Contributions

MF and AM designed the study and performed the experimental part; MF performed extraction and identified metabolites by LC-MS; SA performed the modeling, and was a major contributor in writing the manuscript. All authors revised the manuscript.

Corresponding author

Correspondence to Mohamed A. Farag.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: V. V.S.S. Sarma

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Farag, M.A., Meyer, A. & Ali, S.E. Bleaching effect in Sarcophyton spp. soft corals—is there a correlation to their diterpene content?. Environ Sci Pollut Res (2021). https://doi.org/10.1007/s11356-021-12483-y

Download citation

Keywords

  • Thermal stress
  • Sarcophyton ehrenbergi
  • S. glaucum
  • Metabolomics
  • PAM measurements