Skip to main content

Advertisement

Log in

Bioenergy research under climate change: a bibliometric analysis from a country perspective

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Development of bioenergy will be a key component for meeting increasing energy demands while mitigating global warming. With the intent of identifying current topics of major interest and development of research directions in the field of bioenergy under climate change, we conducted a bibliometric analysis and network analysis from a country perspective based on 3050 articles published since 1999 derived from the Scopus database. The results indicated that USA, UK, and Germany led other countries in terms of number of publications (1006, 366, and 280 articles, respectively) and h-index (greater than 50) in this research area. The USA has also produced a large number of articles in highly respected journals. Compared with developed countries, some developing countries (e.g., China, India, and Brazil) have a larger proportion of publications which are cited less than 10 times and researchers who have academic age of 1 year. The number of publications dealing with some of these research topics coming from developing countries has lagged behind the number of similar publications coming from developed countries. In spite of this, research on sustainable energy systems is still needed for developing countries to further establish feasible systems that can effectively promote global economic development and strengthen climate change mitigation efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data availability

This work uses Scopus data provided by Elsevier B.V. (https://www.scopus.com/search/form.uri?display=basic). The codes that support the findings of this study are available from the first author upon reasonable request.

References

  • Aditiya HB, Mahlia TMI, Chong WT, Nur H, Sebayang AH (2016) Second generation bioethanol production: a critical review. Renew Sust Energ Rev 66:631–653

    Article  CAS  Google Scholar 

  • Aria M, Cuccurullo C (2017) bibliometrix: an R-tool for comprehensive science mapping analysis. J Inf Secur 11:959–975

    Google Scholar 

  • Bahadar A, Khan MB (2013) Progress in energy from microalgae: a review. Renew Sust Energ Rev 27:128–148

    Article  CAS  Google Scholar 

  • Bauen A, Berndes G, Junginger M, Londo M, Vuille F (2009) Bioenergy – a sustainable and reliable energy source. France: the International Energy Agency (IEA)

  • Bentsen NS, Felby C (2012) Biomass for energy in the European Union – a review of bioenergy resource assessments. Biotechnol Biofuels 2012(5):25 http://www.biotechnologyforbiofuels.com/content/5/1/25

    Article  Google Scholar 

  • Bessou C, Ferchaud F, Gabrielle B, Mary B (2011) Biofuels, greenhouse gases and climate change. A review. Agron Sustain Dev 31:1–79

    Article  CAS  Google Scholar 

  • Carneiro ML, Pradelle F, Braga SL, Gomes MS, Martins AR, Turkovics F, Pradelle R (2017) Potential of biofuels from algae: comparison with fossil fuels, ethanol and biodiesel in Europe and Brazil through life cycle assessment (LCA). Renew Sust Energ Rev 73:632–653

    Article  CAS  Google Scholar 

  • Chen H, Ho Y-S (2015) Highly cited articles in biomass research: a bibliometric analysis. Renew Sust Energ Rev 49:12–20

    Article  Google Scholar 

  • Creutzig F, Ravindranath NH, Berndes G, Bolwig S, Bright R, Cherubini F, Chum H, Corbera E, Delucchi M, Faaij A, Fargione J, Haberl H, Heath G, Lucon O, Plevin R, Popp A, Robledo-Abad C, Rose S, Smith P, Stromman A, Suh S, Masera O (2015) Bioenergy and climate change mitigation: an assessment. GCB Bioenergy 7:916–944

    Article  CAS  Google Scholar 

  • Duarte CM, Wu JP, Xiao X, Bruhn A, Krause-Jensen D (2017) Can seaweed farming play a role in climate change mitigation and adaptation? Front Mar Sci 4:100. https://doi.org/10.3389/fmars.2017.00100

    Article  Google Scholar 

  • Dutta K, Daverey A, Lin J-G (2014) Evolution retrospective for alternative fuels: first to fourth generation. Renew Energy 69:114–122

    Article  CAS  Google Scholar 

  • Edwards J, Othman M, Burn S (2015) A review of policy drivers and barriers for the use of anaerobic digestion in Europe, the United States and Australia. Renew Sust Energ Rev 52:815–828

    Article  Google Scholar 

  • El Akkari M, Réchauchère O, Bispo A, Gabrielle B, Makowski D (2018) A meta-analysis of the greenhouse gas abatement of bioenergy factoring in land use changes. Sci Rep 8:8563. https://doi.org/10.1038/s41598-018-26712-x

    Article  CAS  Google Scholar 

  • Harris Z, Spake R, Taylor G (2015) Land use change to bioenergy: a meta-analysis of soil carbon and GHG emissions. Biomass Bioenergy 82:27–39

    Article  CAS  Google Scholar 

  • Hirsch JE (2005) An index to quantify an individual's scientific research output. Proc Natl Acad Sci U S A 102:16569–16572

    Article  CAS  Google Scholar 

  • Hoekman SK, Broch A, Robbins C, Ceniceros E, Natarajan M (2012) Review of biodiesel composition, properties, and specifications. Renew Sust Energ Rev 16:143–169

    Article  CAS  Google Scholar 

  • IRENA (2020) Recycle: Bioenergy. Circular Carbon Economy report 05. The United Arab Emirates: the International Renewable Energy Agency (IRENA)

  • Jackson R, Friedlingstein P, Andrew R, Canadell J, Le Quéré C, Peters G (2019) Persistent fossil fuel growth threatens the Paris Agreement and planetary health. Environ Res Lett 14:121001. https://doi.org/10.1088/1748-9326/ab57b3

    Article  CAS  Google Scholar 

  • Khan MI, Shin JH, Kim JD (2018) The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb Cell Factories 17:36. https://doi.org/10.1186/s12934-018-0879-x

    Article  Google Scholar 

  • Kline KL, Msangi S, Dale VH, Woods J, Souza GM, Osseweijer P, Clancy JS, Hilbert JA, Johnson FX, McDonnell PC, Mugera HK (2017) Reconciling food security and bioenergy: priorities for action. GCB Bioenergy 9:557–576

    Article  Google Scholar 

  • Kumar A, Kumar N, Baredar P, Shukla A (2015) A review on biomass energy resources, potential, conversion and policy in India. Renew Sust Energ Rev 45:530–539

    Article  Google Scholar 

  • Li J, Wang L, Liu Y, Song Y, Zeng P, Zhang Y (2020) The research trends of metal-organic frameworks in environmental science: a review based on bibliometric analysis. Environ Sci Pollut Res 27:19265–19284

    Article  Google Scholar 

  • Liu WS, Gu MD, Hu GY, Li C, Liao HC, Tang L, Shapira P (2014) Profile of developments in biomass-based bioenergy research: a 20-year perspective. Scientometrics 99:507–521

    Article  Google Scholar 

  • Liu C, Xiao Y, Xia X, Zhao X, Peng L, Srinophakun P, Bai F (2019) Cellulosic ethanol production: progress, challenges and strategies for solutions. Biotechnol Adv 37:491–504

    Article  CAS  Google Scholar 

  • Lynd L, Sow M, Chimphango A, Cortez L, Cruz C, Elmissiry M, Laser M, Mayaki I, Moraes M, Nogueira L, Wolfaardt G, Woods J, van Zyl W (2015) Bioenergy and African transformation. Biotechnol Biofuels 8:18. https://doi.org/10.1186/s13068-014-0188-5

    Article  CAS  Google Scholar 

  • Mao G, Zou H, Chen G, Du H, Zuo J (2015) Past, current and future of biomass energy research: a bibliometric analysis. Renew Sust Energ Rev 52:1823–1833

    Article  Google Scholar 

  • Mao GZ, Huang N, Chen L, Wang HM (2018) Research on biomass energy and environment from the past to the future: a bibliometric analysis. Sci Total Environ 635:1081–1090

    Article  CAS  Google Scholar 

  • Martínez SH, Koberle A, Rochedo P, Schaeffer R, Lucena A, Szklo A, Ashina S, van Vuuren DP (2015) Possible energy futures for Brazil and Latin America in conservative and stringent mitigation pathways up to 2050. Technol Forecast Soc Change 98:186–210

    Article  Google Scholar 

  • Mat Aron N, Khoo K, Chew K, Show P, Chen W-H, Nguyen T (2020) Sustainability of the four generations of biofuels – a review. Int J Energy Res 44:9266–9282

    Article  CAS  Google Scholar 

  • Milojevic S (2012) How are academic age, productivity and collaboration related to citing behavior of researchers? PLoS One 7:e49176. https://doi.org/10.1371/journal.pone.0049176

    Article  CAS  Google Scholar 

  • Milojevic S, Radicchi F, Walsh J (2018) Changing demographics of scientific careers: the rise of the temporary workforce. Proc Natl Acad Sci U S A 115:12616–12623

    Article  CAS  Google Scholar 

  • Murphy CW, Kendall A (2015) Life cycle analysis of biochemical cellulosic ethanol under multiple scenarios. GCB Bioenergy 7:1019–1033

    Article  CAS  Google Scholar 

  • Parajuli R, Dalgaard T, Jørgensen U, Adamsen APS, Knudsen MT, Birkved M, Gylling M, Schjørring JK (2015) Biorefining in the prevailing energy and materials crisis: a review of sustainable pathways for biorefinery value chains and sustainability assessment methodologies. Renew Sust Energ Rev 43:244–263

    Article  CAS  Google Scholar 

  • Peters G, Andrew R, Canadell J, Fuss S, Jackson R, Ivar Korsbakken J, Le Quéré C, Nakicenovic N (2017) Key indicators to track current progress and future ambition of the Paris Agreement. Nat Clim Chang 7:118–122

    Article  Google Scholar 

  • Portugal-Pereira J, Soria R, Rathmann R, Schaeffer R, Szklo A (2015) Agricultural and agro-industrial residues-to-energy: technoeconomic and environmental assessment in Brazil. Biomass Bioenergy 81:521–533

    Article  Google Scholar 

  • Pritchar A (1969) Statistical bibliography or bibliometrics. J Doc 25:348–349

    Google Scholar 

  • Qin ZC, Zhuang QL, Cai XM, He YJ, Huang Y, Jiang D, Lin ED, Liu YL, Tang Y, Wang MQ (2018) Biomass and biofuels in China: toward bioenergy resource potentials and their impacts on the environment. Renew Sust Energ Rev 82:2387–2400

    Article  Google Scholar 

  • Reid W, Ali M, Field C (2020) The future of bioenergy. Glob Chang Biol 26:274–286

    Article  Google Scholar 

  • Robledo-Abad C, Althaus H-J, Berndes G, Bolwig S, Corbera E, Creutzig F, Garcia-Ulloa J, Geddes A, Gregg J, Haberl H, Hanger S, Harper R, Hunsberger C, Larsen R, Lauk C, Leitner S, Lilliestam J, Lotze-Campen H, Muys B, Nordborg M, Ölund M, Orlowsky B, Popp A, Portugal-Pereira J, Reinhard J, Scheiffle L, Smith P (2017) Bioenergy production and sustainable development: science base for policymaking remains limited. GCB Bioenergy 9:541–556

    Article  Google Scholar 

  • Rugani B, Vázquez-Rowe I, Benedetto G, Benetto E (2013) A comprehensive review of carbon footprint analysis as an extended environmental indicator in the wine sector. J Clean Prod 54:61–77

    Article  Google Scholar 

  • Schubert R, Blasch J (2010) Sustainability standards for bioenergy—a means to reduce climate change risks? Energy Policy 38:2797–2805

    Article  Google Scholar 

  • Searle S, Malins C (2015) A reassessment of global bioenergy potential in 2050. GCB Bioenergy 7:328–336

    Article  Google Scholar 

  • Tenenbaum D (2008) Food vs. fuel: diversion of crops could cause more hunger. Environ Health Perspect 116:A254–A257

    Article  Google Scholar 

  • van Eck NJ, Waltman L (2010) Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 84:523–538

    Article  Google Scholar 

  • Walsh BJ, Rydzak F, Palazzo A, Kraxner F, Herrero M, Schenk PM, Ciais P, Janssens IA, Peñuelas J, Niederl-Schmidinger A, Obersteiner M (2015) New feed sources key to ambitious climate targets. Carbon Balance Manag 10:26. https://doi.org/10.1186/s13021-015-0040-7

    Article  CAS  Google Scholar 

  • Whitaker J, Ludley K, Rowe R, Taylor G, Howard D (2010) Sources of variability in greenhouse gas and energy balances for biofuel production: a systematic review. GCB Bioenergy 2:99–112

    CAS  Google Scholar 

  • Xu YY, Boeing W (2013) Mapping biofuel field: a bibliometric evaluation of research output. Renew Sust Energ Rev 28:82–91

    Article  Google Scholar 

  • Yu DJ, Meng S (2018) An overview of biomass energy research with bibliometric indicators. Energy Environ 29:576–590

    Article  Google Scholar 

  • Zhang Y, Yu Q (2020a) Characteristics of high-impact agronomic journals. Agron J 112:3878–3890

    Article  Google Scholar 

  • Zhang Y, Yu Q (2020b) What is the best article publishing strategy for early career scientists? Scientometrics 122:397–408

    Article  Google Scholar 

  • Zhang YJ, Wang YF, Niu HS (2017) Spatio-temporal variations in the areas suitable for the cultivation of rice and maize in China under future climate scenarios. Sci Total Environ 601–602:518–531

    Article  CAS  Google Scholar 

  • Zhang X, Estoque RC, Xie H, Murayama Y, Ranagalage M (2019) Bibliometric analysis of highly cited articles on ecosystem services. PLoS One 14:e0210707. https://doi.org/10.1371/journal.pone.0210707

    Article  CAS  Google Scholar 

  • Zhou YG, Zhang ZX, Zhang YX, Wang YG, Yu Y, Ji F, Ahmad R, Dong RJ (2016) A comprehensive review on densified solid biofuel industry in China. Renew Sust Energ Rev 54:1412–1428

    Article  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to the editor and three anonymous reviewers for their valuable comments that have significantly improved the paper. The authors thank Dr. David Nielsen at AEREA Inc. (www.aereainc.com), and Mr. Shouhua Xu at the Institute of Soil and Water Conservation, Northwest A&F University, for providing suggestions on the manuscript.

Funding

This study was funded by the International Partnership Program of the Chinese Academy of Sciences (161461KYSB20170013) and the Chinese Academy of Sciences “Light of West China” Program (Prof. Q. Fang).

Author information

Authors and Affiliations

Authors

Contributions

Yajie Zhang: conceptualization; data curation; formal analysis; investigation; methodology; resources; software; validation; visualization; writing—original draft.

Qiang Yu: funding acquisition; project administration; supervision; writing—review and editing.

Juan Li: conceptualization; methodology; software; validation; supervision; writing—review and editing.

Corresponding authors

Correspondence to Qiang Yu or Juan Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 1078 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Yu, Q. & Li, J. Bioenergy research under climate change: a bibliometric analysis from a country perspective. Environ Sci Pollut Res 28, 26427–26440 (2021). https://doi.org/10.1007/s11356-021-12448-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-12448-1

Keywords