Skip to main content
Log in

Distribution and transfer of naturally occurring radionuclides and 137Cs in the freshwater system of the Plitvice Lakes, Croatia, and related dose assessment to wildlife by ERICA Tool

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the natural radioactivity of Plitvice Lakes, under the assumption that due to its status as a National Park, the area can be considered an example of a natural freshwater system. Also, considering the transfer parameter data as the largest source of uncertainty in radiological risk assessments, the impact of site-specific data on dose rate assessment, as opposed to currently available data, was investigated. The study included gamma and alpha spectrometric measurements of 238U, 226Ra, 210Pb, 228Ra, and 40K in water, sediment, and fish samples, as well as 137Cs due to the coinciding of the study with the Fukushima accident. The content of naturally occurring radionuclides significantly varied in sediments of different Lakes, probably as a reflection of the different underlying geology of the area. Also, the 210Pb distribution in sediments indicated an up to 312 Bq kg−1 of the allochthonous contribution of this radionuclide at the beginning of the Lake’s watercourse, which probably entered into the lake system by the major inlet river with its steady decrease along downstream lakes. Low 40K activity concentrations (27.5 ± 20.1 mBq L−1) in the Lake’s waters might be one of the causes of increased 137Cs activity concentrations in fish samples (1.5 ± 0.4 Bq kg−1), which was found to be an order of magnitude higher than average values for different fish species from other Croatian freshwater systems (0.2 ± 0.1 Bq kg−1). A temporary increase of 137Cs activity concentrations was measured in water samples collected immediately after the Fukushima accident. Calculated site-specific sediment/water distribution coefficients and fish/water concentration ratios for radium and caesium were on average lower than generic ones found in the literature. Background dose rate assessments performed by the ERICA Tool indicated a profound impact of different input data on assessment results with water activity concentrations resulting in significantly higher dose rates (0.1–67 μGy h−1) in comparison to sediment activity concentrations (0.03–9 μGy h−1). An incremental dose rate due to 137Cs was found to be in the range of < 0.001–0.023 μGy h−1 which, in comparison to background dose rates, can be considered negligible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Not applicable

References

  • Abril JM, Fraga E (1996) Some physical and chemical features of the variability of Kd distribution coefficients for radionuclides. J Environ Radioact 30(3):253–270. https://doi.org/10.1016/0265-931X(95)00010-8

    Article  CAS  Google Scholar 

  • Almahayni T, Beresford NA, Crout NMJ, Sweeck L (2019) Fit-for-purpose modelling of radiocaesium soil-to-plant transfer for nuclear emergencies: a review. J Environ Radioact 201:58–66. https://doi.org/10.1016/j.jenvrad.2019.01.006

    Article  CAS  Google Scholar 

  • Babić D, Skoko B, Franić Z, Senčar J, Šoštarić M, Petroci L, Avdić M, Kovačić M, Branica G, Petrinec B, Bituh T, Franulović I, Marović G (2020) Baseline radioecological data for the soil and selected bioindicator organisms in the temperate forest of Plitvice Lakes National Park, Croatia. Environ Sci Pollut Res 27:21040–21056. https://doi.org/10.1007/s11356-020-08369-0

    Article  CAS  Google Scholar 

  • Babinka S (2007) Multi-tracer study of karst waters and lake sediments in Croatia and Bosnia-Herzegovina: Plitvice Lakes National Park and Bihac Area. PhD Thesis. University of Zagreb, Zagreb (in Croatian)

  • Barešić J (2009) Primjena izotopnih i geokemijskih metoda u praćenju globalnih i lokalnih promjena u ekološkom sustavu plitvičkih jezera. PhD Thesis. University of Zagreb, Zagreb (in Croatian)

  • Bencetić KZ, Josip R, Sanja K (2018) Review of research on Plitvice Lakes Croatia in the fields of meteorology climatology hydrology hydrogeochemistry and physical limnology. Geofizika

  • Beresford NA, Barnett CL, Howard BJ, Scott WA, Brown JE, Copplestone D (2008a) Derivation of transfer parameters for use within the ERICA Tool and the default concentration ratios for terrestrial biota. J Environ Radioact 99:1393–1407. https://doi.org/10.1016/j.jenvrad.2008.01.020

    Article  CAS  Google Scholar 

  • Beresford NA, Barnett CL, Jones DG, Wood MD, Appleton JD, Breward N, Copplestone D (2008b) Background exposure rates of terrestrial wildlife in England and Wales. J Environ Radioact 99:1430–1439. https://doi.org/10.1016/j.jenvrad.2008.03.003

    Article  CAS  Google Scholar 

  • Beresford NA, Willey N (2019) Moving radiation protection on from the limitations of empirical concentration ratios. J Environ Radioact 208–209:106020. https://doi.org/10.1016/j.jenvrad.2019.106020

    Article  CAS  Google Scholar 

  • Beresford NA, Yankovich TL, Wood MD, Fesenko S, Andersson P, Muikku M, Willey NJ (2013) A new approach to predicting environmental transfer of radionuclides to wildlife: A demonstration for freshwater fish and caesium. Sci Total Environ 463-434:284–292. https://doi.org/10.1016/j.scitotenv.2013.06.013

    Article  CAS  Google Scholar 

  • Bituh T, Petrinec B, Marovic G, Senčar J, Gospodarić I (2008) 226Ra and 228Ra in Croatian Rivers. Coll Antropol 32:105–108

    Google Scholar 

  • Boyer P, Wells C, Howard B (2018) Extended Kd distributions for freshwater environment. J Environ Radioact 192:128–142. https://doi.org/10.1016/j.jenvrad.2018.06.006

    Article  CAS  Google Scholar 

  • Brown JE, Alfonso B, Avila R, Beresford NA, Copplestone D, Hosseini A (2016) A new version of the ERICA tool to facilitate impact assessments of radioactivity on wild plants and animals. J Environ Radioact 153:141–148. https://doi.org/10.1016/j.jenvrad.2015.12.011

    Article  CAS  Google Scholar 

  • Brown JE, Alfonso B, Avila R, Beresford NA, Copplestone D, Pröhl G, Ulanovsky A (2008) The ERICA Tool. J Environ Radioact 99:1371–1383. https://doi.org/10.1016/j.jenvrad.2008.01.008

    Article  CAS  Google Scholar 

  • Brown JE, Beresford NA, Hosseini A (2013) Approaches to providing missing transfer parameter values in the ERICA Tool - how well do they work? J Environ Radioact 126:399–411. https://doi.org/10.1016/j.jenvrad.2012.05.005

    Article  CAS  Google Scholar 

  • Brown JE, Jones SR, Saxén R, Thørring H, Batlle JV i (2004) Radiation doses to aquatic organisms from natural radionuclides. J Radiol Prot 24:A63–A77 . https://doi.org/10.1088/0952-4746/24/4A/004

  • Cagiltay F, Erkan N, Selcuk A, Ozden O, Devrim Tosun D, Ulusoy S, Atanasoff A (2014) Chemical composition of wild and cultured marsh frog (Rana ridibunda). Bulg J Agric Sci 20:1250–1254

    Google Scholar 

  • Carroll J, Harms IH (1999) Uncertainty analysis of partition coefficients in a radionuclide transport model. Water Res 33(11):2617–2626. https://doi.org/10.1016/S0043-1354(99)00114-1

    Article  CAS  Google Scholar 

  • Ciffroy P, Durrie G, Garnier JM (2009) Probabilistic distribution coefficients (Kds) in freshwater for radioisotopes of Ag, Am, Ba, Be, Ce, Co, Cs, I, Mn, Pu, Ra, Ru, Sb, Sr and Th - Implications for uncertainty analysis of models simulating the transport of radionuclides in rivers. J Environ Radioact 100(9):785–794. https://doi.org/10.1016/j.jenvrad.2008.10.019

    Article  CAS  Google Scholar 

  • Clement CH, Strand P, Beresford N, Copplestone D, Godoy J, Jianguo L, Saxén R, Yankovich T, Brown J (2009) Environmental protection: transfer parameters for reference animals and plants. Ann ICRP 39:1–111. https://doi.org/10.1016/j.icrp.2011.08.009

    Article  Google Scholar 

  • Copplestone D, Beresford NA, Brown JE, Yankovich T (2013) An international database of radionuclide concentration ratios for wildlife: development and uses. J Environ Radioact 126:288–298. https://doi.org/10.1016/j.jenvrad.2013.05.007

    Article  CAS  Google Scholar 

  • Cukrov N, Barišić D (2006) Spatial distribution of 40K and232Th in recent sediments of the Krka River Estuary. Croat Chem Acta 79(1):115–118

    CAS  Google Scholar 

  • Cukrov N, Mlakar M, Cuculić V, Barišić D (2009) Origin and transport of 238U and 226Ra in riverine, estuarine and marine sediments of the Krka River, Croatia. J Environ Radioact 100:497–504. https://doi.org/10.1016/j.jenvrad.2009.03.012

    Article  CAS  Google Scholar 

  • Čanjevac I, Orešić D (2018) Changes in discharge regimes of rivers in Croatia. Acta Geogr Slov 58(2):7–18. https://doi.org/10.3986/AGS.2004

    Article  Google Scholar 

  • Dallas LJ, Devos A, Fievet B, Turner A, Lyons BP, Jha AN (2016) Radiation dose estimation for marine mussels following exposure to tritium: best practice for use of the ERICA tool in ecotoxicological studies. J Environ Radioact 155–156:1–6. https://doi.org/10.1016/j.jenvrad.2016.01.019

    Article  CAS  Google Scholar 

  • Dautović J, Fiket Ž, Barešić J, Ahel M, Mikac N (2014) Sources, distribution and behavior of major and trace elements in a complex karst lake system. Aquat Geochemistry 20:19–38. https://doi.org/10.1007/s10498-013-9204-9

    Article  CAS  Google Scholar 

  • Delmas M, Garcia-Sanchez L, Onda Y (2019) Factors controlling the variability of 137 Cs concentrations in 5 coastal rivers around Fukushima Dai-ichi power plant. J Environ Radioact 204:1–11. https://doi.org/10.1016/j.jenvrad.2019.03.013

    Article  CAS  Google Scholar 

  • Doering C, Carpenter J, Orr B, Urban D (2019) Whole organism concentration ratios in freshwater wildlife from an Australian tropical U mining environment and the derivation of a water radiological quality guideline value. J Environ Radioact 198:27–35. https://doi.org/10.1016/j.jenvrad.2018.12.011

    Article  CAS  Google Scholar 

  • Franić Z, Marović G (2007) Long-term investigations of radiocaesium activity concentrations in carp in North Croatia after the Chernobyl accident. J Environ Radioact 94(2):75–85. https://doi.org/10.1016/j.jenvrad.2007.01.001

    Article  CAS  Google Scholar 

  • Fujii M, Ono K, Yoshimura C, Miyamoto M (2018) The role of autochthonous organic matter in radioactive cesium accumulation to riverine fine sediments. Water Res 137:18–27. https://doi.org/10.1016/j.watres.2018.02.063

    Article  CAS  Google Scholar 

  • Guillén J, Beresford NA, Baeza A, Izquierdo M, Wood MD, Salas A, Muñoz-Serrano A, Corrales-Vázquez JM, Muñoz-Muñoz JG (2018) Transfer parameters for ICRP’s Reference Animals and Plants in a terrestrial Mediterranean ecosystem. J Environ Radioact 186:9–22. https://doi.org/10.1016/j.jenvrad.2017.06.024

    Article  CAS  Google Scholar 

  • Hirth GA, Johansen MP, Carpenter JG, Bollhöfer A, Beresford NA (2017) Whole-organism concentration ratios in wildlife inhabiting Australian uranium mining environments. J Environ Radioact 178–179:385–393. https://doi.org/10.1016/j.jenvrad.2017.04.007

    Article  CAS  Google Scholar 

  • Horvatinčić N, Barešić J, Babinka S, Obelić B, Bronić IK, Vreča P, Suckow A (2008) Towards a deeper understanding of how carbonate isotopes (14C, 13C, 18O) reflect environmental changes: a study with recent 210Pb-dated sediments of the plitvice lakes, Croatia. Radiocarbon 50:233–253. https://doi.org/10.1017/S0033822200033543

    Article  Google Scholar 

  • Horvatinčić N, Briansó JL, Obelić B, Barešić J, Krajcar Bronić I (2006) Study of pollution of the Plitvice lakes by water and sediment analyses. Water, Air, Soil Pollut Focus 6:475–485. https://doi.org/10.1007/s11267-006-9031-8

    Article  CAS  Google Scholar 

  • Horvatinčić N, Sironić A, Barešić J, Sondi I, Krajcar Bronić I, Borković D (2018) Mineralogical, organic and isotopic composition as palaeoenvironmental records in the lake sediments of two lakes, the Plitvice Lakes, Croatia. Quat Int 494:300–313. https://doi.org/10.1016/j.quaint.2017.01.022

    Article  Google Scholar 

  • Hosseini A, Beresford NA, Brown JE, Jones DG, Phaneuf M, Thørring H, Yankovich T (2010) Background dose-rates to reference animals and plants arising from exposure to naturally occurring radionuclides in aquatic environments. J Radiol Prot 30:235–264. https://doi.org/10.1088/0952-4746/30/2/S03

    Article  CAS  Google Scholar 

  • Howard BJ, Wells C, Beresford NA, Copplestone D (2013) Exploring methods to prioritise concentration ratios when estimating weighted absorbed dose rates to terrestrial reference animals and plants. J Environ Radioact 126:326–337. https://doi.org/10.1016/j.jenvrad.2013.05.005

    Article  CAS  Google Scholar 

  • IAEA (2014) Handbook of parameter values for the prediction of radionuclide transfer to wildlife. Techical Reports Series No. 479

  • IAEA (2010) Handbook of parameter values for the prediction of radionuclide transfer in terrestrial and freshwater environments. Technical Reports Series No. 472

  • IAEA (2009) Quantification of radionuclide transfer in terrestrial and freshwater environments for radiological assessments. IAEA-TECDOC-1616, IAEA, Vienna.

  • Institute for Medical research and Occupational Health (IMROH) (2011–2018) Praćenje stanja radioaktivnosti životne sredine u Republici Hrvatskoj, godišnji izvještaji 2011–2018. (Monitoring of the state of environmental radioactivity in the Republic of Croatia, Annual reports 2011–2018), Zagreb

  • Ishii Y, Matsuzaki S ichiro S, Hayashi S (2020) Different factors determine 137Cs concentration factors of freshwater fish and aquatic organisms in lake and river ecosystems. J Environ Radioact 213:106102 . https://doi.org/10.1016/j.jenvrad.2019.106102

  • Johansen MP, Barnett CL, Beresford NA, Brown JE, Černe M, Howard BJ, Kamboj S, Keum DK, Smodiš B, Twining JR, Vandenhove H, Vives i Batlle J, Wood MD, Yu C (2012) Assessing doses to terrestrial wildlife at a radioactive waste disposal site: inter-comparison of modelling approaches. Sci Total Environ 427-428:238–246. https://doi.org/10.1016/j.scitotenv.2012.04.031

    Article  CAS  Google Scholar 

  • Kim Y, Kim K, Kang HD, Kim W, Doh SH, Kim DS, Kim BK (2007) The accumulation of radiocesium in coarse marine sediment: effects of mineralogy and organic matter. Mar Pollut Bull 54(9):1341–1350. https://doi.org/10.1016/j.marpolbul.2007.06.003

    Article  CAS  Google Scholar 

  • Kirchner G (2011) 210Pb as a tool for establishing sediment chronologies: examples of potentials and limitations of conventional dating models. J Environ Radioact 102:490–494. https://doi.org/10.1016/j.jenvrad.2010.11.010

    Article  CAS  Google Scholar 

  • Kljaković-Gašpić Z, Herceg Romanić S, Bituh T, Kašuba V, Brčić Karačonji I, Brajenović N, Franulović I, Jurasović J, Klinčić D, Kopjar N, Marović G, Milić M, Orct T, Sekovanić A, Želježić D (2018) Assessment of multiple anthropogenic contaminants and their potential genotoxicity in the aquatic environment of Plitvice Lakes National Park, Croatia. Environ Monit Assess 190:694. https://doi.org/10.1007/s10661-018-7028-1

    Article  CAS  Google Scholar 

  • Kłos R, Albrecht A (2005) The significance of agricultural vs. natural ecosystem pathways in temperate climates in assessments of long-term radiological impact. J Environ Radioact 83(2):137–169. https://doi.org/10.1016/j.jenvrad.2005.02.011

    Article  CAS  Google Scholar 

  • Krmar M, Varga E, Slivka J (2013) Correlations of natural radionuclides in soil with those in sediment from the Danube and nearby irrigation channels. J Environ Radioact 117:31–35. https://doi.org/10.1016/j.jenvrad.2011.12.023

    Article  CAS  Google Scholar 

  • Kryshev II (1995) Radioactive contamination of aquatic ecosystems following the Chernobyl accident. J Environ Radioact 27(3):207–219. https://doi.org/10.1016/0265-931X(94)00042-U

    Article  CAS  Google Scholar 

  • Kurikami H, Sakuma K, Malins A, Sasaki Y, Niizato T (2019) Numerical study of transport pathways of 137Cs from forests to freshwater fish living in mountain streams in Fukushima, Japan. J Environ Radioact 208-209:106005. https://doi.org/10.1016/j.jenvrad.2019.106005

    Article  CAS  Google Scholar 

  • Masson O, Baeza A, Bieringer J, Brudecki K, Bucci S, Cappai M, Carvalho FP, Connan O, Cosma C, Dalheimer A, Didier D, Depuydt G, De Geer LE, De Vismes A, Gini L, Groppi F, Gudnason K, Gurriaran R, Hainz D, Halldórsson O, Hammond D, Hanley O, Holeý K, Homoki Z, Ioannidou A, Isajenko K, Jankovic M, Katzlberger C, Kettunen M, Kierepko R, Kontro R, Kwakman PJM, Lecomte M, Leon Vintro L, Leppänen A-P, Lind B, Lujaniene G, Mc Ginnity P, Mahon CM, Malá H, Manenti S, Manolopoulou M, Mattila A, Mauring A, Mietelski JW, Møller B, Nielsen SP, Nikolic J, Overwater RMW, Pálsson SE, Papastefanou C, Penev I, Pham MK, Povinec PP, Ramebäck H, Reis MC, Ringer W, Rodriguez A, Rulík P, Saey PRJ, Samsonov V, Schlosser C, Sgorbati G, Silobritiene BV, Söderström C, Sogni R, Solier L, Sonck M, Steinhauser G, Steinkopff T, Steinmann P, Stoulos S, Sýkora I, Todorovic D, Tooloutalaie N, Tositti L, Tschiersch J, Ugron A, Vagena E, Vargas A, Wershofen H, Zhukova O (2011) Tracking of airborne radionuclides from the damaged Fukushima Dai-Ichi nuclear reactors by European Networks. Environ Sci Technol 45:7670–7677. https://doi.org/10.1021/es2017158

    Article  CAS  Google Scholar 

  • Morton RA, White WA (1997) Characteristics of and corrections for core shortening in unconsolidated sediments. J Coast Res 13:761–769

    Google Scholar 

  • Mothersill C, Abend M, Bréchignac F, Copplestone D, Geras’kin S, Goodman J, Horemans N, Jeggo P, McBride W, Mousseau TA, O’Hare A, Papineni RVL, Powathil G, Schofield PN, Seymour C, Sutcliffe J, Austin B (2019) The tubercular badger and the uncertain curve:- the need for a multiple stressor approach in environmental radiation protection. Environ Res 168:130–140. https://doi.org/10.1016/j.envres.2018.09.031

    Article  CAS  Google Scholar 

  • Mrdakovic Popic J, Oughton DH, Salbu B, Skipperud L (2020) Transfer of naturally occurring radionuclides from soil to wild forest flora in an area with enhanced legacy and natural radioactivity in Norway. Environ Sci Process Impacts 22:350–363. https://doi.org/10.1039/c9em00408d

    Article  CAS  Google Scholar 

  • Naulier M, Eyrolle-Boyer F, Boyer P, Métivier JM, Onda Y (2017) Particulate organic matter in rivers of Fukushima: an unexpected carrier phase for radiocesiums. Sci Total Environ 579:1560–1571. https://doi.org/10.1016/j.scitotenv.2016.11.165

    Article  CAS  Google Scholar 

  • Nedveckaite T, Filistovic V, Marciulioniene D, Prokoptchuk N, Plukiene R, Gudelis A, Remeikis V, Yankovich T, Beresford NA (2011) Background and anthropogenic radionuclide derived dose rates to freshwater ecosystem - nuclear power plant cooling pond - Reference organisms. J. Environ. Radioact. 102:788–795. https://doi.org/10.1016/j.jenvrad.2011.04.012

    Article  CAS  Google Scholar 

  • Nevissi AE, Shott GJ, Crecelius EA (1989) Comparison of two gravity coring devices for sedimentation rate measurement by 210Pb dating techniques. Hydrobiologia 179:261–269. https://doi.org/10.1007/BF00006639

    Article  CAS  Google Scholar 

  • Nyeste K, Dobrocsi P, Czeglédi I, Czédli H, Harangi S, Baranyai E, Simon E, Nagy SA, Antal L (2019) Age and diet-specific trace element accumulation patterns in different tissues of chub (Squalius cephalus): juveniles are useful bioindicators of recent pollution. Ecol Indic 101:1–10. https://doi.org/10.1016/j.ecolind.2019.01.001

    Article  CAS  Google Scholar 

  • Orescanin V, Lulic S, Pavlovic G, Mikelic L (2004) Granulometric and chemical composition of the Sava River sediments upstream and downstream of the Krsko nuclear power plant. Environ Geol 46:605–614. https://doi.org/10.1007/s00254-004-1066-4

    Article  CAS  Google Scholar 

  • Onishi Y, Serne RJ, Arnold EM, Cowen CE, Thompson FL (1991) Critical review: radionuclide transport, sediment transport, and water quality mathematical modelling and radionuclide adsorption/desorption mechanisms. Rep. NUREG/CR-1322, PNL-2901. Pacific Nortwest Lab., Richmond, WA.

  • Pentreath RJ (2002) Radiation protection of people and the environment: developing a common approach. J Radiol Prot 22:1–12

    Article  Google Scholar 

  • Petrinec B, Franić Z, Bituh T, Babić D (2011) Quality assurance in gamma-ray spectrometry of seabed sediments. Arh Hig Rada Toksikol 62:17–23. https://doi.org/10.2478/10004-1254-62-2011-2078

    Article  Google Scholar 

  • Rowan DJ, Rasmussen JB (1994) Bioaccumulation of radiocesium by fish: the influence of physicochemical factors and trophic structure. Can J Fish Aquat Sci 51(11):2388–2410. https://doi.org/10.1139/f94-240

    Article  CAS  Google Scholar 

  • Rawlence DJ, Whitton JS (1977) Elements in aquatic macrophytes, water, plankton, and sediments surveyed in three north Island lakes. New Zeal J Mar Freshw Res 11:73–93. https://doi.org/10.1080/00288330.1977.9515662

    Article  CAS  Google Scholar 

  • Salbu B (2016) Environmental impact and risk assessments and key factors contributing to the overall uncertainties. J Environ Radioact 151:352–360. https://doi.org/10.1016/j.jenvrad.2015.09.001

    Article  CAS  Google Scholar 

  • Saxén R, Ilus E (2008) Transfer and behaviour of 137Cs in two Finnish lakes and their catchments. Sci Total Environ 394:349–360. https://doi.org/10.1016/j.scitotenv.2008.01.048

    Article  CAS  Google Scholar 

  • Simon-Cornu M, Beaugelin-Seiller K, Boyer P, Calmon P, Garcia-Sanchez L, Mourlon C, Nicoulaud V, Sy M, Gonze MA (2015) Evaluating variability and uncertainty in radiological impact assessment using SYMBIOSE. J Environ Radioact 139:91–102. https://doi.org/10.1016/j.jenvrad.2014.09.014

    Article  CAS  Google Scholar 

  • Skoko B, Babić D, Marović G, Papić S (2019) Environmental radiological risk assessment of a coal ash and slag disposal site with the use of the ERICA Tool. J Environ Radioact 208–209:106018. https://doi.org/10.1016/j.jenvrad.2019.106018

    Article  CAS  Google Scholar 

  • Smith JT, Kudelsky AV, Ryabov IN, Hadderingh RH (2000) Radiocaesium concentration factors of Chernobyl-contaminated fish: a study of the influence of potassium, and “blind” testing of a previously developed model. J Environ Radioact 48(3):359–369. https://doi.org/10.1016/S0265-931X(99)00089-2

    Article  CAS  Google Scholar 

  • Sundbom M, Meili M, Andersson E, Östlund M, Broberg A (2003) Long-term dynamics of Chernobyl 137Cs in freshwater fish: quantifying the effect of body size and trophic level. J Appl Ecol 40:228–240. https://doi.org/10.1046/j.1365-2664.2003.00795.x

    Article  CAS  Google Scholar 

  • Šoštarić M, Babić D, Petrinec B, Zgorelec Ž (2016) Determination of gamma-ray self-attenuation correction in environmental samples by combining transmission measurements and Monte Carlo simulations. Appl Radiat Isot. 113:110–116. https://doi.org/10.1016/j.apradiso.2016.04.012

    Article  CAS  Google Scholar 

  • Thompson PA, Kurias J, Mihok S (2005) Derivation and use of sediment quality guidelines for ecological risk assessment of metals and radionuclides released to the environment from uranium mining and milling activities in Canada. Environ Monit Assess. 110:71–85. https://doi.org/10.1007/s10661-005-6291-0

    Article  CAS  Google Scholar 

  • Tomczak W, Boyer P, Krimissa M, Radakovitch O (2019) Kd distributions in freshwater systems as a function of material type, mass-volume ratio, dissolved organic carbon and pH. Appl Geochemistry 105:68–77. https://doi.org/10.1016/j.apgeochem.2019.04.003

    Article  CAS  Google Scholar 

  • UNSCEAR (2008) Sources and effects of ionizing radiation: report to the General Assembly with scientific annexes: VOLUME I. Annex B.

  • UNSCEAR (2016) Sources, effects and risks of ionizing radiation: report to the General Assembly—scientific annexes.

  • Van Metre PC, Wilson JT, Fuller CC, Callender E, Mahler BJ 2004 Collection, analysis, and age-dating of sediment cores from 56 U.S. lakes and reservoirs sampled by the U.S. Geological Survey, 1992–2001: U.S. Geological Survey Scientific Investigations Report 2004–5184, 180 p.

  • Vetikko V, Saxén R (2010) Application of the ERICA Assessment Tool to freshwater biota in Finland. J Environ Radioact 101:82–87. https://doi.org/10.1016/j.jenvrad.2009.09.001

    Article  CAS  Google Scholar 

  • Vidmar T (2005) EFFTRAN - A Monte Carlo efficiency transfer code for gamma-ray spectrometry. Nucl Instruments Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip. 550:603–608. https://doi.org/10.1016/j.nima.2005.05.055

    Article  CAS  Google Scholar 

  • Wada T, Konoplev A, Wakiyama Y, Watanabe K, Furuta Y, Morishita D, Kawata G, Nanba K (2019) Strong contrast of cesium radioactivity between marine and freshwater fish in Fukushima. J Environ Radioact. 204:132–142. https://doi.org/10.1016/j.jenvrad.2019.04.006

    Article  CAS  Google Scholar 

  • WHO (2018) Management of radioactivity in drinking-water. Geneva: World Health Organization; 2018. Licence: CC BY-NC-SA 3.0 IGO.

  • WHO (2017) Guidelines for drinking-water quality: fourth edition incorporating the first addendum. Geneva: World Health Organization; 2017. Licence: CC BY-NC-SA 3.0 IGO

  • Wood MD, Beresford NA, Howard BJ, Copplestone D (2013) Evaluating summarised radionuclide concentration ratio datasets for wildlife. J Environ Radioact 126:314–325 . 10.1016/j.jenvrad.2013.07.022

  • Yankovich T, Beresford NA, Fesenko S, Fesenko J, Phaneuf M, Dagher E, Outola I, Andersson P, Thiessen K, Ryan J, Wood MD, Bollhöfer A, Barnett CL, Copplestone D (2013) Establishing a database of radionuclide transfer parameters for freshwater wildlife. J Environ Radioact. 126:299–313. https://doi.org/10.1016/j.jenvrad.2012.07.014

    Article  CAS  Google Scholar 

  • Yankovich TL, Vives I, Batlle J, Vives-Lynch S, Beresford NA, Barnett CL, Beaugelin-Seiller K, Brown JE, Cheng JJ, Copplestone D, Heling R, Hosseini A, Howard BJ, Kamboj S, Kryshev AI, Nedveckaite T, Smith JT, Wood MD (2010) An international model validation exercise on radionuclide transfer and doses to freshwater biota. J Radiol Prot 30:299–340. https://doi.org/10.1088/0952-4746/30/2/S06

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Jasminka Senčar, Mak Avdić, Ljerka Petroci, Milica Kovačić, and Iva Franulović for technical support and assistance in conducting the study.

Funding

The project “Monitoring of organic and inorganic pollutants in the environment of the Plitvice Lakes National Park” was financed by the Public Institution “Plitvice Lakes” (contract no. 01 – 100 – 243/10, Zagreb, and contract no. 14983/10, Plitvice Lakes).

Author information

Authors and Affiliations

Authors

Contributions

BS performed data analysis and environmental risk assessment analysis and took the lead in writing manuscript. DB and BP carried out gamma-ray spectrometry. TB carried out alpha spectrometry. DB and ZF performed data compilation. ZF and TB took care of the quality control of the data. BP verified the analytical methods. All authors provided critical feedback and helped shape the research and manuscript.

Corresponding author

Correspondence to Božena Skoko.

Ethics declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare that they have no competing interests.

Additional information

Responsible Editor: Georg Steinhauser

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skoko, B., Babić, D., Franić, Z. et al. Distribution and transfer of naturally occurring radionuclides and 137Cs in the freshwater system of the Plitvice Lakes, Croatia, and related dose assessment to wildlife by ERICA Tool. Environ Sci Pollut Res 28, 23547–23564 (2021). https://doi.org/10.1007/s11356-021-12415-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-12415-w

Keywords

Navigation